| // Copyright 2013 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package cipher |
| |
| import ( |
| "crypto/subtle" |
| "errors" |
| ) |
| |
| // AEAD is a cipher mode providing authenticated encryption with associated |
| // data. For a description of the methodology, see |
| // https://en.wikipedia.org/wiki/Authenticated_encryption |
| type AEAD interface { |
| // NonceSize returns the size of the nonce that must be passed to Seal |
| // and Open. |
| NonceSize() int |
| |
| // Overhead returns the maximum difference between the lengths of a |
| // plaintext and its ciphertext. |
| Overhead() int |
| |
| // Seal encrypts and authenticates plaintext, authenticates the |
| // additional data and appends the result to dst, returning the updated |
| // slice. The nonce must be NonceSize() bytes long and unique for all |
| // time, for a given key. |
| // |
| // The plaintext and dst must overlap exactly or not at all. To reuse |
| // plaintext's storage for the encrypted output, use plaintext[:0] as dst. |
| Seal(dst, nonce, plaintext, additionalData []byte) []byte |
| |
| // Open decrypts and authenticates ciphertext, authenticates the |
| // additional data and, if successful, appends the resulting plaintext |
| // to dst, returning the updated slice. The nonce must be NonceSize() |
| // bytes long and both it and the additional data must match the |
| // value passed to Seal. |
| // |
| // The ciphertext and dst must overlap exactly or not at all. To reuse |
| // ciphertext's storage for the decrypted output, use ciphertext[:0] as dst. |
| // |
| // Even if the function fails, the contents of dst, up to its capacity, |
| // may be overwritten. |
| Open(dst, nonce, ciphertext, additionalData []byte) ([]byte, error) |
| } |
| |
| // gcmAble is an interface implemented by ciphers that have a specific optimized |
| // implementation of GCM, like crypto/aes. NewGCM will check for this interface |
| // and return the specific AEAD if found. |
| type gcmAble interface { |
| NewGCM(int) (AEAD, error) |
| } |
| |
| // gcmFieldElement represents a value in GF(2¹²⁸). In order to reflect the GCM |
| // standard and make getUint64 suitable for marshaling these values, the bits |
| // are stored backwards. For example: |
| // the coefficient of x⁰ can be obtained by v.low >> 63. |
| // the coefficient of x⁶³ can be obtained by v.low & 1. |
| // the coefficient of x⁶⁴ can be obtained by v.high >> 63. |
| // the coefficient of x¹²⁷ can be obtained by v.high & 1. |
| type gcmFieldElement struct { |
| low, high uint64 |
| } |
| |
| // gcm represents a Galois Counter Mode with a specific key. See |
| // http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-revised-spec.pdf |
| type gcm struct { |
| cipher Block |
| nonceSize int |
| // productTable contains the first sixteen powers of the key, H. |
| // However, they are in bit reversed order. See NewGCMWithNonceSize. |
| productTable [16]gcmFieldElement |
| } |
| |
| // NewGCM returns the given 128-bit, block cipher wrapped in Galois Counter Mode |
| // with the standard nonce length. |
| // |
| // In general, the GHASH operation performed by this implementation of GCM is not constant-time. |
| // An exception is when the underlying Block was created by aes.NewCipher |
| // on systems with hardware support for AES. See the crypto/aes package documentation for details. |
| func NewGCM(cipher Block) (AEAD, error) { |
