| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package time provides functionality for measuring and displaying time. |
| // |
| // The calendrical calculations always assume a Gregorian calendar, with |
| // no leap seconds. |
| // |
| // # Monotonic Clocks |
| // |
| // Operating systems provide both a “wall clock,” which is subject to |
| // changes for clock synchronization, and a “monotonic clock,” which is |
| // not. The general rule is that the wall clock is for telling time and |
| // the monotonic clock is for measuring time. Rather than split the API, |
| // in this package the Time returned by [time.Now] contains both a wall |
| // clock reading and a monotonic clock reading; later time-telling |
| // operations use the wall clock reading, but later time-measuring |
| // operations, specifically comparisons and subtractions, use the |
| // monotonic clock reading. |
| // |
| // For example, this code always computes a positive elapsed time of |
| // approximately 20 milliseconds, even if the wall clock is changed during |
| // the operation being timed: |
| // |
| // start := time.Now() |
| // ... operation that takes 20 milliseconds ... |
| // t := time.Now() |
| // elapsed := t.Sub(start) |
| // |
| // Other idioms, such as [time.Since](start), [time.Until](deadline), and |
| // time.Now().Before(deadline), are similarly robust against wall clock |
| // resets. |
| // |
| // The rest of this section gives the precise details of how operations |
| // use monotonic clocks, but understanding those details is not required |
| // to use this package. |
| // |
| // The Time returned by time.Now contains a monotonic clock reading. |
| // If Time t has a monotonic clock reading, t.Add adds the same duration to |
| // both the wall clock and monotonic clock readings to compute the result. |
| // Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time |
| // computations, they always strip any monotonic clock reading from their results. |
| // Because t.In, t.Local, and t.UTC are used for their effect on the interpretation |
| // of the wall time, they also strip any monotonic clock reading from their results. |
| // The canonical way to strip a monotonic clock reading is to use t = t.Round(0). |
| // |
| // If Times t and u both contain monotonic clock readings, the operations |
| // t.After(u), t.Before(u), t.Equal(u), t.Compare(u), and t.Sub(u) are carried out |
| // using the monotonic clock readings alone, ignoring the wall clock |
| // readings. If either t or u contains no monotonic clock reading, these |
| // operations fall back to using the wall clock readings. |
| // |
| // On some systems the monotonic clock will stop if the computer goes to sleep. |
| // On such a system, t.Sub(u) may not accurately reflect the actual |
| // time that passed between t and u. The same applies to other functions and |
| // methods that subtract times, such as [Since], [Until], [Time.Before], [Time.After], |
| // [Time.Add], [Time.Equal] and [Time.Compare]. In some cases, you may need to strip |
| // the monotonic clock to get accurate results. |
| // |
| // Because the monotonic clock reading has no meaning outside |
| // the current process, the serialized forms generated by t.GobEncode, |
| // t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic |
| // clock reading, and t.Format provides no format for it. Similarly, the |
| // constructors [time.Date], [time.Parse], [time.ParseInLocation], and [time.Unix], |
| // as well as the unmarshalers t.GobDecode, t.UnmarshalBinary. |
| // t.UnmarshalJSON, and t.UnmarshalText always create times with |
| // no monotonic clock reading. |
| // |
| // The monotonic clock reading exists only in [Time] values. It is not |
| // a part of [Duration] values or the Unix times returned by t.Unix and |
| // friends. |
| // |
| // Note that the Go == operator compares not just the time instant but |
| // also the [Location] and the monotonic clock reading. See the |
| // documentation for the Time type for a discussion of equality |
| // testing for Time values. |
| // |
| // For debugging, the result of t.String does include the monotonic |
| // clock reading if present. If t != u because of different monotonic clock readings, |
| // that difference will be visible when printing t.String() and u.String(). |
| // |
| // # Timer Resolution |
| // |
| // [Timer] resolution varies depending on the Go runtime, the operating system |
| // and the underlying hardware. |
| // On Unix, the resolution is ~1ms. |
| // On Windows version 1803 and newer, the resolution is ~0.5ms. |
| // On older Windows versions, the default resolution is ~16ms, but |
| // a higher resolution may be requested using [golang.org/x/sys/windows.TimeBeginPeriod]. |
| package time |
| |
| import ( |
| "errors" |
| "math/bits" |
| _ "unsafe" // for go:linkname |
| ) |
| |
| // A Time represents an instant in time with nanosecond precision. |
| // |
| // Programs using times should typically store and pass them as values, |
| // not pointers. That is, time variables and struct fields should be of |
| // type [time.Time], not *time.Time. |
| // |
| // A Time value can be used by multiple goroutines simultaneously except |
| // that the methods [Time.GobDecode], [Time.UnmarshalBinary], [Time.UnmarshalJSON] and |
| // [Time.UnmarshalText] are not concurrency-safe. |
| // |
| // Time instants can be compared using the [Time.Before], [Time.After], and [Time.Equal] methods. |
| // The [Time.Sub] method subtracts two instants, producing a [Duration]. |
| // The [Time.Add] method adds a Time and a Duration, producing a Time. |
| // |
| // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC. |
| // As this time is unlikely to come up in practice, the [Time.IsZero] method gives |
| // a simple way of detecting a time that has not been initialized explicitly. |
| // |
| // Each time has an associated [Location]. The methods [Time.Local], [Time.UTC], and Time.In return a |
| // Time with a specific Location. Changing the Location of a Time value with |
| // these methods does not change the actual instant it represents, only the time |
| // zone in which to interpret it. |
| // |
| // Representations of a Time value saved by the [Time.GobEncode], [Time.MarshalBinary], [Time.AppendBinary], |
| // [Time.MarshalJSON], [Time.MarshalText] and [Time.AppendText] methods store the [Time.Location]'s offset, |
| // but not the location name. They therefore lose information about Daylight Saving Time. |
| // |
| // In addition to the required “wall clock” reading, a Time may contain an optional |
| // reading of the current process's monotonic clock, to provide additional precision |
| // for comparison or subtraction. |
| // See the “Monotonic Clocks” section in the package documentation for details. |
| // |
| // Note that the Go == operator compares not just the time instant but also the |
| // Location and the monotonic clock reading. Therefore, Time values should not |
| // be used as map or database keys without first guaranteeing that the |
| // identical Location has been set for all values, which can be achieved |
| // through use of the UTC or Local method, and that the monotonic clock reading |
| // has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u) |
| // to t == u, since t.Equal uses the most accurate comparison available and |
| // correctly handles the case when only one of its arguments has a monotonic |
| // clock reading. |
| type Time struct { |
| // wall and ext encode the wall time seconds, wall time nanoseconds, |
| // and optional monotonic clock reading in nanoseconds. |
| // |
| // From high to low bit position, wall encodes a 1-bit flag (hasMonotonic), |
| // a 33-bit seconds field, and a 30-bit wall time nanoseconds field. |
| // The nanoseconds field is in the range [0, 999999999]. |
| // If the hasMonotonic bit is 0, then the 33-bit field must be zero |
| // and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext. |
| // If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit |
| // unsigned wall seconds since Jan 1 year 1885, and ext holds a |
| // signed 64-bit monotonic clock reading, nanoseconds since process start. |
| wall uint64 |
| ext int64 |
| |
| // loc specifies the Location that should be used to |
| // determine the minute, hour, month, day, and year |
| // that correspond to this Time. |
| // The nil location means UTC. |
| // All UTC times are represented with loc==nil, never loc==&utcLoc. |
| loc *Location |
