blob: 41189f6622517758f91216bd3a51474acaa0fe28 [file] [log] [blame]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package main
import (
"bytes"
"fmt"
"go/ast"
"go/constant"
"go/token"
"go/types"
"os"
"strings"
"unicode/utf8"
"golang.org/x/tools/cmd/guru/serial"
"golang.org/x/tools/go/ast/astutil"
"golang.org/x/tools/go/loader"
"golang.org/x/tools/go/types/typeutil"
)
// describe describes the syntax node denoted by the query position,
// including:
// - its syntactic category
// - the definition of its referent (for identifiers) [now redundant]
// - its type, fields, and methods (for an expression or type expression)
//
func describe(q *Query) error {
lconf := loader.Config{Build: q.Build}
allowErrors(&lconf)
if _, err := importQueryPackage(q.Pos, &lconf); err != nil {
return err
}
// Load/parse/type-check the program.
lprog, err := lconf.Load()
if err != nil {
return err
}
qpos, err := parseQueryPos(lprog, q.Pos, true) // (need exact pos)
if err != nil {
return err
}
if false { // debugging
fprintf(os.Stderr, lprog.Fset, qpos.path[0], "you selected: %s %s",
astutil.NodeDescription(qpos.path[0]), pathToString(qpos.path))
}
var qr QueryResult
path, action := findInterestingNode(qpos.info, qpos.path)
switch action {
case actionExpr:
qr, err = describeValue(qpos, path)
case actionType:
qr, err = describeType(qpos, path)
case actionPackage:
qr, err = describePackage(qpos, path)
case actionStmt:
qr, err = describeStmt(qpos, path)
case actionUnknown:
qr = &describeUnknownResult{path[0]}
default:
panic(action) // unreachable
}
if err != nil {
return err
}
q.Output(lprog.Fset, qr)
return nil
}
type describeUnknownResult struct {
node ast.Node
}
func (r *describeUnknownResult) PrintPlain(printf printfFunc) {
// Nothing much to say about misc syntax.
printf(r.node, "%s", astutil.NodeDescription(r.node))
}
func (r *describeUnknownResult) JSON(fset *token.FileSet) []byte {
return toJSON(&serial.Describe{
Desc: astutil.NodeDescription(r.node),
Pos: fset.Position(r.node.Pos()).String(),
})
}
type action int
const (
actionUnknown action = iota // None of the below
actionExpr // FuncDecl, true Expr or Ident(types.{Const,Var})
actionType // type Expr or Ident(types.TypeName).
actionStmt // Stmt or Ident(types.Label)
actionPackage // Ident(types.Package) or ImportSpec
)
// findInterestingNode classifies the syntax node denoted by path as one of:
// - an expression, part of an expression or a reference to a constant
// or variable;
// - a type, part of a type, or a reference to a named type;
// - a statement, part of a statement, or a label referring to a statement;
// - part of a package declaration or import spec.
// - none of the above.
// and returns the most "interesting" associated node, which may be
// the same node, an ancestor or a descendent.
//
func findInterestingNode(pkginfo *loader.PackageInfo, path []ast.Node) ([]ast.Node, action) {
// TODO(adonovan): integrate with go/types/stdlib_test.go and
// apply this to every AST node we can find to make sure it
// doesn't crash.
// TODO(adonovan): audit for ParenExpr safety, esp. since we
// traverse up and down.
// TODO(adonovan): if the users selects the "." in
// "fmt.Fprintf()", they'll get an ambiguous selection error;
// we won't even reach here. Can we do better?
// TODO(adonovan): describing a field within 'type T struct {...}'
// describes the (anonymous) struct type and concludes "no methods".
// We should ascend to the enclosing type decl, if any.
for len(path) > 0 {
switch n := path[0].(type) {
case *ast.GenDecl:
if len(n.Specs) == 1 {
// Descend to sole {Import,Type,Value}Spec child.
path = append([]ast.Node{n.Specs[0]}, path...)
continue
}
return path, actionUnknown // uninteresting
case *ast.FuncDecl:
// Descend to function name.
path = append([]ast.Node{n.Name}, path...)
continue
case *ast.ImportSpec:
return path, actionPackage
case *ast.ValueSpec:
if len(n.Names) == 1 {
// Descend to sole Ident child.
path = append([]ast.Node{n.Names[0]}, path...)
continue
}
return path, actionUnknown // uninteresting
case *ast.TypeSpec:
// Descend to type name.
path = append([]ast.Node{n.Name}, path...)
continue
case *ast.Comment, *ast.CommentGroup, *ast.File, *ast.KeyValueExpr, *ast.CommClause:
return path, actionUnknown // uninteresting
case ast.Stmt:
return path, actionStmt
case *ast.ArrayType,
*ast.StructType,
*ast.FuncType,
*ast.InterfaceType,
*ast.MapType,
*ast.ChanType:
return path, actionType
case *ast.Ellipsis:
// Continue to enclosing node.