| return NewGCMWithNonceSize(cipher, gcmStandardNonceSize) |
| } |
| |
| // NewGCMWithNonceSize returns the given 128-bit, block cipher wrapped in Galois |
| // Counter Mode, which accepts nonces of the given length. |
| // |
| // Only use this function if you require compatibility with an existing |
| // cryptosystem that uses non-standard nonce lengths. All other users should use |
| // NewGCM, which is faster and more resistant to misuse. |
| func NewGCMWithNonceSize(cipher Block, size int) (AEAD, error) { |
| if cipher, ok := cipher.(gcmAble); ok { |
| return cipher.NewGCM(size) |
| } |
| |
| if cipher.BlockSize() != gcmBlockSize { |
| return nil, errors.New("cipher: NewGCM requires 128-bit block cipher") |
| } |
| |
| var key [gcmBlockSize]byte |
| cipher.Encrypt(key[:], key[:]) |
| |
| g := &gcm{cipher: cipher, nonceSize: size} |
| |
| // We precompute 16 multiples of |key|. However, when we do lookups |
| // into this table we'll be using bits from a field element and |
| // therefore the bits will be in the reverse order. So normally one |
| // would expect, say, 4*key to be in index 4 of the table but due to |
| // this bit ordering it will actually be in index 0010 (base 2) = 2. |
| x := gcmFieldElement{ |
| getUint64(key[:8]), |
| getUint64(key[8:]), |
| } |
| g.productTable[reverseBits(1)] = x |
| |
| for i := 2; i < 16; i += 2 { |
| g.productTable[reverseBits(i)] = gcmDouble(&g.productTable[reverseBits(i/2)]) |
| g.productTable[reverseBits(i+1)] = gcmAdd(&g.productTable[reverseBits(i)], &x) |
| } |
| |
| return g, nil |
| } |
| |
| const ( |
| gcmBlockSize = 16 |
| gcmTagSize = 16 |
| gcmStandardNonceSize = 12 |
| ) |
| |
| func (g *gcm) NonceSize() int { |
| return g.nonceSize |
| } |
| |
| func (*gcm) Overhead() int { |
| return gcmTagSize |
| } |
| |
| func (g *gcm) Seal(dst, nonce, plaintext, data []byte) []byte { |
| if len(nonce) != g.nonceSize { |
| panic("cipher: incorrect nonce length given to GCM") |
| } |
| if uint64(len(plaintext)) > ((1<<32)-2)*uint64(g.cipher.BlockSize()) { |
| panic("cipher: message too large for GCM") |
| } |
| |
| ret, out := sliceForAppend(dst, len(plaintext)+gcmTagSize) |
| |
| var counter, tagMask [gcmBlockSize]byte |
| g.deriveCounter(&counter, nonce) |
| |
| g.cipher.Encrypt(tagMask[:], counter[:]) |
| gcmInc32(&counter) |
| |
| g.counterCrypt(out, plaintext, &counter) |
| g.auth(out[len(plaintext):], out[:len(plaintext)], data, &tagMask) |
| |
| return ret |
| } |
| |
| var errOpen = errors.New("cipher: message authentication failed") |
| |
| func (g *gcm) Open(dst, nonce, ciphertext, data []byte) ([]byte, error) { |
| if len(nonce) != g.nonceSize { |
| panic("cipher: incorrect nonce length given to GCM") |
| } |
| |
| if len(ciphertext) < gcmTagSize { |
| return nil, errOpen |
| } |
| if uint64(len(ciphertext)) > ((1<<32)-2)*uint64(g.cipher.BlockSize())+gcmTagSize { |
| return nil, errOpen |
| } |
| |
| tag := ciphertext[len(ciphertext)-gcmTagSize:] |
| ciphertext = ciphertext[:len(ciphertext)-gcmTagSize] |
| |
| var counter, tagMask [gcmBlockSize]byte |
| g.deriveCounter(&counter, nonce) |
| |
| g.cipher.Encrypt(tagMask[:], counter[:]) |
| gcmInc32(&counter) |
| |
| var expectedTag [gcmTagSize]byte |
| g.auth(expectedTag[:], ciphertext, data, &tagMask) |
| |
| ret, out := sliceForAppend(dst, len(ciphertext)) |
| |
| if subtle.ConstantTimeCompare(expectedTag[:], tag) != 1 { |
| // The AESNI code decrypts and authenticates concurrently, and |