| } |
| |
| const ( |
| hasMonotonic = 1 << 63 |
| maxWall = wallToInternal + (1<<33 - 1) // year 2157 |
| minWall = wallToInternal // year 1885 |
| nsecMask = 1<<30 - 1 |
| nsecShift = 30 |
| ) |
| |
| // These helpers for manipulating the wall and monotonic clock readings |
| // take pointer receivers, even when they don't modify the time, |
| // to make them cheaper to call. |
| |
| // nsec returns the time's nanoseconds. |
| func (t *Time) nsec() int32 { |
| return int32(t.wall & nsecMask) |
| } |
| |
| // sec returns the time's seconds since Jan 1 year 1. |
| func (t *Time) sec() int64 { |
| if t.wall&hasMonotonic != 0 { |
| return wallToInternal + int64(t.wall<<1>>(nsecShift+1)) |
| } |
| return t.ext |
| } |
| |
| // unixSec returns the time's seconds since Jan 1 1970 (Unix time). |
| func (t *Time) unixSec() int64 { return t.sec() + internalToUnix } |
| |
| // addSec adds d seconds to the time. |
| func (t *Time) addSec(d int64) { |
| if t.wall&hasMonotonic != 0 { |
| sec := int64(t.wall << 1 >> (nsecShift + 1)) |
| dsec := sec + d |
| if 0 <= dsec && dsec <= 1<<33-1 { |
| t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic |
| return |
| } |
| // Wall second now out of range for packed field. |
| // Move to ext. |
| t.stripMono() |
| } |
| |
| // Check if the sum of t.ext and d overflows and handle it properly. |
| sum := t.ext + d |
| if (sum > t.ext) == (d > 0) { |
| t.ext = sum |
| } else if d > 0 { |
| t.ext = 1<<63 - 1 |
| } else { |
| t.ext = -(1<<63 - 1) |
| } |
| } |
| |
| // setLoc sets the location associated with the time. |
| func (t *Time) setLoc(loc *Location) { |
| if loc == &utcLoc { |
| loc = nil |
| } |
| t.stripMono() |
| t.loc = loc |
| } |
| |
| // stripMono strips the monotonic clock reading in t. |
| func (t *Time) stripMono() { |
| if t.wall&hasMonotonic != 0 { |
| t.ext = t.sec() |
| t.wall &= nsecMask |
| } |
| } |
| |
| // setMono sets the monotonic clock reading in t. |
| // If t cannot hold a monotonic clock reading, |
| // because its wall time is too large, |
| // setMono is a no-op. |
| func (t *Time) setMono(m int64) { |
| if t.wall&hasMonotonic == 0 { |
| sec := t.ext |
| if sec < minWall || maxWall < sec { |
| return |
| } |
| t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift |
| } |
| t.ext = m |
| } |
| |
| // mono returns t's monotonic clock reading. |
| // It returns 0 for a missing reading. |
| // This function is used only for testing, |
| // so it's OK that technically 0 is a valid |
| // monotonic clock reading as well. |
| func (t *Time) mono() int64 { |
| if t.wall&hasMonotonic == 0 { |
| return 0 |
| } |
| return t.ext |
| } |
| |
| // IsZero reports whether t represents the zero time instant, |
| // January 1, year 1, 00:00:00 UTC. |
| func (t Time) IsZero() bool { |
| return t.sec() == 0 && t.nsec() == 0 |
| } |
| |
| // After reports whether the time instant t is after u. |
| func (t Time) After(u Time) bool { |
| if t.wall&u.wall&hasMonotonic != 0 { |
| return t.ext > u.ext |
| } |
| ts := t.sec() |
| us := u.sec() |
| return ts > us || ts == us && t.nsec() > u.nsec() |
| } |
| |
| // Before reports whether the time instant t is before u. |
| func (t Time) Before(u Time) bool { |
| if t.wall&u.wall&hasMonotonic != 0 { |
| return t.ext < u.ext |
| } |
| ts := t.sec() |
| us := u.sec() |
| return ts < us || ts == us && t.nsec() < u.nsec() |
| } |
| |
| // Compare compares the time instant t with u. If t is before u, it returns -1; |
| // if t is after u, it returns +1; if they're the same, it returns 0. |
| func (t Time) Compare(u Time) int { |
| var tc, uc int64 |
| if t.wall&u.wall&hasMonotonic != 0 { |
| tc, uc = t.ext, u.ext |
| } else { |
| tc, uc = t.sec(), u.sec() |
| if tc == uc { |
| tc, uc = int64(t.nsec()), int64(u.nsec()) |
| } |
| } |
| switch { |
| case tc < uc: |
| return -1 |
| case tc > uc: |
| return +1 |
| } |
| return 0 |
| } |
| |
| // Equal reports whether t and u represent the same time instant. |
| // Two times can be equal even if they are in different locations. |
| // For example, 6:00 +0200 and 4:00 UTC are Equal. |
| // See the documentation on the Time type for the pitfalls of using == with |
| // Time values; most code should use Equal instead. |
| func (t Time) Equal(u Time) bool { |
| if t.wall&u.wall&hasMonotonic != 0 { |
| return t.ext == u.ext |
| } |
| return t.sec() == u.sec() && t.nsec() == u.nsec() |
| } |
| |
| // A Month specifies a month of the year (January = 1, ...). |
| type Month int |
| |
| const ( |
| January Month = 1 + iota |
| February |
| March |
| April |
| May |
| June |
| July |
| August |
| September |
| October |
| November |
| December |
| ) |
| |
| // String returns the English name of the month ("January", "February", ...). |
| func (m Month) String() string { |
| if January <= m && m <= December { |
| return longMonthNames[m-1] |
| } |
| buf := make([]byte, 20) |
| n := fmtInt(buf, uint64(m)) |
| return "%!Month(" + string(buf[n:]) + ")" |
| } |
| |
| // A Weekday specifies a day of the week (Sunday = 0, ...). |
| type Weekday int |
| |
| const ( |
| Sunday Weekday = iota |
| Monday |
| Tuesday |
| Wednesday |
| Thursday |
| Friday |
| Saturday |
| ) |
| |
| // String returns the English name of the day ("Sunday", "Monday", ...). |
| func (d Weekday) String() string { |
| if Sunday <= d && d <= Saturday { |
| return longDayNames[d] |
| } |
| buf := make([]byte, 20) |
| n := fmtInt(buf, uint64(d)) |
| return "%!Weekday(" + string(buf[n:]) + ")" |
| } |
| |
| // Computations on Times |
| // |
| // The zero value for a Time is defined to be |
| // January 1, year 1, 00:00:00.000000000 UTC |
| // which (1) looks like a zero, or as close as you can get in a date |
| // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to |
| // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a |
| // non-negative year even in time zones west of UTC, unlike 1-1-0 |
| // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York. |
| // |
| // The zero Time value does not force a specific epoch for the time |
| // representation. For example, to use the Unix epoch internally, we |
| // could define that to distinguish a zero value from Jan 1 1970, that |
| // time would be represented by sec=-1, nsec=1e9. However, it does |
| // suggest a representation, namely using 1-1-1 00:00:00 UTC as the |
| // epoch, and that's what we do. |
| // |
| // The Add and Sub computations are oblivious to the choice of epoch. |
| // |
| // The presentation computations - year, month, minute, and so on - all |
| // rely heavily on division and modulus by positive constants. For |
| // calendrical calculations we want these divisions to round down, even |
| // for negative values, so that the remainder is always positive, but |
| // Go's division (like most hardware division instructions) rounds to |
| // zero. We can still do those computations and then adjust the result |
| // for a negative numerator, but it's annoying to write the adjustment |
| // over and over. Instead, we can change to a different epoch so long |
| // ago that all the times we care about will be positive, and then round |
| // to zero and round down coincide. These presentation routines already |
| // have to add the zone offset, so adding the translation to the |
| // alternate epoch is cheap. For example, having a non-negative time t |
| // means that we can write |
| // |
| // sec = t % 60 |
| // |
| // instead of |
| // |
| // sec = t % 60 |
| // if sec < 0 { |
| // sec += 60 |
| // } |
| // |
| // everywhere. |
| // |
| // The calendar runs on an exact 400 year cycle: a 400-year calendar |
| // printed for 1970-2369 will apply as well to 2370-2769. Even the days |
| // of the week match up. It simplifies date computations to choose the |
| // cycle boundaries so that the exceptional years are always delayed as |
| // long as possible: March 1, year 0 is such a day: |
| // the first leap day (Feb 29) is four years minus one day away, |
| // the first multiple-of-4 year without a Feb 29 is 100 years minus one day away, |
| // and the first multiple-of-100 year with a Feb 29 is 400 years minus one day away. |
| // March 1 year Y for any Y = 0 mod 400 is also such a day. |
| // |
| // Finally, it's convenient if the delta between the Unix epoch and |
| // long-ago epoch is representable by an int64 constant. |
| // |
| // These three considerations—choose an epoch as early as possible, that |
| // starts on March 1 of a year equal to 0 mod 400, and that is no more than |