// e.g. [...]T in ArrayType
// f(x...) in CallExpr
// f(x...T) in FuncType
case *ast.Field:
// TODO(adonovan): this needs more thought,
// since fields can be so many things.
if len(n.Names) == 1 {
// Descend to sole Ident child.
path = append([]ast.Node{n.Names[0]}, path...)
continue
}
// Zero names (e.g. anon field in struct)
// or multiple field or param names:
// continue to enclosing field list.
case *ast.FieldList:
// Continue to enclosing node:
// {Struct,Func,Interface}Type or FuncDecl.
case *ast.BasicLit:
if _, ok := path[1].(*ast.ImportSpec); ok {
return path[1:], actionPackage
}
return path, actionExpr
case *ast.SelectorExpr:
// TODO(adonovan): use Selections info directly.
if pkginfo.Uses[n.Sel] == nil {
// TODO(adonovan): is this reachable?
return path, actionUnknown
}
// Descend to .Sel child.
path = append([]ast.Node{n.Sel}, path...)
continue
case *ast.Ident:
switch pkginfo.ObjectOf(n).(type) {
case *types.PkgName:
return path, actionPackage
case *types.Const:
return path, actionExpr
case *types.Label:
return path, actionStmt
case *types.TypeName:
return path, actionType
case *types.Var:
// For x in 'struct {x T}', return struct type, for now.
if _, ok := path[1].(*ast.Field); ok {
_ = path[2].(*ast.FieldList) // assertion
if _, ok := path[3].(*ast.StructType); ok {
return path[3:], actionType
}
}
return path, actionExpr
case *types.Func:
return path, actionExpr
case *types.Builtin:
// For reference to built-in function, return enclosing call.
path = path[1:] // ascend to enclosing function call
continue
case *types.Nil:
return path, actionExpr
}
// No object.
switch path[1].(type) {
case *ast.SelectorExpr:
// Return enclosing selector expression.
return path[1:], actionExpr
case *ast.Field:
// TODO(adonovan): test this.
// e.g. all f in:
// struct { f, g int }
// interface { f() }
// func (f T) method(f, g int) (f, g bool)
//
// switch path[3].(type) {
// case *ast.FuncDecl:
// case *ast.StructType:
// case *ast.InterfaceType:
// }
//
// return path[1:], actionExpr
//
// Unclear what to do with these.
// Struct.Fields -- field
// Interface.Methods -- field
// FuncType.{Params.Results} -- actionExpr
// FuncDecl.Recv -- actionExpr
case *ast.File:
// 'package foo'
return path, actionPackage
case *ast.ImportSpec:
return path[1:], actionPackage
default:
// e.g. blank identifier
// or y in "switch y := x.(type)"
// or code in a _test.go file that's not part of the package.
return path, actionUnknown
}
case *ast.StarExpr:
if pkginfo.Types[n].IsType() {
return path, actionType
}
return path, actionExpr
case ast.Expr:
// All Expr but {BasicLit,Ident,StarExpr} are
// "true" expressions that evaluate to a value.
return path, actionExpr
}
// Ascend to parent.
path = path[1:]
}
return nil, actionUnknown // unreachable
}
func describeValue(qpos *queryPos, path []ast.Node) (*describeValueResult, error) {
var expr ast.Expr
var obj types.Object
switch n := path[0].(type) {
case *ast.ValueSpec:
// ambiguous ValueSpec containing multiple names
return nil, fmt.Errorf("multiple value specification")
case *ast.Ident:
obj = qpos.info.ObjectOf(n)
expr = n
case ast.Expr:
expr = n
default:
// TODO(adonovan): is this reachable?
return nil, fmt.Errorf("unexpected AST for expr: %T", n)
}
typ := qpos.info.TypeOf(expr)
if typ == nil {
typ = types.Typ[types.Invalid]
}
constVal := qpos.info.Types[expr].Value
if c, ok := obj.(*types.Const); ok {
constVal = c.Val()
}
return &describeValueResult{
qpos: qpos,
expr: expr,
typ: typ,
names: appendNames(nil, typ),
constVal: constVal,
obj: obj,
methods: accessibleMethods(typ, qpos.info.Pkg),
fields: accessibleFields(typ, qpos.info.Pkg),
}, nil
}
// appendNames returns named types found within the Type by
// removing map, pointer, channel, slice, and array constructors.
