| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package math |
| |
| func isOddInt(x float64) bool { |
| xi, xf := Modf(x) |
| return xf == 0 && int64(xi)&1 == 1 |
| } |
| |
| // Special cases taken from FreeBSD's /usr/src/lib/msun/src/e_pow.c |
| // updated by IEEE Std. 754-2008 "Section 9.2.1 Special values". |
| |
| // Pow returns x**y, the base-x exponential of y. |
| // |
| // Special cases are (in order): |
| // Pow(x, ±0) = 1 for any x |
| // Pow(1, y) = 1 for any y |
| // Pow(x, 1) = x for any x |
| // Pow(NaN, y) = NaN |
| // Pow(x, NaN) = NaN |
| // Pow(±0, y) = ±Inf for y an odd integer < 0 |
| // Pow(±0, -Inf) = +Inf |
| // Pow(±0, +Inf) = +0 |
| // Pow(±0, y) = +Inf for finite y < 0 and not an odd integer |
| // Pow(±0, y) = ±0 for y an odd integer > 0 |
| // Pow(±0, y) = +0 for finite y > 0 and not an odd integer |
| // Pow(-1, ±Inf) = 1 |
| // Pow(x, +Inf) = +Inf for |x| > 1 |
| // Pow(x, -Inf) = +0 for |x| > 1 |
| // Pow(x, +Inf) = +0 for |x| < 1 |
| // Pow(x, -Inf) = +Inf for |x| < 1 |
| // Pow(+Inf, y) = +Inf for y > 0 |
| // Pow(+Inf, y) = +0 for y < 0 |
| // Pow(-Inf, y) = Pow(-0, -y) |
| // Pow(x, y) = NaN for finite x < 0 and finite non-integer y |
| func Pow(x, y float64) float64 { |
| return libc_pow(x, y) |
| } |
| |
| //extern pow |
| func libc_pow(float64, float64) float64 |
| |
| func pow(x, y float64) float64 { |
| switch { |
| case y == 0 || x == 1: |
| return 1 |
| case y == 1: |
| return x |
| case IsNaN(x) || IsNaN(y): |
| return NaN() |
| case x == 0: |
| switch { |
| case y < 0: |
| if isOddInt(y) { |
| return Copysign(Inf(1), x) |
| } |
| return Inf(1) |
| case y > 0: |
| if isOddInt(y) { |
| return x |
| } |
| return 0 |
| } |
| case IsInf(y, 0): |
| switch { |
| case x == -1: |
| return 1 |
| case (Abs(x) < 1) == IsInf(y, 1): |
| return 0 |
| default: |
| return Inf(1) |
| } |
| case IsInf(x, 0): |
| if IsInf(x, -1) { |
| return Pow(1/x, -y) // Pow(-0, -y) |
| } |
| switch { |
| case y < 0: |
| return 0 |
| case y > 0: |
| return Inf(1) |
| } |
| case y == 0.5: |
| return Sqrt(x) |
| case y == -0.5: |
| return 1 / Sqrt(x) |
| } |
| |
| absy := y |
| flip := false |
| if absy < 0 { |
| absy = -absy |
| flip = true |
| } |
| yi, yf := Modf(absy) |
| if yf != 0 && x < 0 { |
| return NaN() |
| } |
| if yi >= 1<<63 { |
| // yi is a large even int that will lead to overflow (or underflow to 0) |
| // for all x except -1 (x == 1 was handled earlier) |
| switch { |
| case x == -1: |
| return 1 |
| case (Abs(x) < 1) == (y > 0): |
| return 0 |
| default: |
| return Inf(1) |
| } |
| } |
| |
| // ans = a1 * 2**ae (= 1 for now). |
| a1 := 1.0 |
| ae := 0 |
| |
| // ans *= x**yf |
| if yf != 0 { |
| if yf > 0.5 { |
| yf-- |
| yi++ |
| } |
| a1 = Exp(yf * Log(x)) |
| } |
| |
| // ans *= x**yi |
| // by multiplying in successive squarings |
| // of x according to bits of yi. |
| // accumulate powers of two into exp. |
| x1, xe := Frexp(x) |
| for i := int64(yi); i != 0; i >>= 1 { |
| if xe < -1<<12 || 1<<12 < xe { |
| // catch xe before it overflows the left shift below |
| // Since i !=0 it has at least one bit still set, so ae will accumulate xe |
| // on at least one more iteration, ae += xe is a lower bound on ae |
| // the lower bound on ae exceeds the size of a float64 exp |
| // so the final call to Ldexp will produce under/overflow (0/Inf) |
| ae += xe |
| break |
| } |
| if i&1 == 1 { |
| a1 *= x1 |
| ae += xe |
| } |
| x1 *= x1 |
| xe <<= 1 |
| if x1 < .5 { |
| x1 += x1 |
| xe-- |
| } |
| } |
| |
| // ans = a1*2**ae |
| // if flip { ans = 1 / ans } |
| // but in the opposite order |
| if flip { |
| a1 = 1 / a1 |
| ae = -ae |
| } |
| return Ldexp(a1, ae) |
| } |