Ken Thompson | 2181098 | 2008-03-28 13:56:47 -0700 | [diff] [blame] | 1 | // Copyright 2009 The Go Authors. All rights reserved. |
| 2 | // Use of this source code is governed by a BSD-style |
| 3 | // license that can be found in the LICENSE file. |
| 4 | |
Rob Pike | 4331293 | 2008-06-27 17:06:23 -0700 | [diff] [blame] | 5 | package math |
Ken Thompson | 2181098 | 2008-03-28 13:56:47 -0700 | [diff] [blame] | 6 | |
Rob Pike | 00e2cda | 2010-01-12 07:38:31 +1100 | [diff] [blame] | 7 | /* |
| 8 | Floating-point logarithm. |
| 9 | */ |
Russ Cox | b54133d | 2009-01-15 16:16:42 -0800 | [diff] [blame] | 10 | |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 11 | // The original C code, the long comment, and the constants |
| 12 | // below are from FreeBSD's /usr/src/lib/msun/src/e_log.c |
| 13 | // and came with this notice. The go code is a simpler |
| 14 | // version of the original C. |
| 15 | // |
| 16 | // ==================================================== |
| 17 | // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. |
| 18 | // |
| 19 | // Developed at SunPro, a Sun Microsystems, Inc. business. |
| 20 | // Permission to use, copy, modify, and distribute this |
| 21 | // software is freely granted, provided that this notice |
| 22 | // is preserved. |
| 23 | // ==================================================== |
| 24 | // |
| 25 | // __ieee754_log(x) |
Robert Hencke | 3fbd478 | 2011-05-30 18:02:59 +1000 | [diff] [blame] | 26 | // Return the logarithm of x |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 27 | // |
| 28 | // Method : |
| 29 | // 1. Argument Reduction: find k and f such that |
Charles L. Dorian | 3c3e68b | 2010-04-09 14:37:33 -0700 | [diff] [blame] | 30 | // x = 2**k * (1+f), |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 31 | // where sqrt(2)/2 < 1+f < sqrt(2) . |
| 32 | // |
| 33 | // 2. Approximation of log(1+f). |
| 34 | // Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) |
| 35 | // = 2s + 2/3 s**3 + 2/5 s**5 + ....., |
| 36 | // = 2s + s*R |
| 37 | // We use a special Reme algorithm on [0,0.1716] to generate |
Russ Cox | 3b864e4 | 2009-08-12 13:18:37 -0700 | [diff] [blame] | 38 | // a polynomial of degree 14 to approximate R. The maximum error |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 39 | // of this polynomial approximation is bounded by 2**-58.45. In |
| 40 | // other words, |
| 41 | // 2 4 6 8 10 12 14 |
Russ Cox | 2c8d9a5 | 2009-01-15 19:11:32 -0800 | [diff] [blame] | 42 | // R(z) ~ L1*s +L2*s +L3*s +L4*s +L5*s +L6*s +L7*s |
Russ Cox | 3b864e4 | 2009-08-12 13:18:37 -0700 | [diff] [blame] | 43 | // (the values of L1 to L7 are listed in the program) and |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 44 | // | 2 14 | -58.45 |
Russ Cox | 2c8d9a5 | 2009-01-15 19:11:32 -0800 | [diff] [blame] | 45 | // | L1*s +...+L7*s - R(z) | <= 2 |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 46 | // | | |
| 47 | // Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. |
Russ Cox | 3b864e4 | 2009-08-12 13:18:37 -0700 | [diff] [blame] | 48 | // In order to guarantee error in log below 1ulp, we compute log by |
Russ Cox | 2c5ec1e | 2009-10-06 19:40:35 -0700 | [diff] [blame] | 49 | // log(1+f) = f - s*(f - R) (if f is not too large) |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 50 | // log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) |
| 51 | // |
Russ Cox | 2c8d9a5 | 2009-01-15 19:11:32 -0800 | [diff] [blame] | 52 | // 3. Finally, log(x) = k*Ln2 + log(1+f). |
| 53 | // = k*Ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*Ln2_lo))) |
| 54 | // Here Ln2 is split into two floating point number: |
| 55 | // Ln2_hi + Ln2_lo, |