| // so overwrites dst in the event of a tag mismatch. That |
| // behavior is mimicked here in order to be consistent across |
| // platforms. |
| for i := range out { |
| out[i] = 0 |
| } |
| return nil, errOpen |
| } |
| |
| g.counterCrypt(out, ciphertext, &counter) |
| |
| return ret, nil |
| } |
| |
| // reverseBits reverses the order of the bits of 4-bit number in i. |
| func reverseBits(i int) int { |
| i = ((i << 2) & 0xc) | ((i >> 2) & 0x3) |
| i = ((i << 1) & 0xa) | ((i >> 1) & 0x5) |
| return i |
| } |
| |
| // gcmAdd adds two elements of GF(2¹²⁸) and returns the sum. |
| func gcmAdd(x, y *gcmFieldElement) gcmFieldElement { |
| // Addition in a characteristic 2 field is just XOR. |
| return gcmFieldElement{x.low ^ y.low, x.high ^ y.high} |
| } |
| |
| // gcmDouble returns the result of doubling an element of GF(2¹²⁸). |
| func gcmDouble(x *gcmFieldElement) (double gcmFieldElement) { |
| msbSet := x.high&1 == 1 |
| |
| // Because of the bit-ordering, doubling is actually a right shift. |
| double.high = x.high >> 1 |
| double.high |= x.low << 63 |
| double.low = x.low >> 1 |
| |
| // If the most-significant bit was set before shifting then it, |
| // conceptually, becomes a term of x^128. This is greater than the |
| // irreducible polynomial so the result has to be reduced. The |
| // irreducible polynomial is 1+x+x^2+x^7+x^128. We can subtract that to |
| // eliminate the term at x^128 which also means subtracting the other |
| // four terms. In characteristic 2 fields, subtraction == addition == |
| // XOR. |
| if msbSet { |
| double.low ^= 0xe100000000000000 |
| } |
| |
| return |
| } |
| |
| var gcmReductionTable = []uint16{ |
| 0x0000, 0x1c20, 0x3840, 0x2460, 0x7080, 0x6ca0, 0x48c0, 0x54e0, |
| 0xe100, 0xfd20, 0xd940, 0xc560, 0x9180, 0x8da0, 0xa9c0, 0xb5e0, |
| } |
| |
| // mul sets y to y*H, where H is the GCM key, fixed during NewGCMWithNonceSize. |
| func (g *gcm) mul(y *gcmFieldElement) { |
| var z gcmFieldElement |
| |
| for i := 0; i < 2; i++ { |
| word := y.high |
| if i == 1 { |
| word = y.low |
| } |
| |
| // Multiplication works by multiplying z by 16 and adding in |
| // one of the precomputed multiples of H. |
| for j := 0; j < 64; j += 4 { |
| msw := z.high & 0xf |
| z.high >>= 4 |
| z.high |= z.low << 60 |
| z.low >>= 4 |
| z.low ^= uint64(gcmReductionTable[msw]) << 48 |
| |
| // the values in |table| are ordered for |
| // little-endian bit positions. See the comment |
| // in NewGCMWithNonceSize. |
| t := &g.productTable[word&0xf] |
| |
| z.low ^= t.low |
| z.high ^= t.high |
| word >>= 4 |
| } |
| } |
| |
| *y = z |
| } |
| |
| // updateBlocks extends y with more polynomial terms from blocks, based on |
| // Horner's rule. There must be a multiple of gcmBlockSize bytes in blocks. |
| func (g *gcm) updateBlocks(y *gcmFieldElement, blocks []byte) { |
| for len(blocks) > 0 { |
| y.low ^= getUint64(blocks) |
| y.high ^= getUint64(blocks[8:]) |
| g.mul(y) |
| blocks = blocks[gcmBlockSize:] |
| } |
| } |
| |
| // update extends y with more polynomial terms from data. If data is not a |
| // multiple of gcmBlockSize bytes long then the remainder is zero padded. |
| func (g *gcm) update(y *gcmFieldElement, data []byte) { |
| fullBlocks := (len(data) >> 4) << 4 |
| g.updateBlocks(y, data[:fullBlocks]) |
| |
| if len(data) != fullBlocks { |
| var partialBlock [gcmBlockSize]byte |
| copy(partialBlock[:], data[fullBlocks:]) |
| g.updateBlocks(y, partialBlock[:]) |