| // 2⁶³ seconds earlier than 1970—bring us to the year -292277022400. |
| // We refer to this moment as the absolute zero instant, and to times |
| // measured as a uint64 seconds since this year as absolute times. |
| // |
| // Times measured as an int64 seconds since the year 1—the representation |
| // used for Time's sec field—are called internal times. |
| // |
| // Times measured as an int64 seconds since the year 1970 are called Unix |
| // times. |
| // |
| // It is tempting to just use the year 1 as the absolute epoch, defining |
| // that the routines are only valid for years >= 1. However, the |
| // routines would then be invalid when displaying the epoch in time zones |
| // west of UTC, since it is year 0. It doesn't seem tenable to say that |
| // printing the zero time correctly isn't supported in half the time |
| // zones. By comparison, it's reasonable to mishandle some times in |
| // the year -292277022400. |
| // |
| // All this is opaque to clients of the API and can be changed if a |
| // better implementation presents itself. |
| // |
| // The date calculations are implemented using the following clever math from |
| // Cassio Neri and Lorenz Schneider, “Euclidean affine functions and their |
| // application to calendar algorithms,” SP&E 2023. https://doi.org/10.1002/spe.3172 |
| // |
| // Define a “calendrical division” (f, f°, f*) to be a triple of functions converting |
| // one time unit into a whole number of larger units and the remainder and back. |
| // For example, in a calendar with no leap years, (d/365, d%365, y*365) is the |
| // calendrical division for days into years: |
| // |
| // (f) year := days/365 |
| // (f°) yday := days%365 |
| // (f*) days := year*365 (+ yday) |
| // |
| // Note that f* is usually the “easy” function to write: it's the |
| // calendrical multiplication that inverts the more complex division. |
| // |
| // Neri and Schneider prove that when f* takes the form |
| // |
| // f*(n) = (a n + b) / c |
| // |
| // using integer division rounding down with a ≥ c > 0, |
| // which they call a Euclidean affine function or EAF, then: |
| // |
| // f(n) = (c n + c - b - 1) / a |
| // f°(n) = (c n + c - b - 1) % a / c |
| // |
| // This gives a fairly direct calculation for any calendrical division for which |
| // we can write the calendrical multiplication in EAF form. |
| // Because the epoch has been shifted to March 1, all the calendrical |
| // multiplications turn out to be possible to write in EAF form. |
| // When a date is broken into [century, cyear, amonth, mday], |
| // with century, cyear, and mday 0-based, |
| // and amonth 3-based (March = 3, ..., January = 13, February = 14), |
| // the calendrical multiplications written in EAF form are: |
| // |
| // yday = (153 (amonth-3) + 2) / 5 = (153 amonth - 457) / 5 |
| // cday = 365 cyear + cyear/4 = 1461 cyear / 4 |
| // centurydays = 36524 century + century/4 = 146097 century / 4 |
| // days = centurydays + cday + yday + mday. |
| // |
| // We can only handle one periodic cycle per equation, so the year |
| // calculation must be split into [century, cyear], handling both the |
| // 100-year cycle and the 400-year cycle. |
| // |
| // The yday calculation is not obvious but derives from the fact |
| // that the March through January calendar repeats the 5-month |
| // 153-day cycle 31, 30, 31, 30, 31 (we don't care about February |
| // because yday only ever count the days _before_ February 1, |
| // since February is the last month). |
| // |
| // Using the rule for deriving f and f° from f*, these multiplications |
| // convert to these divisions: |
| // |
| // century := (4 days + 3) / 146097 |
| // cdays := (4 days + 3) % 146097 / 4 |
| // cyear := (4 cdays + 3) / 1461 |
| // ayday := (4 cdays + 3) % 1461 / 4 |
| // amonth := (5 ayday + 461) / 153 |
| // mday := (5 ayday + 461) % 153 / 5 |
| // |
| // The a in ayday and amonth stands for absolute (March 1-based) |
| // to distinguish from the standard yday (January 1-based). |
| // |
| // After computing these, we can translate from the March 1 calendar |
| // to the standard January 1 calendar with branch-free math assuming a |
| // branch-free conversion from bool to int 0 or 1, denoted int(b) here: |
| // |
| // isJanFeb := int(yday >= marchThruDecember) |
| // month := amonth - isJanFeb*12 |
| // year := century*100 + cyear + isJanFeb |
| // isLeap := int(cyear%4 == 0) & (int(cyear != 0) | int(century%4 == 0)) |
| // day := 1 + mday |
| // yday := 1 + ayday + 31 + 28 + isLeap&^isJanFeb - 365*isJanFeb |
| // |
| // isLeap is the standard leap-year rule, but the split year form |
| // makes the divisions all reduce to binary masking. |
| // Note that day and yday are 1-based, in contrast to mday and ayday. |
| |
| // To keep the various units separate, we define integer types |
| // for each. These are never stored in interfaces nor allocated, |
| // so their type information does not appear in Go binaries. |
| const ( |
| secondsPerMinute = 60 |
| secondsPerHour = 60 * secondsPerMinute |
| secondsPerDay = 24 * secondsPerHour |
| secondsPerWeek = 7 * secondsPerDay |
| daysPer400Years = 365*400 + 97 |
| |
| // Days from March 1 through end of year |
| marchThruDecember = 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31 |
| |
| // absoluteYears is the number of years we subtract from internal time to get absolute time. |
| // This value must be 0 mod 400, and it defines the “absolute zero instant” |
| // mentioned in the “Computations on Times” comment above: March 1, -absoluteYears. |
| // Dates before the absolute epoch will not compute correctly, |
| // but otherwise the value can be changed as needed. |
| absoluteYears = 292277022400 |
| |
| // The year of the zero Time. |
| // Assumed by the unixToInternal computation below. |
| internalYear = 1 |
| |
| // Offsets to convert between internal and absolute or Unix times. |
| absoluteToInternal int64 = -(absoluteYears*365.2425 + marchThruDecember) * secondsPerDay |
| internalToAbsolute = -absoluteToInternal |
| |
| unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay |
| internalToUnix int64 = -unixToInternal |
| |
| absoluteToUnix = absoluteToInternal + internalToUnix |
| unixToAbsolute = unixToInternal + internalToAbsolute |
| |
| wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay |
| ) |
| |
| // An absSeconds counts the number of seconds since the absolute zero instant. |
| type absSeconds uint64 |
| |
| // An absDays counts the number of days since the absolute zero instant. |
| type absDays uint64 |
| |
| // An absCentury counts the number of centuries since the absolute zero instant. |
| type absCentury uint64 |
| |
| // An absCyear counts the number of years since the start of a century. |
| type absCyear int |
| |
| // An absYday counts the number of days since the start of a year. |
| // Note that absolute years start on March 1. |
| type absYday int |
| |
| // An absMonth counts the number of months since the start of a year. |
| // absMonth=0 denotes March. |
| type absMonth int |
| |
| // An absLeap is a single bit (0 or 1) denoting whether a given year is a leap year. |
| type absLeap int |
| |
| // An absJanFeb is a single bit (0 or 1) denoting whether a given day falls in January or February. |
| // That is a special case because the absolute years start in March (unlike normal calendar years). |
| type absJanFeb int |
| |
| // dateToAbsDays takes a standard year/month/day and returns the |
| // number of days from the absolute epoch to that day. |
| // The days argument can be out of range and in particular can be negative. |
| func dateToAbsDays(year int64, month Month, day int) absDays { |
| // See “Computations on Times” comment above. |
| amonth := uint32(month) |
| janFeb := uint32(0) |
| if amonth < 3 { |
| janFeb = 1 |
| } |
| amonth += 12 * janFeb |
| y := uint64(year) - uint64(janFeb) + absoluteYears |
| |
| // For amonth is in the range [3,14], we want: |
| // |
| // ayday := (153*amonth - 457) / 5 |
| // |
| // (See the “Computations on Times” comment above |
| // as well as Neri and Schneider, section 7.) |
| // |
| // That is equivalent to: |
| // |
| // ayday := (979*amonth - 2919) >> 5 |
| // |
| // and the latter form uses a couple fewer instructions, |
| // so use it, saving a few cycles. |
| // See Neri and Schneider, section 8.3 |
| // for more about this optimization. |
| // |
| // (Note that there is no saved division, because the compiler |
| // implements / 5 without division in all cases.) |