| 56 | // where n*Ln2_hi is always exact for |n| < 2000. |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 57 | // |
| 58 | // Special cases: |
| 59 | // log(x) is NaN with signal if x < 0 (including -INF) ; |
| 60 | // log(+INF) is +INF; log(0) is -INF with signal; |
| 61 | // log(NaN) is that NaN with no signal. |
| 62 | // |
| 63 | // Accuracy: |
| 64 | // according to an error analysis, the error is always less than |
| 65 | // 1 ulp (unit in the last place). |
| 66 | // |
| 67 | // Constants: |
| 68 | // The hexadecimal values are the intended ones for the following |
| 69 | // constants. The decimal values may be used, provided that the |
| 70 | // compiler will convert from decimal to binary accurately enough |
| 71 | // to produce the hexadecimal values shown. |
| 72 | |
Russ Cox | dfc3910 | 2009-03-05 13:31:01 -0800 | [diff] [blame] | 73 | // Log returns the natural logarithm of x. |
| 74 | // |
| 75 | // Special cases are: |
| 76 | // Log(+Inf) = +Inf |
| 77 | // Log(0) = -Inf |
| 78 | // Log(x < 0) = NaN |
| 79 | // Log(NaN) = NaN |
Russ Cox | dd8dc6f | 2011-12-13 15:20:12 -0500 | [diff] [blame] | 80 | func Log(x float64) float64 |
| 81 | |
| 82 | func log(x float64) float64 { |
Russ Cox | 2c8d9a5 | 2009-01-15 19:11:32 -0800 | [diff] [blame] | 83 | const ( |
Robert Griesemer | a3d1045 | 2009-12-15 15:35:38 -0800 | [diff] [blame] | 84 | Ln2Hi = 6.93147180369123816490e-01 /* 3fe62e42 fee00000 */ |
| 85 | Ln2Lo = 1.90821492927058770002e-10 /* 3dea39ef 35793c76 */ |
| 86 | L1 = 6.666666666666735130e-01 /* 3FE55555 55555593 */ |
| 87 | L2 = 3.999999999940941908e-01 /* 3FD99999 9997FA04 */ |
| 88 | L3 = 2.857142874366239149e-01 /* 3FD24924 94229359 */ |
| 89 | L4 = 2.222219843214978396e-01 /* 3FCC71C5 1D8E78AF */ |
| 90 | L5 = 1.818357216161805012e-01 /* 3FC74664 96CB03DE */ |
| 91 | L6 = 1.531383769920937332e-01 /* 3FC39A09 D078C69F */ |
| 92 | L7 = 1.479819860511658591e-01 /* 3FC2F112 DF3E5244 */ |
Russ Cox | 2c8d9a5 | 2009-01-15 19:11:32 -0800 | [diff] [blame] | 93 | ) |
| 94 | |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 95 | // special cases |
| 96 | switch { |
Luuk van Dijk | 8dd3de4 | 2012-02-01 16:08:31 +0100 | [diff] [blame] | 97 | case IsNaN(x) || IsInf(x, 1): |
Robert Griesemer | 40621d5 | 2009-11-09 12:07:39 -0800 | [diff] [blame] | 98 | return x |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 99 | case x < 0: |
Robert Griesemer | 40621d5 | 2009-11-09 12:07:39 -0800 | [diff] [blame] | 100 | return NaN() |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 101 | case x == 0: |
Robert Griesemer | 40621d5 | 2009-11-09 12:07:39 -0800 | [diff] [blame] | 102 | return Inf(-1) |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 103 | } |
| 104 | |
| 105 | // reduce |
Robert Griesemer | a3d1045 | 2009-12-15 15:35:38 -0800 | [diff] [blame] | 106 | f1, ki := Frexp(x) |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 107 | if f1 < Sqrt2/2 { |
Robert Griesemer | a3d1045 | 2009-12-15 15:35:38 -0800 | [diff] [blame] | 108 | f1 *= 2 |
| 109 | ki-- |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 110 | } |
Robert Griesemer | a3d1045 | 2009-12-15 15:35:38 -0800 | [diff] [blame] | 111 | f := f1 - 1 |
| 112 | k := float64(ki) |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 113 | |
| 114 | // compute |
Robert Griesemer | a3d1045 | 2009-12-15 15:35:38 -0800 | [diff] [blame] | 115 | s := f / (2 + f) |
| 116 | s2 := s * s |
| 117 | s4 := s2 * s2 |
| 118 | t1 := s2 * (L1 + s4*(L3+s4*(L5+s4*L7))) |
| 119 | t2 := s4 * (L2 + s4*(L4+s4*L6)) |
| 120 | R := t1 + t2 |
| 121 | hfsq := 0.5 * f * f |
| 122 | return k*Ln2Hi - ((hfsq - (s*(hfsq+R) + k*Ln2Lo)) - f) |
Russ Cox | f379ea0 | 2008-11-20 10:54:02 -0800 | [diff] [blame] | 123 | } |