// It does not descend into structs or interfaces.
func appendNames(names []*types.Named, typ types.Type) []*types.Named {
// elemType specifies type that has some element in it
// such as array, slice, chan, pointer
type elemType interface {
Elem() types.Type
}
switch t := typ.(type) {
case *types.Named:
names = append(names, t)
case *types.Map:
names = appendNames(names, t.Key())
names = appendNames(names, t.Elem())
case elemType:
names = appendNames(names, t.Elem())
}
return names
}
type describeValueResult struct {
qpos *queryPos
expr ast.Expr // query node
typ types.Type // type of expression
names []*types.Named // named types within typ
constVal constant.Value // value of expression, if constant
obj types.Object // var/func/const object, if expr was Ident
methods []*types.Selection
fields []describeField
}
func (r *describeValueResult) PrintPlain(printf printfFunc) {
var prefix, suffix string
if r.constVal != nil {
suffix = fmt.Sprintf(" of value %s", r.constVal)
}
switch obj := r.obj.(type) {
case *types.Func:
if recv := obj.Type().(*types.Signature).Recv(); recv != nil {
if _, ok := recv.Type().Underlying().(*types.Interface); ok {
prefix = "interface method "
} else {
prefix = "method "
}
}
}
// Describe the expression.
if r.obj != nil {
if r.obj.Pos() == r.expr.Pos() {
// defining ident
printf(r.expr, "definition of %s%s%s", prefix, r.qpos.objectString(r.obj), suffix)
} else {
// referring ident
printf(r.expr, "reference to %s%s%s", prefix, r.qpos.objectString(r.obj), suffix)
if def := r.obj.Pos(); def != token.NoPos {
printf(def, "defined here")
}
}
} else {
desc := astutil.NodeDescription(r.expr)
if suffix != "" {
// constant expression
printf(r.expr, "%s%s", desc, suffix)
} else {
// non-constant expression
printf(r.expr, "%s of type %s", desc, r.qpos.typeString(r.typ))
}
}
printMethods(printf, r.expr, r.methods)
printFields(printf, r.expr, r.fields)
printNamedTypes(printf, r.expr, r.names)
}
func (r *describeValueResult) JSON(fset *token.FileSet) []byte {
var value, objpos string
if r.constVal != nil {
value = r.constVal.String()
}
if r.obj != nil {
objpos = fset.Position(r.obj.Pos()).String()
}
typesPos := make([]serial.Definition, len(r.names))
for i, t := range r.names {
typesPos[i] = serial.Definition{
ObjPos: fset.Position(t.Obj().Pos()).String(),
Desc: r.qpos.typeString(t),
}
}
return toJSON(&serial.Describe{
Desc: astutil.NodeDescription(r.expr),
Pos: fset.Position(r.expr.Pos()).String(),
Detail: "value",
Value: &serial.DescribeValue{
Type: r.qpos.typeString(r.typ),
TypesPos: typesPos,
Value: value,
ObjPos: objpos,
},
})
}
// ---- TYPE ------------------------------------------------------------
func describeType(qpos *queryPos, path []ast.Node) (*describeTypeResult, error) {
var description string
var typ types.Type
switch n := path[0].(type) {
case *ast.Ident:
obj := qpos.info.ObjectOf(n).(*types.TypeName)
typ = obj.Type()
if isAlias(obj) {
description = "alias of "
} else if obj.Pos() == n.Pos() {
description = "definition of " // (Named type)
} else if _, ok := typ.(*types.Basic); ok {
description = "reference to built-in "
} else {
description = "reference to " // (Named type)
}
case ast.Expr:
typ = qpos.info.TypeOf(n)
default:
// Unreachable?
return nil, fmt.Errorf("unexpected AST for type: %T", n)
}
description = description + "type " + qpos.typeString(typ)
// Show sizes for structs and named types (it's fairly obvious for others).