| ayday := (979*amonth - 2919) >> 5 |
| |
| century := y / 100 |
| cyear := uint32(y % 100) |
| cday := 1461 * cyear / 4 |
| centurydays := 146097 * century / 4 |
| |
| return absDays(centurydays + uint64(int64(cday+ayday)+int64(day)-1)) |
| } |
| |
| // days converts absolute seconds to absolute days. |
| func (abs absSeconds) days() absDays { |
| return absDays(abs / secondsPerDay) |
| } |
| |
| // split splits days into century, cyear, ayday. |
| func (days absDays) split() (century absCentury, cyear absCyear, ayday absYday) { |
| // See “Computations on Times” comment above. |
| d := 4*uint64(days) + 3 |
| century = absCentury(d / 146097) |
| |
| // This should be |
| // cday := uint32(d % 146097) / 4 |
| // cd := 4*cday + 3 |
| // which is to say |
| // cday := uint32(d % 146097) >> 2 |
| // cd := cday<<2 + 3 |
| // but of course (x>>2<<2)+3 == x|3, |
| // so do that instead. |
| cd := uint32(d%146097) | 3 |
| |
| // For cdays in the range [0,146097] (100 years), we want: |
| // |
| // cyear := (4 cdays + 3) / 1461 |
| // yday := (4 cdays + 3) % 1461 / 4 |
| // |
| // (See the “Computations on Times” comment above |
| // as well as Neri and Schneider, section 7.) |
| // |
| // That is equivalent to: |
| // |
| // cyear := (2939745 cdays) >> 32 |
| // yday := (2939745 cdays) & 0xFFFFFFFF / 2939745 / 4 |
| // |
| // so do that instead, saving a few cycles. |
| // See Neri and Schneider, section 8.3 |
| // for more about this optimization. |
| hi, lo := bits.Mul32(2939745, uint32(cd)) |
| cyear = absCyear(hi) |
| ayday = absYday(lo / 2939745 / 4) |
| return |
| } |
| |
| // split splits ayday into absolute month and standard (1-based) day-in-month. |
| func (ayday absYday) split() (m absMonth, mday int) { |
| // See “Computations on Times” comment above. |
| // |
| // For yday in the range [0,366], |
| // |
| // amonth := (5 yday + 461) / 153 |
| // mday := (5 yday + 461) % 153 / 5 |
| // |
| // is equivalent to: |
| // |
| // amonth = (2141 yday + 197913) >> 16 |
| // mday = (2141 yday + 197913) & 0xFFFF / 2141 |
| // |
| // so do that instead, saving a few cycles. |
| // See Neri and Schneider, section 8.3. |
| d := 2141*uint32(ayday) + 197913 |
| return absMonth(d >> 16), 1 + int((d&0xFFFF)/2141) |
| } |
| |
| // janFeb returns 1 if the March 1-based ayday is in January or February, 0 otherwise. |
| func (ayday absYday) janFeb() absJanFeb { |
| // See “Computations on Times” comment above. |
| jf := absJanFeb(0) |
| if ayday >= marchThruDecember { |
| jf = 1 |
| } |
| return jf |
| } |
| |
| // month returns the standard Month for (m, janFeb) |
| func (m absMonth) month(janFeb absJanFeb) Month { |
| // See “Computations on Times” comment above. |
| return Month(m) - Month(janFeb)*12 |
| } |
| |
| // leap returns 1 if (century, cyear) is a leap year, 0 otherwise. |
| func (century absCentury) leap(cyear absCyear) absLeap { |
| // See “Computations on Times” comment above. |
| y4ok := 0 |
| if cyear%4 == 0 { |
| y4ok = 1 |
| } |
| y100ok := 0 |
| if cyear != 0 { |
| y100ok = 1 |
| } |
| y400ok := 0 |
| if century%4 == 0 { |
| y400ok = 1 |
| } |
| return absLeap(y4ok & (y100ok | y400ok)) |
| } |
| |
| // year returns the standard year for (century, cyear, janFeb). |
| func (century absCentury) year(cyear absCyear, janFeb absJanFeb) int { |
| // See “Computations on Times” comment above. |
| return int(uint64(century)*100-absoluteYears) + int(cyear) + int(janFeb) |
| } |
| |
| // yday returns the standard 1-based yday for (ayday, janFeb, leap). |
| func (ayday absYday) yday(janFeb absJanFeb, leap absLeap) int { |
| // See “Computations on Times” comment above. |
| return int(ayday) + (1 + 31 + 28) + int(leap)&^int(janFeb) - 365*int(janFeb) |
| } |
| |
| // date converts days into standard year, month, day. |
| func (days absDays) date() (year int, month Month, day int) { |
| century, cyear, ayday := days.split() |
| amonth, day := ayday.split() |
| janFeb := ayday.janFeb() |
| year = century.year(cyear, janFeb) |
| month = amonth.month(janFeb) |
| return |
| } |
| |
| // yearYday converts days into the standard year and 1-based yday. |
| func (days absDays) yearYday() (year, yday int) { |
| century, cyear, ayday := days.split() |
| janFeb := ayday.janFeb() |
| year = century.year(cyear, janFeb) |
| yday = ayday.yday(janFeb, century.leap(cyear)) |
| return |
| } |
| |
| // absSec returns the time t as an absolute seconds, adjusted by the zone offset. |
| // It is called when computing a presentation property like Month or Hour. |
| // We'd rather call it abs, but there are linknames to abs that make that problematic. |
| // See timeAbs below. |
| func (t Time) absSec() absSeconds { |
| l := t.loc |
| // Avoid function calls when possible. |
| if l == nil || l == &localLoc { |
| l = l.get() |
| } |
| sec := t.unixSec() |
| if l != &utcLoc { |
| if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd { |
| sec += int64(l.cacheZone.offset) |
| } else { |
| _, offset, _, _, _ := l.lookup(sec) |
| sec += int64(offset) |
| } |
| } |
| return absSeconds(sec + (unixToInternal + internalToAbsolute)) |
| } |
| |
| // locabs is a combination of the Zone and abs methods, |
| // extracting both return values from a single zone lookup. |
| func (t Time) locabs() (name string, offset int, abs absSeconds) { |
| l := t.loc |
| if l == nil || l == &localLoc { |
| l = l.get() |
| } |
| // Avoid function call if we hit the local time cache. |
| sec := t.unixSec() |
| if l != &utcLoc { |
| if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd { |
| name = l.cacheZone.name |
| offset = l.cacheZone.offset |
| } else { |
| name, offset, _, _, _ = l.lookup(sec) |
| } |
| sec += int64(offset) |
| } else { |
| name = "UTC" |
| } |
| abs = absSeconds(sec + (unixToInternal + internalToAbsolute)) |
| return |
| } |
| |
| // Date returns the year, month, and day in which t occurs. |
| func (t Time) Date() (year int, month Month, day int) { |
| return t.absSec().days().date() |
| } |
| |
| // Year returns the year in which t occurs. |
| func (t Time) Year() int { |
| century, cyear, ayday := t.absSec().days().split() |
| janFeb := ayday.janFeb() |
| return century.year(cyear, janFeb) |
| } |
| |
| // Month returns the month of the year specified by t. |
| func (t Time) Month() Month { |
| _, _, ayday := t.absSec().days().split() |
| amonth, _ := ayday.split() |
| return amonth.month(ayday.janFeb()) |
| } |
| |
| // Day returns the day of the month specified by t. |
| func (t Time) Day() int { |
| _, _, ayday := t.absSec().days().split() |
| _, day := ayday.split() |
| return day |
| } |
| |
| // Weekday returns the day of the week specified by t. |
| func (t Time) Weekday() Weekday { |
| return t.absSec().days().weekday() |
| } |
| |
| // weekday returns the day of the week specified by days. |
| func (days absDays) weekday() Weekday { |
| // March 1 of the absolute year, like March 1 of 2000, was a Wednesday. |
| return Weekday((uint64(days) + uint64(Wednesday)) % 7) |
| } |
| |
| // ISOWeek returns the ISO 8601 year and week number in which t occurs. |
| // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to |
| // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1 |
| // of year n+1. |
| func (t Time) ISOWeek() (year, week int) { |
| // According to the rule that the first calendar week of a calendar year is |
| // the week including the first Thursday of that year, and that the last one is |
| // the week immediately preceding the first calendar week of the next calendar year. |
| // See https://www.iso.org/obp/ui#iso:std:iso:8601:-1:ed-1:v1:en:term:3.1.1.23 for details. |
| |
| // weeks start with Monday |
| // Monday Tuesday Wednesday Thursday Friday Saturday Sunday |
| // 1 2 3 4 5 6 7 |
| // +3 +2 +1 0 -1 -2 -3 |
| // the offset to Thursday |
| days := t.absSec().days() |
| thu := days + absDays(Thursday-((days-1).weekday()+1)) |
| year, yday := thu.yearYday() |
| return year, (yday-1)/7 + 1 |
| } |
| |
| // Clock returns the hour, minute, and second within the day specified by t. |
| func (t Time) Clock() (hour, min, sec int) { |
| return t.absSec().clock() |
| } |
| |
| // clock returns the hour, minute, and second within the day specified by abs. |
| func (abs absSeconds) clock() (hour, min, sec int) { |
| sec = int(abs % secondsPerDay) |
| hour = sec / secondsPerHour |
| sec -= hour * secondsPerHour |
| min = sec / secondsPerMinute |
| sec -= min * secondsPerMinute |
| return |
| } |
| |
| // Hour returns the hour within the day specified by t, in the range [0, 23]. |