| } |
| } |
| |
| // gcmInc32 treats the final four bytes of counterBlock as a big-endian value |
| // and increments it. |
| func gcmInc32(counterBlock *[16]byte) { |
| for i := gcmBlockSize - 1; i >= gcmBlockSize-4; i-- { |
| counterBlock[i]++ |
| if counterBlock[i] != 0 { |
| break |
| } |
| } |
| } |
| |
| // sliceForAppend takes a slice and a requested number of bytes. It returns a |
| // slice with the contents of the given slice followed by that many bytes and a |
| // second slice that aliases into it and contains only the extra bytes. If the |
| // original slice has sufficient capacity then no allocation is performed. |
| func sliceForAppend(in []byte, n int) (head, tail []byte) { |
| if total := len(in) + n; cap(in) >= total { |
| head = in[:total] |
| } else { |
| head = make([]byte, total) |
| copy(head, in) |
| } |
| tail = head[len(in):] |
| return |
| } |
| |
| // counterCrypt crypts in to out using g.cipher in counter mode. |
| func (g *gcm) counterCrypt(out, in []byte, counter *[gcmBlockSize]byte) { |
| var mask [gcmBlockSize]byte |
| |
| for len(in) >= gcmBlockSize { |
| g.cipher.Encrypt(mask[:], counter[:]) |
| gcmInc32(counter) |
| |
| xorWords(out, in, mask[:]) |
| out = out[gcmBlockSize:] |
| in = in[gcmBlockSize:] |
| } |
| |
| if len(in) > 0 { |
| g.cipher.Encrypt(mask[:], counter[:]) |
| gcmInc32(counter) |
| xorBytes(out, in, mask[:]) |
| } |
| } |
| |
| // deriveCounter computes the initial GCM counter state from the given nonce. |
| // See NIST SP 800-38D, section 7.1. This assumes that counter is filled with |
| // zeros on entry. |
| func (g *gcm) deriveCounter(counter *[gcmBlockSize]byte, nonce []byte) { |
| // GCM has two modes of operation with respect to the initial counter |
| // state: a "fast path" for 96-bit (12-byte) nonces, and a "slow path" |
| // for nonces of other lengths. For a 96-bit nonce, the nonce, along |
| // with a four-byte big-endian counter starting at one, is used |
| // directly as the starting counter. For other nonce sizes, the counter |
| // is computed by passing it through the GHASH function. |
| if len(nonce) == gcmStandardNonceSize { |
| copy(counter[:], nonce) |
| counter[gcmBlockSize-1] = 1 |
| } else { |
| var y gcmFieldElement |
| g.update(&y, nonce) |
| y.high ^= uint64(len(nonce)) * 8 |
| g.mul(&y) |
| putUint64(counter[:8], y.low) |
| putUint64(counter[8:], y.high) |
| } |
| } |
| |
| // auth calculates GHASH(ciphertext, additionalData), masks the result with |
| // tagMask and writes the result to out. |
| func (g *gcm) auth(out, ciphertext, additionalData []byte, tagMask *[gcmTagSize]byte) { |
| var y gcmFieldElement |
| g.update(&y, additionalData) |
| g.update(&y, ciphertext) |
| |
| y.low ^= uint64(len(additionalData)) * 8 |
| y.high ^= uint64(len(ciphertext)) * 8 |
| |
| g.mul(&y) |
| |
| putUint64(out, y.low) |
| putUint64(out[8:], y.high) |
| |
| xorWords(out, out, tagMask[:]) |
| } |
| |
| func getUint64(data []byte) uint64 { |
| r := uint64(data[0])<<56 | |
| uint64(data[1])<<48 | |
| uint64(data[2])<<40 | |
| uint64(data[3])<<32 | |
| uint64(data[4])<<24 | |
| uint64(data[5])<<16 | |
| uint64(data[6])<<8 | |
| uint64(data[7]) |
| return r |
| } |
| |
| func putUint64(out []byte, v uint64) { |
| out[0] = byte(v >> 56) |
| out[1] = byte(v >> 48) |
| out[2] = byte(v >> 40) |
| out[3] = byte(v >> 32) |
| out[4] = byte(v >> 24) |
| out[5] = byte(v >> 16) |
| out[6] = byte(v >> 8) |
| out[7] = byte(v) |
| } |