switch typ.(type) {
case *types.Named, *types.Struct:
szs := types.StdSizes{WordSize: 8, MaxAlign: 8} // assume amd64
description = fmt.Sprintf("%s (size %d, align %d)", description,
szs.Sizeof(typ), szs.Alignof(typ))
}
return &describeTypeResult{
qpos: qpos,
node: path[0],
description: description,
typ: typ,
methods: accessibleMethods(typ, qpos.info.Pkg),
fields: accessibleFields(typ, qpos.info.Pkg),
}, nil
}
type describeTypeResult struct {
qpos *queryPos
node ast.Node
description string
typ types.Type
methods []*types.Selection
fields []describeField
}
type describeField struct {
implicits []*types.Named
field *types.Var
}
func printMethods(printf printfFunc, node ast.Node, methods []*types.Selection) {
if len(methods) > 0 {
printf(node, "Methods:")
}
for _, meth := range methods {
// Print the method type relative to the package
// in which it was defined, not the query package,
printf(meth.Obj(), "\t%s",
types.SelectionString(meth, types.RelativeTo(meth.Obj().Pkg())))
}
}
func printFields(printf printfFunc, node ast.Node, fields []describeField) {
if len(fields) > 0 {
printf(node, "Fields:")
}
// Align the names and the types (requires two passes).
var width int
var names []string
for _, f := range fields {
var buf bytes.Buffer
for _, fld := range f.implicits {
buf.WriteString(fld.Obj().Name())
buf.WriteByte('.')
}
buf.WriteString(f.field.Name())
name := buf.String()
if n := utf8.RuneCountInString(name); n > width {
width = n
}
names = append(names, name)
}
for i, f := range fields {
// Print the field type relative to the package
// in which it was defined, not the query package,
printf(f.field, "\t%*s %s", -width, names[i],
types.TypeString(f.field.Type(), types.RelativeTo(f.field.Pkg())))
}
}
func printNamedTypes(printf printfFunc, node ast.Node, names []*types.Named) {
if len(names) > 0 {
printf(node, "Named types:")
}
for _, t := range names {
// Print the type relative to the package
// in which it was defined, not the query package,
printf(t.Obj(), "\ttype %s defined here",
types.TypeString(t.Obj().Type(), types.RelativeTo(t.Obj().Pkg())))
}
}
func (r *describeTypeResult) PrintPlain(printf printfFunc) {
printf(r.node, "%s", r.description)
// Show the underlying type for a reference to a named type.
if nt, ok := r.typ.(*types.Named); ok && r.node.Pos() != nt.Obj().Pos() {
// TODO(adonovan): improve display of complex struct/interface types.
printf(nt.Obj(), "defined as %s", r.qpos.typeString(nt.Underlying()))
}
printMethods(printf, r.node, r.methods)
if len(r.methods) == 0 {
// Only report null result for type kinds
// capable of bearing methods.
switch r.typ.(type) {
case *types.Interface, *types.Struct, *types.Named:
printf(r.node, "No methods.")
}
}
printFields(printf, r.node, r.fields)
}
func (r *describeTypeResult) JSON(fset *token.FileSet) []byte {
var namePos, nameDef string
if nt, ok := r.typ.(*types.Named); ok {
namePos = fset.Position(nt.Obj().Pos()).String()
nameDef = nt.Underlying().String()
}
return toJSON(&serial.Describe{
Desc: r.description,
Pos: fset.Position(r.node.Pos()).String(),
Detail: "type",
Type: &serial.DescribeType{
Type: r.qpos.typeString(r.typ),
NamePos: namePos,
NameDef: nameDef,
Methods: methodsToSerial(r.qpos.info.Pkg, r.methods, fset),
},
})
}
// ---- PACKAGE ------------------------------------------------------------
func describePackage(qpos *queryPos, path []ast.Node) (*describePackageResult, error) {
var description string
var pkg *types.Package
switch n := path[0].(type) {
case *ast.ImportSpec:
var obj types.Object
if n.Name != nil {
obj = qpos.info.Defs[n.Name]
} else {
obj = qpos.info.Implicits[n]
}
pkgname, _ := obj.(*types.PkgName)
if pkgname == nil {
return nil, fmt.Errorf("can't import package %s", n.Path.Value)
}
pkg = pkgname.Imported()
description = fmt.Sprintf("import of package %q", pkg.Path())
case *ast.Ident:
if _, isDef := path[1].(*ast.File); isDef {
// e.g. package id
pkg = qpos.info.Pkg
description = fmt.Sprintf("definition of package %q", pkg.Path())
} else {
// e.g. import id "..."