| func (t Time) Hour() int { |
| return int(t.absSec()%secondsPerDay) / secondsPerHour |
| } |
| |
| // Minute returns the minute offset within the hour specified by t, in the range [0, 59]. |
| func (t Time) Minute() int { |
| return int(t.absSec()%secondsPerHour) / secondsPerMinute |
| } |
| |
| // Second returns the second offset within the minute specified by t, in the range [0, 59]. |
| func (t Time) Second() int { |
| return int(t.absSec() % secondsPerMinute) |
| } |
| |
| // Nanosecond returns the nanosecond offset within the second specified by t, |
| // in the range [0, 999999999]. |
| func (t Time) Nanosecond() int { |
| return int(t.nsec()) |
| } |
| |
| // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, |
| // and [1,366] in leap years. |
| func (t Time) YearDay() int { |
| _, yday := t.absSec().days().yearYday() |
| return yday |
| } |
| |
| // A Duration represents the elapsed time between two instants |
| // as an int64 nanosecond count. The representation limits the |
| // largest representable duration to approximately 290 years. |
| type Duration int64 |
| |
| const ( |
| minDuration Duration = -1 << 63 |
| maxDuration Duration = 1<<63 - 1 |
| ) |
| |
| // Common durations. There is no definition for units of Day or larger |
| // to avoid confusion across daylight savings time zone transitions. |
| // |
| // To count the number of units in a [Duration], divide: |
| // |
| // second := time.Second |
| // fmt.Print(int64(second/time.Millisecond)) // prints 1000 |
| // |
| // To convert an integer number of units to a Duration, multiply: |
| // |
| // seconds := 10 |
| // fmt.Print(time.Duration(seconds)*time.Second) // prints 10s |
| const ( |
| Nanosecond Duration = 1 |
| Microsecond = 1000 * Nanosecond |
| Millisecond = 1000 * Microsecond |
| Second = 1000 * Millisecond |
| Minute = 60 * Second |
| Hour = 60 * Minute |
| ) |
| |
| // String returns a string representing the duration in the form "72h3m0.5s". |
| // Leading zero units are omitted. As a special case, durations less than one |
| // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure |
| // that the leading digit is non-zero. The zero duration formats as 0s. |
| func (d Duration) String() string { |
| // This is inlinable to take advantage of "function outlining". |
| // Thus, the caller can decide whether a string must be heap allocated. |
| var arr [32]byte |
| n := d.format(&arr) |
| return string(arr[n:]) |
| } |
| |
| // format formats the representation of d into the end of buf and |
| // returns the offset of the first character. |
| func (d Duration) format(buf *[32]byte) int { |
| // Largest time is 2540400h10m10.000000000s |
| w := len(buf) |
| |
| u := uint64(d) |
| neg := d < 0 |
| if neg { |
| u = -u |
| } |
| |
| if u < uint64(Second) { |
| // Special case: if duration is smaller than a second, |
| // use smaller units, like 1.2ms |
| var prec int |
| w-- |
| buf[w] = 's' |
| w-- |
| switch { |
| case u == 0: |
| buf[w] = '0' |
| return w |
| case u < uint64(Microsecond): |
| // print nanoseconds |
| prec = 0 |
| buf[w] = 'n' |
| case u < uint64(Millisecond): |
| // print microseconds |
| prec = 3 |
| // U+00B5 'µ' micro sign == 0xC2 0xB5 |
| w-- // Need room for two bytes. |
| copy(buf[w:], "µ") |
| default: |
| // print milliseconds |
| prec = 6 |
| buf[w] = 'm' |
| } |
| w, u = fmtFrac(buf[:w], u, prec) |
| w = fmtInt(buf[:w], u) |
| } else { |
| w-- |
| buf[w] = 's' |
| |
| w, u = fmtFrac(buf[:w], u, 9) |
| |
| // u is now integer seconds |
| w = fmtInt(buf[:w], u%60) |
| u /= 60 |
| |
| // u is now integer minutes |
| if u > 0 { |
| w-- |
| buf[w] = 'm' |
| w = fmtInt(buf[:w], u%60) |
| u /= 60 |
| |
| // u is now integer hours |
| // Stop at hours because days can be different lengths. |
| if u > 0 { |
| w-- |
| buf[w] = 'h' |
| w = fmtInt(buf[:w], u) |
| } |
| } |
| } |
| |
| if neg { |
| w-- |
| buf[w] = '-' |
| } |
| |
| return w |
| } |
| |
| // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the |
| // tail of buf, omitting trailing zeros. It omits the decimal |
| // point too when the fraction is 0. It returns the index where the |
| // output bytes begin and the value v/10**prec. |
| func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) { |
| // Omit trailing zeros up to and including decimal point. |
| w := len(buf) |
| print := false |
| for i := 0; i < prec; i++ { |
| digit := v % 10 |
| print = print || digit != 0 |
| if print { |
| w-- |
| buf[w] = byte(digit) + '0' |
| } |
| v /= 10 |
| } |
| if print { |
| w-- |
| buf[w] = '.' |
| } |
| return w, v |
| } |
| |
| // fmtInt formats v into the tail of buf. |
| // It returns the index where the output begins. |
| func fmtInt(buf []byte, v uint64) int { |
| w := len(buf) |
| if v == 0 { |
| w-- |
| buf[w] = '0' |
| } else { |
| for v > 0 { |
| w-- |
| buf[w] = byte(v%10) + '0' |
| v /= 10 |
| } |
| } |
| return w |
| } |
| |
| // Nanoseconds returns the duration as an integer nanosecond count. |
| func (d Duration) Nanoseconds() int64 { return int64(d) } |
| |
| // Microseconds returns the duration as an integer microsecond count. |
| func (d Duration) Microseconds() int64 { return int64(d) / 1e3 } |
| |
| // Milliseconds returns the duration as an integer millisecond count. |
| func (d Duration) Milliseconds() int64 { return int64(d) / 1e6 } |
| |
| // These methods return float64 because the dominant |
| // use case is for printing a floating point number like 1.5s, and |
| // a truncation to integer would make them not useful in those cases. |
| // Splitting the integer and fraction ourselves guarantees that |
| // converting the returned float64 to an integer rounds the same |
| // way that a pure integer conversion would have, even in cases |
| // where, say, float64(d.Nanoseconds())/1e9 would have rounded |
| // differently. |
| |
| // Seconds returns the duration as a floating point number of seconds. |
| func (d Duration) Seconds() float64 { |
| sec := d / Second |
| nsec := d % Second |
| return float64(sec) + float64(nsec)/1e9 |
| } |
| |
| // Minutes returns the duration as a floating point number of minutes. |
| func (d Duration) Minutes() float64 { |
| min := d / Minute |
| nsec := d % Minute |
| return float64(min) + float64(nsec)/(60*1e9) |
| } |
| |
| // Hours returns the duration as a floating point number of hours. |
| func (d Duration) Hours() float64 { |
| hour := d / Hour |
| nsec := d % Hour |
| return float64(hour) + float64(nsec)/(60*60*1e9) |
| } |
| |
| // Truncate returns the result of rounding d toward zero to a multiple of m. |
| // If m <= 0, Truncate returns d unchanged. |
| func (d Duration) Truncate(m Duration) Duration { |
| if m <= 0 { |
| return d |
| } |
| return d - d%m |
| } |
| |
| // lessThanHalf reports whether x+x < y but avoids overflow, |
| // assuming x and y are both positive (Duration is signed). |
| func lessThanHalf(x, y Duration) bool { |
| return uint64(x)+uint64(x) < uint64(y) |
| } |
| |
| // Round returns the result of rounding d to the nearest multiple of m. |
| // The rounding behavior for halfway values is to round away from zero. |
| // If the result exceeds the maximum (or minimum) |
| // value that can be stored in a [Duration], |
| // Round returns the maximum (or minimum) duration. |
| // If m <= 0, Round returns d unchanged. |
| func (d Duration) Round(m Duration) Duration { |
| if m <= 0 { |
| return d |
| } |
| r := d % m |
| if d < 0 { |
| r = -r |
| if lessThanHalf(r, m) { |
| return d + r |
| } |
| if d1 := d - m + r; d1 < d { |
| return d1 |
| } |
| return minDuration // overflow |
| } |
| if lessThanHalf(r, m) { |
| return d - r |
| } |
| if d1 := d + m - r; d1 > d { |
| return d1 |
| } |
| return maxDuration // overflow |
| } |
| |
| // Abs returns the absolute value of d. |
| // As a special case, Duration([math.MinInt64]) is converted to Duration([math.MaxInt64]), |
| // reducing its magnitude by 1 nanosecond. |
| func (d Duration) Abs() Duration { |
| switch { |
| case d >= 0: |
| return d |
| case d == minDuration: |
| return maxDuration |
| default: |
| return -d |
| } |
| } |
| |
| // Add returns the time t+d. |
| func (t Time) Add(d Duration) Time { |
| dsec := int64(d / 1e9) |
| nsec := t.nsec() + int32(d%1e9) |
| if nsec >= 1e9 { |
| dsec++ |
| nsec -= 1e9 |
| } else if nsec < 0 { |
| dsec-- |
| nsec += 1e9 |
| } |
| t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec |
| t.addSec(dsec) |
| if t.wall&hasMonotonic != 0 { |
| te := t.ext + int64(d) |
