blob: 818f00a73fe98534ca9c259e98f0bb9938bef9f2 [file] [log] [blame]
Ken Thompson21810982008-03-28 13:56:47 -07001// Copyright 2009 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
Rob Pike43312932008-06-27 17:06:23 -07005package math
Ken Thompson21810982008-03-28 13:56:47 -07006
Rob Pike00e2cda2010-01-12 07:38:31 +11007/*
8 Floating-point logarithm.
9*/
Russ Coxb54133d2009-01-15 16:16:42 -080010
Russ Coxf379ea02008-11-20 10:54:02 -080011// The original C code, the long comment, and the constants
12// below are from FreeBSD's /usr/src/lib/msun/src/e_log.c
13// and came with this notice. The go code is a simpler
14// version of the original C.
15//
16// ====================================================
17// Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
18//
19// Developed at SunPro, a Sun Microsystems, Inc. business.
20// Permission to use, copy, modify, and distribute this
21// software is freely granted, provided that this notice
22// is preserved.
23// ====================================================
24//
25// __ieee754_log(x)
Robert Hencke3fbd4782011-05-30 18:02:59 +100026// Return the logarithm of x
Russ Coxf379ea02008-11-20 10:54:02 -080027//
28// Method :
29// 1. Argument Reduction: find k and f such that
Charles L. Dorian3c3e68b2010-04-09 14:37:33 -070030// x = 2**k * (1+f),
Russ Coxf379ea02008-11-20 10:54:02 -080031// where sqrt(2)/2 < 1+f < sqrt(2) .
32//
33// 2. Approximation of log(1+f).
34// Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
35// = 2s + 2/3 s**3 + 2/5 s**5 + .....,
36// = 2s + s*R
37// We use a special Reme algorithm on [0,0.1716] to generate
Russ Cox3b864e42009-08-12 13:18:37 -070038// a polynomial of degree 14 to approximate R. The maximum error
Russ Coxf379ea02008-11-20 10:54:02 -080039// of this polynomial approximation is bounded by 2**-58.45. In
40// other words,
41// 2 4 6 8 10 12 14
Russ Cox2c8d9a52009-01-15 19:11:32 -080042// R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s +L6*s +L7*s
Russ Cox3b864e42009-08-12 13:18:37 -070043// (the values of L1 to L7 are listed in the program) and
Russ Coxf379ea02008-11-20 10:54:02 -080044// | 2 14 | -58.45
Russ Cox2c8d9a52009-01-15 19:11:32 -080045// | L1*s +...+L7*s - R(z) | <= 2
Russ Coxf379ea02008-11-20 10:54:02 -080046// | |
47// Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
Russ Cox3b864e42009-08-12 13:18:37 -070048// In order to guarantee error in log below 1ulp, we compute log by
Russ Cox2c5ec1e2009-10-06 19:40:35 -070049// log(1+f) = f - s*(f - R) (if f is not too large)
Russ Coxf379ea02008-11-20 10:54:02 -080050// log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
51//
Russ Cox2c8d9a52009-01-15 19:11:32 -080052// 3. Finally, log(x) = k*Ln2 + log(1+f).
53// = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo)))
54// Here Ln2 is split into two floating point number:
55// Ln2_hi + Ln2_lo,
56// where n*Ln2_hi is always exact for |n| < 2000.
Russ Coxf379ea02008-11-20 10:54:02 -080057//
58// Special cases:
59// log(x) is NaN with signal if x < 0 (including -INF) ;
60// log(+INF) is +INF; log(0) is -INF with signal;
61// log(NaN) is that NaN with no signal.
62//
63// Accuracy:
64// according to an error analysis, the error is always less than
65// 1 ulp (unit in the last place).
66//
67// Constants:
68// The hexadecimal values are the intended ones for the following
69// constants. The decimal values may be used, provided that the
70// compiler will convert from decimal to binary accurately enough
71// to produce the hexadecimal values shown.
72
Russ Coxdfc39102009-03-05 13:31:01 -080073// Log returns the natural logarithm of x.
74//
75// Special cases are:
76// Log(+Inf) = +Inf
77// Log(0) = -Inf
78// Log(x < 0) = NaN
79// Log(NaN) = NaN
Russ Coxdd8dc6f2011-12-13 15:20:12 -050080func Log(x float64) float64
81
82func log(x float64) float64 {
Russ Cox2c8d9a52009-01-15 19:11:32 -080083 const (
Robert Griesemera3d10452009-12-15 15:35:38 -080084 Ln2Hi = 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */
85 Ln2Lo = 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */
86 L1 = 6.666666666666735130e-01 /* 3FE55555 55555593 */
87 L2 = 3.999999999940941908e-01 /* 3FD99999 9997FA04 */
88 L3 = 2.857142874366239149e-01 /* 3FD24924 94229359 */
89 L4 = 2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */
90 L5 = 1.818357216161805012e-01 /* 3FC74664 96CB03DE */
91 L6 = 1.531383769920937332e-01 /* 3FC39A09 D078C69F */
92 L7 = 1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */
Russ Cox2c8d9a52009-01-15 19:11:32 -080093 )
94
Russ Coxf379ea02008-11-20 10:54:02 -080095 // special cases
96 switch {
Luuk van Dijk8dd3de42012-02-01 16:08:31 +010097 case IsNaN(x) || IsInf(x, 1):
Robert Griesemer40621d52009-11-09 12:07:39 -080098 return x
Russ Coxf379ea02008-11-20 10:54:02 -080099 case x < 0:
Robert Griesemer40621d52009-11-09 12:07:39 -0800100 return NaN()
Russ Coxf379ea02008-11-20 10:54:02 -0800101 case x == 0:
Robert Griesemer40621d52009-11-09 12:07:39 -0800102 return Inf(-1)
Russ Coxf379ea02008-11-20 10:54:02 -0800103 }
104
105 // reduce
Robert Griesemera3d10452009-12-15 15:35:38 -0800106 f1, ki := Frexp(x)
Russ Coxf379ea02008-11-20 10:54:02 -0800107 if f1 < Sqrt2/2 {
Robert Griesemera3d10452009-12-15 15:35:38 -0800108 f1 *= 2
109 ki--
Russ Coxf379ea02008-11-20 10:54:02 -0800110 }
Robert Griesemera3d10452009-12-15 15:35:38 -0800111 f := f1 - 1
112 k := float64(ki)
Russ Coxf379ea02008-11-20 10:54:02 -0800113
114 // compute
Robert Griesemera3d10452009-12-15 15:35:38 -0800115 s := f / (2 + f)
116 s2 := s * s
117 s4 := s2 * s2
118 t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7)))
119 t2 := s4 * (L2 + s4*(L4+s4*L6))
120 R := t1 + t2
121 hfsq := 0.5 * f * f
122 return k*Ln2Hi - ((hfsq - (s*(hfsq+R) + k*Ln2Lo)) - f)
Russ Coxf379ea02008-11-20 10:54:02 -0800123}