// or id.F()
pkg = qpos.info.ObjectOf(n).(*types.PkgName).Imported()
description = fmt.Sprintf("reference to package %q", pkg.Path())
}
default:
// Unreachable?
return nil, fmt.Errorf("unexpected AST for package: %T", n)
}
var members []*describeMember
// NB: "unsafe" has no types.Package
if pkg != nil {
// Enumerate the accessible package members
// in lexicographic order.
for _, name := range pkg.Scope().Names() {
if pkg == qpos.info.Pkg || ast.IsExported(name) {
mem := pkg.Scope().Lookup(name)
var methods []*types.Selection
if mem, ok := mem.(*types.TypeName); ok {
methods = accessibleMethods(mem.Type(), qpos.info.Pkg)
}
members = append(members, &describeMember{
mem,
methods,
})
}
}
}
return &describePackageResult{qpos.fset, path[0], description, pkg, members}, nil
}
type describePackageResult struct {
fset *token.FileSet
node ast.Node
description string
pkg *types.Package
members []*describeMember // in lexicographic name order
}
type describeMember struct {
obj types.Object
methods []*types.Selection // in types.MethodSet order
}
func (r *describePackageResult) PrintPlain(printf printfFunc) {
printf(r.node, "%s", r.description)
// Compute max width of name "column".
maxname := 0
for _, mem := range r.members {
if l := len(mem.obj.Name()); l > maxname {
maxname = l
}
}
for _, mem := range r.members {
printf(mem.obj, "\t%s", formatMember(mem.obj, maxname))
for _, meth := range mem.methods {
printf(meth.Obj(), "\t\t%s", types.SelectionString(meth, types.RelativeTo(r.pkg)))
}
}
}
func formatMember(obj types.Object, maxname int) string {
qualifier := types.RelativeTo(obj.Pkg())
var buf bytes.Buffer
fmt.Fprintf(&buf, "%-5s %-*s", tokenOf(obj), maxname, obj.Name())
switch obj := obj.(type) {
case *types.Const:
fmt.Fprintf(&buf, " %s = %s", types.TypeString(obj.Type(), qualifier), obj.Val())
case *types.Func:
fmt.Fprintf(&buf, " %s", types.TypeString(obj.Type(), qualifier))
case *types.TypeName:
typ := obj.Type()
if isAlias(obj) {
buf.WriteString(" = ")
} else {
buf.WriteByte(' ')
typ = typ.Underlying()
}
var typestr string
// Abbreviate long aggregate type names.
switch typ := typ.(type) {
case *types.Interface:
if typ.NumMethods() > 1 {
typestr = "interface{...}"
}
case *types.Struct:
if typ.NumFields() > 1 {
typestr = "struct{...}"
}
}
if typestr == "" {
// The fix for #44515 changed the printing of unsafe.Pointer
// such that it uses a qualifier if one is provided. Using
// the types.RelativeTo qualifier provided here, the output
// is just "Pointer" rather than "unsafe.Pointer". This is
// consistent with the printing of non-type objects but it
// breaks an existing test which needs to work with older
// versions of Go. Re-establish the original output by not
// using a qualifier at all if we're printing a type from
// package unsafe - there's only unsafe.Pointer (#44596).
// NOTE: This correction can be removed (and the test's
// golden file adjusted) once we only run against go1.17
// or bigger.
qualifier := qualifier
if obj.Pkg() == types.Unsafe {
qualifier = nil
}
typestr = types.TypeString(typ, qualifier)
}
buf.WriteString(typestr)
case *types.Var:
fmt.Fprintf(&buf, " %s", types.TypeString(obj.Type(), qualifier))
}
return buf.String()
}
func (r *describePackageResult) JSON(fset *token.FileSet) []byte {
var members []*serial.DescribeMember
for _, mem := range r.members {
obj := mem.obj
typ := obj.Type()
var val string
var alias string
switch obj := obj.(type) {
case *types.Const:
val = obj.Val().String()
case *types.TypeName:
if isAlias(obj) {
alias = "= " // kludgy
} else {
typ = typ.Underlying()
}
}
members = append(members, &serial.DescribeMember{
Name: obj.Name(),
Type: alias + typ.String(),
Value: val,
Pos: fset.Position(obj.Pos()).String(),
Kind: tokenOf(obj),
Methods: methodsToSerial(r.pkg, mem.methods, fset),
})
}
return toJSON(&serial.Describe{
Desc: r.description,
Pos: fset.Position(r.node.Pos()).String(),
Detail: "package",
Package: &serial.DescribePackage{
Path: r.pkg.Path(),
Members: members,
},
})
}
func tokenOf(o types.Object) string {
switch o.(type) {
case *types.Func:
return "func"
case *types.Var:
return "var"
case *types.TypeName:
return "type"
case *types.Const:
return "const"
case *types.PkgName:
return "package"
case *types.Builtin:
return "builtin" // e.g. when describing package "unsafe"
case *types.Nil:
return "nil"
case *types.Label:
return "label"
}
panic(o)
}
// ---- STATEMENT ------------------------------------------------------------
func describeStmt(qpos *queryPos, path []ast.Node) (*describeStmtResult, error) {
var description string
switch n := path[0].(type) {
case *ast.Ident:
if qpos.info.Defs[n] != nil {
description = "labelled statement"
} else {
description = "reference to labelled statement"
}
default:
// Nothing much to say about statements.