| if d < 0 && te > t.ext || d > 0 && te < t.ext { |
| // Monotonic clock reading now out of range; degrade to wall-only. |
| t.stripMono() |
| } else { |
| t.ext = te |
| } |
| } |
| return t |
| } |
| |
| // Sub returns the duration t-u. If the result exceeds the maximum (or minimum) |
| // value that can be stored in a [Duration], the maximum (or minimum) duration |
| // will be returned. |
| // To compute t-d for a duration d, use t.Add(-d). |
| func (t Time) Sub(u Time) Duration { |
| if t.wall&u.wall&hasMonotonic != 0 { |
| return subMono(t.ext, u.ext) |
| } |
| d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec()) |
| // Check for overflow or underflow. |
| switch { |
| case u.Add(d).Equal(t): |
| return d // d is correct |
| case t.Before(u): |
| return minDuration // t - u is negative out of range |
| default: |
| return maxDuration // t - u is positive out of range |
| } |
| } |
| |
| func subMono(t, u int64) Duration { |
| d := Duration(t - u) |
| if d < 0 && t > u { |
| return maxDuration // t - u is positive out of range |
| } |
| if d > 0 && t < u { |
| return minDuration // t - u is negative out of range |
| } |
| return d |
| } |
| |
| // Since returns the time elapsed since t. |
| // It is shorthand for time.Now().Sub(t). |
| func Since(t Time) Duration { |
| if t.wall&hasMonotonic != 0 { |
| // Common case optimization: if t has monotonic time, then Sub will use only it. |
| return subMono(runtimeNano()-startNano, t.ext) |
| } |
| return Now().Sub(t) |
| } |
| |
| // Until returns the duration until t. |
| // It is shorthand for t.Sub(time.Now()). |
| func Until(t Time) Duration { |
| if t.wall&hasMonotonic != 0 { |
| // Common case optimization: if t has monotonic time, then Sub will use only it. |
| return subMono(t.ext, runtimeNano()-startNano) |
| } |
| return t.Sub(Now()) |
| } |
| |
| // AddDate returns the time corresponding to adding the |
| // given number of years, months, and days to t. |
| // For example, AddDate(-1, 2, 3) applied to January 1, 2011 |
| // returns March 4, 2010. |
| // |
| // Note that dates are fundamentally coupled to timezones, and calendrical |
| // periods like days don't have fixed durations. AddDate uses the Location of |
| // the Time value to determine these durations. That means that the same |
| // AddDate arguments can produce a different shift in absolute time depending on |
| // the base Time value and its Location. For example, AddDate(0, 0, 1) applied |
| // to 12:00 on March 27 always returns 12:00 on March 28. At some locations and |
| // in some years this is a 24 hour shift. In others it's a 23 hour shift due to |
| // daylight savings time transitions. |
| // |
| // AddDate normalizes its result in the same way that Date does, |
| // so, for example, adding one month to October 31 yields |
| // December 1, the normalized form for November 31. |
| func (t Time) AddDate(years int, months int, days int) Time { |
| year, month, day := t.Date() |
| hour, min, sec := t.Clock() |
| return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location()) |
| } |
| |
| // daysBefore returns the number of days in a non-leap year before month m. |
| // daysBefore(December+1) returns 365. |
| func daysBefore(m Month) int { |
| adj := 0 |
| if m >= March { |
| adj = -2 |
| } |
| |
| // With the -2 adjustment after February, |
| // we need to compute the running sum of: |
| // 0 31 30 31 30 31 30 31 31 30 31 30 31 |
| // which is: |
| // 0 31 61 92 122 153 183 214 245 275 306 336 367 |
| // This is almost exactly 367/12×(m-1) except for the |
| // occasonal off-by-one suggesting there may be an |
| // integer approximation of the form (a×m + b)/c. |
| // A brute force search over small a, b, c finds that |
| // (214×m - 211) / 7 computes the function perfectly. |
| return (214*int(m)-211)/7 + adj |
| } |
| |
| func daysIn(m Month, year int) int { |
| if m == February { |
| if isLeap(year) { |
| return 29 |
| } |
| return 28 |
| } |
| // With the special case of February eliminated, the pattern is |
| // 31 30 31 30 31 30 31 31 30 31 30 31 |
| // Adding m&1 produces the basic alternation; |
| // adding (m>>3)&1 inverts the alternation starting in August. |
| return 30 + int((m+m>>3)&1) |
| } |
| |
| // Provided by package runtime. |
| // |
| // now returns the current real time, and is superseded by runtimeNow which returns |
| // the fake synctest clock when appropriate. |
| // |
| // now should be an internal detail, |
| // but widely used packages access it using linkname. |
| // Notable members of the hall of shame include: |
| // - gitee.com/quant1x/gox |
| // - github.com/phuslu/log |
| // - github.com/sethvargo/go-limiter |
| // - github.com/ulule/limiter/v3 |
| // |
| // Do not remove or change the type signature. |
| // See go.dev/issue/67401. |
| func now() (sec int64, nsec int32, mono int64) |
| |
| // runtimeNow returns the current time. |
| // When called within a synctest.Run bubble, it returns the group's fake clock. |
| // |
| //go:linkname runtimeNow |
| func runtimeNow() (sec int64, nsec int32, mono int64) |
| |
| // runtimeNano returns the current value of the runtime clock in nanoseconds. |
| // When called within a synctest.Run bubble, it returns the group's fake clock. |
| // |
| //go:linkname runtimeNano |
| func runtimeNano() int64 |
| |
| // Monotonic times are reported as offsets from startNano. |
| // We initialize startNano to runtimeNano() - 1 so that on systems where |
| // monotonic time resolution is fairly low (e.g. Windows 2008 |
| // which appears to have a default resolution of 15ms), |
| // we avoid ever reporting a monotonic time of 0. |
| // (Callers may want to use 0 as "time not set".) |
| var startNano int64 = runtimeNano() - 1 |
| |
| // x/tools uses a linkname of time.Now in its tests. No harm done. |
| //go:linkname Now |
| |
| // Now returns the current local time. |
| func Now() Time { |
| sec, nsec, mono := runtimeNow() |
| if mono == 0 { |
| return Time{uint64(nsec), sec + unixToInternal, Local} |
| } |
| mono -= startNano |
| sec += unixToInternal - minWall |
| if uint64(sec)>>33 != 0 { |
| // Seconds field overflowed the 33 bits available when |
| // storing a monotonic time. This will be true after |
| // March 16, 2157. |
| return Time{uint64(nsec), sec + minWall, Local} |
| } |
| return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono, Local} |
| } |
| |
| func unixTime(sec int64, nsec int32) Time { |
| return Time{uint64(nsec), sec + unixToInternal, Local} |
| } |
| |
| // UTC returns t with the location set to UTC. |
| func (t Time) UTC() Time { |
| t.setLoc(&utcLoc) |
| return t |
| } |
| |
| // Local returns t with the location set to local time. |
| func (t Time) Local() Time { |
| t.setLoc(Local) |
| return t |
| } |
| |
| // In returns a copy of t representing the same time instant, but |
| // with the copy's location information set to loc for display |
| // purposes. |
| // |
| // In panics if loc is nil. |
| func (t Time) In(loc *Location) Time { |
| if loc == nil { |
| panic("time: missing Location in call to Time.In") |
| } |
| t.setLoc(loc) |
| return t |
| } |
| |
| // Location returns the time zone information associated with t. |
| func (t Time) Location() *Location { |
| l := t.loc |
| if l == nil { |
| l = UTC |
| } |
| return l |
| } |
| |
| // Zone computes the time zone in effect at time t, returning the abbreviated |
| // name of the zone (such as "CET") and its offset in seconds east of UTC. |
| func (t Time) Zone() (name string, offset int) { |
| name, offset, _, _, _ = t.loc.lookup(t.unixSec()) |
| return |
| } |
| |
| // ZoneBounds returns the bounds of the time zone in effect at time t. |
| // The zone begins at start and the next zone begins at end. |
| // If the zone begins at the beginning of time, start will be returned as a zero Time. |
| // If the zone goes on forever, end will be returned as a zero Time. |
| // The Location of the returned times will be the same as t. |
| func (t Time) ZoneBounds() (start, end Time) { |
| _, _, startSec, endSec, _ := t.loc.lookup(t.unixSec()) |
| if startSec != alpha { |
| start = unixTime(startSec, 0) |
| start.setLoc(t.loc) |
| } |
| if endSec != omega { |
| end = unixTime(endSec, 0) |
| end.setLoc(t.loc) |
| } |
| return |
| } |
| |
| // Unix returns t as a Unix time, the number of seconds elapsed |
| // since January 1, 1970 UTC. The result does not depend on the |
| // location associated with t. |
| // Unix-like operating systems often record time as a 32-bit |
