blob: f5f2a038cb5fbabeadbe399fdcd84efb9d7c9733 [file] [log] [blame]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package clock
// Standard tween functions.
//
// Easing means a slowing near the timing boundary, as defined by
// a cubic bezier curve. Exact parameters match the CSS properties.
var (
EaseIn = CubicBezier(0.42, 0, 1, 1)
EaseOut = CubicBezier(0, 0, 0.58, 1)
EaseInOut = CubicBezier(0.42, 0, 0.58, 1)
)
// Linear computes the fraction [0,1] that t lies between [t0,t1].
func Linear(t0, t1, t Time) float32 {
if t >= t1 {
return 1
}
if t <= t0 {
return 0
}
return float32(t-t0) / float32(t1-t0)
}
// CubicBezier generates a tween function determined by a Cubic Bézier curve.
//
// The parameters are cubic control parameters. The curve starts at (0,0)
// going toward (x0,y0), and arrives at (1,1) coming from (x1,y1).
func CubicBezier(x0, y0, x1, y1 float32) func(t0, t1, t Time) float32 {
return func(start, end, now Time) float32 {
// A Cubic-Bezier curve restricted to starting at (0,0) and
// ending at (1,1) is defined as
//
// B(t) = 3*(1-t)^2*t*P0 + 3*(1-t)*t^2*P1 + t^3
//
// with derivative
//
// B'(t) = 3*(1-t)^2*P0 + 6*(1-t)*t*(P1-P0) + 3*t^2*(1-P1)
//
// Given a value x ∈ [0,1], we solve for t using Newton's
// method and solve for y using t.
x := Linear(start, end, now)
// Solve for t using x.
t := x
for i := 0; i < 5; i++ {
t2 := t * t
t3 := t2 * t
d := 1 - t
d2 := d * d
nx := 3*d2*t*x0 + 3*d*t2*x1 + t3
dxdt := 3*d2*x0 + 6*d*t*(x1-x0) + 3*t2*(1-x1)
if dxdt == 0 {
break
}
t -= (nx - x) / dxdt
if t <= 0 || t >= 1 {
break
}
}
if t < 0 {
t = 0
}
if t > 1 {
t = 1
}
// Solve for y using t.
t2 := t * t
t3 := t2 * t
d := 1 - t
d2 := d * d
y := 3*d2*t*y0 + 3*d*t2*y1 + t3
return y
}
}