description = astutil.NodeDescription(n)
}
return &describeStmtResult{qpos.fset, path[0], description}, nil
}
type describeStmtResult struct {
fset *token.FileSet
node ast.Node
description string
}
func (r *describeStmtResult) PrintPlain(printf printfFunc) {
printf(r.node, "%s", r.description)
}
func (r *describeStmtResult) JSON(fset *token.FileSet) []byte {
return toJSON(&serial.Describe{
Desc: r.description,
Pos: fset.Position(r.node.Pos()).String(),
Detail: "unknown",
})
}
// ------------------- Utilities -------------------
// pathToString returns a string containing the concrete types of the
// nodes in path.
func pathToString(path []ast.Node) string {
var buf bytes.Buffer
fmt.Fprint(&buf, "[")
for i, n := range path {
if i > 0 {
fmt.Fprint(&buf, " ")
}
fmt.Fprint(&buf, strings.TrimPrefix(fmt.Sprintf("%T", n), "*ast."))
}
fmt.Fprint(&buf, "]")
return buf.String()
}
func accessibleMethods(t types.Type, from *types.Package) []*types.Selection {
var methods []*types.Selection
for _, meth := range typeutil.IntuitiveMethodSet(t, nil) {
if isAccessibleFrom(meth.Obj(), from) {
methods = append(methods, meth)
}
}
return methods
}
// accessibleFields returns the set of accessible
// field selections on a value of type recv.
func accessibleFields(recv types.Type, from *types.Package) []describeField {
wantField := func(f *types.Var) bool {
if !isAccessibleFrom(f, from) {
return false
}
// Check that the field is not shadowed.
obj, _, _ := types.LookupFieldOrMethod(recv, true, f.Pkg(), f.Name())
return obj == f
}
var fields []describeField
var visit func(t types.Type, stack []*types.Named)
visit = func(t types.Type, stack []*types.Named) {
tStruct, ok := deref(t).Underlying().(*types.Struct)
if !ok {
return
}
fieldloop:
for i := 0; i < tStruct.NumFields(); i++ {
f := tStruct.Field(i)
// Handle recursion through anonymous fields.
if f.Anonymous() {
tf := f.Type()
if ptr, ok := tf.(*types.Pointer); ok {
tf = ptr.Elem()
}
if named, ok := tf.(*types.Named); ok { // (be defensive)
// If we've already visited this named type
// on this path, break the cycle.
for _, x := range stack {
if x == named {
continue fieldloop
}
}
visit(f.Type(), append(stack, named))
}
}
// Save accessible fields.
if wantField(f) {
fields = append(fields, describeField{
implicits: append([]*types.Named(nil), stack...),
field: f,
})
}
}
}
visit(recv, nil)
return fields
}
func isAccessibleFrom(obj types.Object, pkg *types.Package) bool {
return ast.IsExported(obj.Name()) || obj.Pkg() == pkg
}
func methodsToSerial(this *types.Package, methods []*types.Selection, fset *token.FileSet) []serial.DescribeMethod {
qualifier := types.RelativeTo(this)
var jmethods []serial.DescribeMethod
for _, meth := range methods {
var ser serial.DescribeMethod
if meth != nil { // may contain nils when called by implements (on a method)
ser = serial.DescribeMethod{
Name: types.SelectionString(meth, qualifier),
Pos: fset.Position(meth.Obj().Pos()).String(),
}
}
jmethods = append(jmethods, ser)
}
return jmethods
}