| // count of seconds, but since the method here returns a 64-bit |
| // value it is valid for billions of years into the past or future. |
| func (t Time) Unix() int64 { |
| return t.unixSec() |
| } |
| |
| // UnixMilli returns t as a Unix time, the number of milliseconds elapsed since |
| // January 1, 1970 UTC. The result is undefined if the Unix time in |
| // milliseconds cannot be represented by an int64 (a date more than 292 million |
| // years before or after 1970). The result does not depend on the |
| // location associated with t. |
| func (t Time) UnixMilli() int64 { |
| return t.unixSec()*1e3 + int64(t.nsec())/1e6 |
| } |
| |
| // UnixMicro returns t as a Unix time, the number of microseconds elapsed since |
| // January 1, 1970 UTC. The result is undefined if the Unix time in |
| // microseconds cannot be represented by an int64 (a date before year -290307 or |
| // after year 294246). The result does not depend on the location associated |
| // with t. |
| func (t Time) UnixMicro() int64 { |
| return t.unixSec()*1e6 + int64(t.nsec())/1e3 |
| } |
| |
| // UnixNano returns t as a Unix time, the number of nanoseconds elapsed |
| // since January 1, 1970 UTC. The result is undefined if the Unix time |
| // in nanoseconds cannot be represented by an int64 (a date before the year |
| // 1678 or after 2262). Note that this means the result of calling UnixNano |
| // on the zero Time is undefined. The result does not depend on the |
| // location associated with t. |
| func (t Time) UnixNano() int64 { |
| return (t.unixSec())*1e9 + int64(t.nsec()) |
| } |
| |
| const ( |
| timeBinaryVersionV1 byte = iota + 1 // For general situation |
| timeBinaryVersionV2 // For LMT only |
| ) |
| |
| // AppendBinary implements the [encoding.BinaryAppender] interface. |
| func (t Time) AppendBinary(b []byte) ([]byte, error) { |
| var offsetMin int16 // minutes east of UTC. -1 is UTC. |
| var offsetSec int8 |
| version := timeBinaryVersionV1 |
| |
| if t.Location() == UTC { |
| offsetMin = -1 |
| } else { |
| _, offset := t.Zone() |
| if offset%60 != 0 { |
| version = timeBinaryVersionV2 |
| offsetSec = int8(offset % 60) |
| } |
| |
| offset /= 60 |
| if offset < -32768 || offset == -1 || offset > 32767 { |
| return b, errors.New("Time.MarshalBinary: unexpected zone offset") |
| } |
| offsetMin = int16(offset) |
| } |
| |
| sec := t.sec() |
| nsec := t.nsec() |
| b = append(b, |
| version, // byte 0 : version |
| byte(sec>>56), // bytes 1-8: seconds |
| byte(sec>>48), |
| byte(sec>>40), |
| byte(sec>>32), |
| byte(sec>>24), |
| byte(sec>>16), |
| byte(sec>>8), |
| byte(sec), |
| byte(nsec>>24), // bytes 9-12: nanoseconds |
| byte(nsec>>16), |
| byte(nsec>>8), |
| byte(nsec), |
| byte(offsetMin>>8), // bytes 13-14: zone offset in minutes |
| byte(offsetMin), |
| ) |
| if version == timeBinaryVersionV2 { |
| b = append(b, byte(offsetSec)) |
| } |
| return b, nil |
| } |
| |
| // MarshalBinary implements the [encoding.BinaryMarshaler] interface. |
| func (t Time) MarshalBinary() ([]byte, error) { |
| b, err := t.AppendBinary(make([]byte, 0, 16)) |
| if err != nil { |
| return nil, err |
| } |
| return b, nil |
| } |
| |
| // UnmarshalBinary implements the [encoding.BinaryUnmarshaler] interface. |
| func (t *Time) UnmarshalBinary(data []byte) error { |
| buf := data |
| if len(buf) == 0 { |
| return errors.New("Time.UnmarshalBinary: no data") |
| } |
| |
| version := buf[0] |
| if version != timeBinaryVersionV1 && version != timeBinaryVersionV2 { |
| return errors.New("Time.UnmarshalBinary: unsupported version") |
| } |
| |
| wantLen := /*version*/ 1 + /*sec*/ 8 + /*nsec*/ 4 + /*zone offset*/ 2 |
| if version == timeBinaryVersionV2 { |
| wantLen++ |
| } |
| if len(buf) != wantLen { |
| return errors.New("Time.UnmarshalBinary: invalid length") |
| } |
| |
| buf = buf[1:] |
| sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 | |
| int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56 |
| |
| buf = buf[8:] |
| nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24 |
| |
| buf = buf[4:] |
| offset := int(int16(buf[1])|int16(buf[0])<<8) * 60 |
| if version == timeBinaryVersionV2 { |
| offset += int(buf[2]) |
| } |
| |
| *t = Time{} |
| t.wall = uint64(nsec) |
| t.ext = sec |
| |
| if offset == -1*60 { |
| t.setLoc(&utcLoc) |
| } else if _, localoff, _, _, _ := Local.lookup(t.unixSec()); offset == localoff { |
| t.setLoc(Local) |
| } else { |
| t.setLoc(FixedZone("", offset)) |
| } |
| |
| return nil |
| } |
| |
| // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2. |
| // The same semantics will be provided by the generic MarshalBinary, MarshalText, |
| // UnmarshalBinary, UnmarshalText. |
| |
| // GobEncode implements the gob.GobEncoder interface. |
| func (t Time) GobEncode() ([]byte, error) { |
| return t.MarshalBinary() |
| } |
| |
| // GobDecode implements the gob.GobDecoder interface. |
| func (t *Time) GobDecode(data []byte) error { |
| return t.UnmarshalBinary(data) |
| } |
| |
| // MarshalJSON implements the [encoding/json.Marshaler] interface. |
| // The time is a quoted string in the RFC 3339 format with sub-second precision. |
| // If the timestamp cannot be represented as valid RFC 3339 |
| // (e.g., the year is out of range), then an error is reported. |
| func (t Time) MarshalJSON() ([]byte, error) { |
| b := make([]byte, 0, len(RFC3339Nano)+len(`""`)) |
| b = append(b, '"') |
| b, err := t.appendStrictRFC3339(b) |
| b = append(b, '"') |
| if err != nil { |
| return nil, errors.New("Time.MarshalJSON: " + err.Error()) |
| } |
| return b, nil |
| } |
| |
| // UnmarshalJSON implements the [encoding/json.Unmarshaler] interface. |
| // The time must be a quoted string in the RFC 3339 format. |
| func (t *Time) UnmarshalJSON(data []byte) error { |
| if string(data) == "null" { |
| return nil |
| } |
| // TODO(https://go.dev/issue/47353): Properly unescape a JSON string. |
| if len(data) < 2 || data[0] != '"' || data[len(data)-1] != '"' { |
| return errors.New("Time.UnmarshalJSON: input is not a JSON string") |
| } |
| data = data[len(`"`) : len(data)-len(`"`)] |
| var err error |
| *t, err = parseStrictRFC3339(data) |
| return err |
| } |
| |
| func (t Time) appendTo(b []byte, errPrefix string) ([]byte, error) { |
| b, err := t.appendStrictRFC3339(b) |
| if err != nil { |
| return nil, errors.New(errPrefix + err.Error()) |
| } |
| return b, nil |
| } |
| |
| // AppendText implements the [encoding.TextAppender] interface. |
| // The time is formatted in RFC 3339 format with sub-second precision. |
| // If the timestamp cannot be represented as valid RFC 3339 |
| // (e.g., the year is out of range), then an error is returned. |
| func (t Time) AppendText(b []byte) ([]byte, error) { |
| return t.appendTo(b, "Time.AppendText: ") |
| } |
| |
| // MarshalText implements the [encoding.TextMarshaler] interface. The output |
| // matches that of calling the [Time.AppendText] method. |
| // |
| // See [Time.AppendText] for more information. |
| func (t Time) MarshalText() ([]byte, error) { |
| return t.appendTo(make([]byte, 0, len(RFC3339Nano)), "Time.MarshalText: ") |
| } |
| |
| // UnmarshalText implements the [encoding.TextUnmarshaler] interface. |
| // The time must be in the RFC 3339 format. |
| func (t *Time) UnmarshalText(data []byte) error { |
| var err error |
| *t, err = parseStrictRFC3339(data) |
| return err |
| } |
| |
| // Unix returns the local Time corresponding to the given Unix time, |
| // sec seconds and nsec nanoseconds since January 1, 1970 UTC. |
| // It is valid to pass nsec outside the range [0, 999999999]. |
| // Not all sec values have a corresponding time value. One such |
| // value is 1<<63-1 (the largest int64 value). |
| func Unix(sec int64, nsec int64) Time { |
| if nsec < 0 || nsec >= 1e9 { |
| n := nsec / 1e9 |
| sec += n |
| nsec -= n * 1e9 |
| if nsec < 0 { |
| nsec += 1e9 |
| sec-- |
| } |
| } |
| return unixTime(sec, int32(nsec)) |
| } |
| |
| // UnixMilli returns the local Time corresponding to the given Unix time, |
| // msec milliseconds since January 1, 1970 UTC. |
| func UnixMilli(msec int64) Time { |
| return Unix(msec/1e3, (msec%1e3)*1e6) |
| } |
| |
| // UnixMicro returns the local Time corresponding to the given Unix time, |
| // usec microseconds since January 1, 1970 UTC. |
| func UnixMicro(usec int64) Time { |
| return Unix(usec/1e6, (usec%1e6)*1e3) |
| } |
| |
| // IsDST reports whether the time in the configured location is in Daylight Savings Time. |
| func (t Time) IsDST() bool { |
| _, _, _, _, isDST := t.loc.lookup(t.Unix()) |
| return isDST |
| } |
| |
| func isLeap(year int) bool { |
| // year%4 == 0 && (year%100 != 0 || year%400 == 0) |
| // Bottom 2 bits must be clear. |
| // For multiples of 25, bottom 4 bits must be clear. |
| // Thanks to Cassio Neri for this trick. |
| mask := 0xf |
| if year%25 != 0 { |
| mask = 3 |
| } |
| return year&mask == 0 |
| } |
| |
| // norm returns nhi, nlo such that |
| // |
| // hi * base + lo == nhi * base + nlo |
| // 0 <= nlo < base |
| func norm(hi, lo, base int) (nhi, nlo int) { |
| if lo < 0 { |
| n := (-lo-1)/base + 1 |
| hi -= n |
| lo += n * base |
| } |
| if lo >= base { |
| n := lo / base |
| hi += n |
| lo -= n * base |
| } |
| return hi, lo |
| } |
| |
| // Date returns the Time corresponding to |
| // |
| // yyyy-mm-dd hh:mm:ss + nsec nanoseconds |
| // |
| // in the appropriate zone for that time in the given location. |
| // |
| // The month, day, hour, min, sec, and nsec values may be outside |
| // their usual ranges and will be normalized during the conversion. |
| // For example, October 32 converts to November 1. |
| // |
| // A daylight savings time transition skips or repeats times. |
| // For example, in the United States, March 13, 2011 2:15am never occurred, |
| // while November 6, 2011 1:15am occurred twice. In such cases, the |
| // choice of time zone, and therefore the time, is not well-defined. |
| // Date returns a time that is correct in one of the two zones involved |
| // in the transition, but it does not guarantee which. |
| // |
| // Date panics if loc is nil. |
| func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time { |
| if loc == nil { |
| panic("time: missing Location in call to Date") |
| } |
| |
| // Normalize month, overflowing into year. |
| m := int(month) - 1 |
| year, m = norm(year, m, 12) |
| month = Month(m) + 1 |
| |
| // Normalize nsec, sec, min, hour, overflowing into day. |
| sec, nsec = norm(sec, nsec, 1e9) |
| min, sec = norm(min, sec, 60) |
| hour, min = norm(hour, min, 60) |
| day, hour = norm(day, hour, 24) |
| |
| // Convert to absolute time and then Unix time. |
| unix := int64(dateToAbsDays(int64(year), month, day))*secondsPerDay + |
| int64(hour*secondsPerHour+min*secondsPerMinute+sec) + |
| absoluteToUnix |
| |
| // Look for zone offset for expected time, so we can adjust to UTC. |
| // The lookup function expects UTC, so first we pass unix in the |
| // hope that it will not be too close to a zone transition, |
| // and then adjust if it is. |
| _, offset, start, end, _ := loc.lookup(unix) |
| if offset != 0 { |
| utc := unix - int64(offset) |
| // If utc is valid for the time zone we found, then we have the right offset. |
| // If not, we get the correct offset by looking up utc in the location. |
| if utc < start || utc >= end { |
| _, offset, _, _, _ = loc.lookup(utc) |
| } |
| unix -= int64(offset) |
| } |
| |
| t := unixTime(unix, int32(nsec)) |
| t.setLoc(loc) |
| return t |
| } |
| |
| // Truncate returns the result of rounding t down to a multiple of d (since the zero time). |
| // If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged. |
| // |
| // Truncate operates on the time as an absolute duration since the |
| // zero time; it does not operate on the presentation form of the |
| // time. Thus, Truncate(Hour) may return a time with a non-zero |
| // minute, depending on the time's Location. |
| func (t Time) Truncate(d Duration) Time { |
| t.stripMono() |
| if d <= 0 { |
| return t |
| } |
| _, r := div(t, d) |
| return t.Add(-r) |
| } |
| |
| // Round returns the result of rounding t to the nearest multiple of d (since the zero time). |
| // The rounding behavior for halfway values is to round up. |
| // If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged. |
| // |
| // Round operates on the time as an absolute duration since the |
| // zero time; it does not operate on the presentation form of the |
| // time. Thus, Round(Hour) may return a time with a non-zero |
| // minute, depending on the time's Location. |
| func (t Time) Round(d Duration) Time { |
| t.stripMono() |
| if d <= 0 { |
| return t |
| } |
| _, r := div(t, d) |
| if lessThanHalf(r, d) { |
| return t.Add(-r) |
| } |
| return t.Add(d - r) |
| } |
| |
| // div divides t by d and returns the quotient parity and remainder. |
| // We don't use the quotient parity anymore (round half up instead of round to even) |
| // but it's still here in case we change our minds. |
| func div(t Time, d Duration) (qmod2 int, r Duration) { |
| neg := false |
| nsec := t.nsec() |
| sec := t.sec() |
| if sec < 0 { |
| // Operate on absolute value. |
| neg = true |
| sec = -sec |
| nsec = -nsec |
| if nsec < 0 { |
| nsec += 1e9 |
| sec-- // sec >= 1 before the -- so safe |
| } |
| } |
| |
| switch { |
| // Special case: 2d divides 1 second. |
| case d < Second && Second%(d+d) == 0: |
| qmod2 = int(nsec/int32(d)) & 1 |
| r = Duration(nsec % int32(d)) |
| |
| // Special case: d is a multiple of 1 second. |
| case d%Second == 0: |
| d1 := int64(d / Second) |
| qmod2 = int(sec/d1) & 1 |
| r = Duration(sec%d1)*Second + Duration(nsec) |
| |
| // General case. |
| // This could be faster if more cleverness were applied, |
| // but it's really only here to avoid special case restrictions in the API. |
| // No one will care about these cases. |
| default: |
| // Compute nanoseconds as 128-bit number. |
| sec := uint64(sec) |
| tmp := (sec >> 32) * 1e9 |
| u1 := tmp >> 32 |
| u0 := tmp << 32 |
| tmp = (sec & 0xFFFFFFFF) * 1e9 |
| u0x, u0 := u0, u0+tmp |
| if u0 < u0x { |
| u1++ |
| } |
| u0x, u0 = u0, u0+uint64(nsec) |
| if u0 < u0x { |
| u1++ |
| } |
| |
| // Compute remainder by subtracting r<<k for decreasing k. |
| // Quotient parity is whether we subtract on last round. |
| d1 := uint64(d) |
| for d1>>63 != 1 { |
| d1 <<= 1 |
| } |
| d0 := uint64(0) |
| for { |
| qmod2 = 0 |
| if u1 > d1 || u1 == d1 && u0 >= d0 { |
| // subtract |
| qmod2 = 1 |
| u0x, u0 = u0, u0-d0 |
| if u0 > u0x { |
| u1-- |
| } |
| u1 -= d1 |
| } |
| if d1 == 0 && d0 == uint64(d) { |
| break |
| } |
| d0 >>= 1 |
| d0 |= (d1 & 1) << 63 |
| d1 >>= 1 |
| } |
| r = Duration(u0) |
| } |
| |
| if neg && r != 0 { |
| // If input was negative and not an exact multiple of d, we computed q, r such that |
| // q*d + r = -t |
| // But the right answers are given by -(q-1), d-r: |
| // q*d + r = -t |
| // -q*d - r = t |
| // -(q-1)*d + (d - r) = t |
| qmod2 ^= 1 |
| r = d - r |
| } |
| return |
| } |
| |
| // Regrettable Linkname Compatibility |
| // |
| // timeAbs, absDate, and absClock mimic old internal details, no longer used. |
| // Widely used packages linknamed these to get “faster” time routines. |
| // Notable members of the hall of shame include: |
| // - gitee.com/quant1x/gox |
| // - github.com/phuslu/log |
| // |
| // phuslu hard-coded 'Unix time + 9223372028715321600' [sic] |
| // as the input to absDate and absClock, using the old Jan 1-based |
| // absolute times. |
| // quant1x linknamed the time.Time.abs method and passed the |
| // result of that method to absDate and absClock. |
| // |
| // Keeping both of these working forces us to provide these three |
| // routines here, operating on the old Jan 1-based epoch instead |
| // of the new March 1-based epoch. And the fact that time.Time.abs |
| // was linknamed means that we have to call the current abs method |
| // something different (time.Time.absSec, defined above) to make it |
| // possible to provide this simulation of the old routines here. |
| // |
| // None of this code is linked into the binary if not referenced by |
| // these linkname-happy packages. In particular, despite its name, |
| // time.Time.abs does not appear in the time.Time method table. |
| // |
| // Do not remove these routines or their linknames, or change the |
| // type signature or meaning of arguments. |
| |
| //go:linkname legacyTimeTimeAbs time.Time.abs |
| func legacyTimeTimeAbs(t Time) uint64 { |
| return uint64(t.absSec() - marchThruDecember*secondsPerDay) |
| } |
| |
| //go:linkname legacyAbsClock time.absClock |
| func legacyAbsClock(abs uint64) (hour, min, sec int) { |
| return absSeconds(abs + marchThruDecember*secondsPerDay).clock() |
| } |
| |
| //go:linkname legacyAbsDate time.absDate |
| func legacyAbsDate(abs uint64, full bool) (year int, month Month, day int, yday int) { |
| d := absSeconds(abs + marchThruDecember*secondsPerDay).days() |
| year, month, day = d.date() |
| _, yday = d.yearYday() |
| yday-- // yearYday is 1-based, old API was 0-based |
| return |
| } |