blob: 14e79672cad6f90891b62fcbbb5db0d3a1a2898c [file] [log] [blame] [edit]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package time provides functionality for measuring and displaying time.
//
// The calendrical calculations always assume a Gregorian calendar, with
// no leap seconds.
//
// # Monotonic Clocks
//
// Operating systems provide both a “wall clock,” which is subject to
// changes for clock synchronization, and a “monotonic clock,” which is
// not. The general rule is that the wall clock is for telling time and
// the monotonic clock is for measuring time. Rather than split the API,
// in this package the Time returned by [time.Now] contains both a wall
// clock reading and a monotonic clock reading; later time-telling
// operations use the wall clock reading, but later time-measuring
// operations, specifically comparisons and subtractions, use the
// monotonic clock reading.
//
// For example, this code always computes a positive elapsed time of
// approximately 20 milliseconds, even if the wall clock is changed during
// the operation being timed:
//
// start := time.Now()
// ... operation that takes 20 milliseconds ...
// t := time.Now()
// elapsed := t.Sub(start)
//
// Other idioms, such as [time.Since](start), [time.Until](deadline), and
// time.Now().Before(deadline), are similarly robust against wall clock
// resets.
//
// The rest of this section gives the precise details of how operations
// use monotonic clocks, but understanding those details is not required
// to use this package.
//
// The Time returned by time.Now contains a monotonic clock reading.
// If Time t has a monotonic clock reading, t.Add adds the same duration to
// both the wall clock and monotonic clock readings to compute the result.
// Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time
// computations, they always strip any monotonic clock reading from their results.
// Because t.In, t.Local, and t.UTC are used for their effect on the interpretation
// of the wall time, they also strip any monotonic clock reading from their results.
// The canonical way to strip a monotonic clock reading is to use t = t.Round(0).
//
// If Times t and u both contain monotonic clock readings, the operations
// t.After(u), t.Before(u), t.Equal(u), t.Compare(u), and t.Sub(u) are carried out
// using the monotonic clock readings alone, ignoring the wall clock
// readings. If either t or u contains no monotonic clock reading, these
// operations fall back to using the wall clock readings.
//
// On some systems the monotonic clock will stop if the computer goes to sleep.
// On such a system, t.Sub(u) may not accurately reflect the actual
// time that passed between t and u. The same applies to other functions and
// methods that subtract times, such as [Since], [Until], [Time.Before], [Time.After],
// [Time.Add], [Time.Equal] and [Time.Compare]. In some cases, you may need to strip
// the monotonic clock to get accurate results.
//
// Because the monotonic clock reading has no meaning outside
// the current process, the serialized forms generated by t.GobEncode,
// t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic
// clock reading, and t.Format provides no format for it. Similarly, the
// constructors [time.Date], [time.Parse], [time.ParseInLocation], and [time.Unix],
// as well as the unmarshalers t.GobDecode, t.UnmarshalBinary.
// t.UnmarshalJSON, and t.UnmarshalText always create times with
// no monotonic clock reading.
//
// The monotonic clock reading exists only in [Time] values. It is not
// a part of [Duration] values or the Unix times returned by t.Unix and
// friends.
//
// Note that the Go == operator compares not just the time instant but
// also the [Location] and the monotonic clock reading. See the
// documentation for the Time type for a discussion of equality
// testing for Time values.
//
// For debugging, the result of t.String does include the monotonic
// clock reading if present. If t != u because of different monotonic clock readings,
// that difference will be visible when printing t.String() and u.String().
//
// # Timer Resolution
//
// [Timer] resolution varies depending on the Go runtime, the operating system
// and the underlying hardware.
// On Unix, the resolution is ~1ms.
// On Windows version 1803 and newer, the resolution is ~0.5ms.
// On older Windows versions, the default resolution is ~16ms, but
// a higher resolution may be requested using [golang.org/x/sys/windows.TimeBeginPeriod].
package time
import (
"errors"
"math/bits"
_ "unsafe" // for go:linkname
)
// A Time represents an instant in time with nanosecond precision.
//
// Programs using times should typically store and pass them as values,
// not pointers. That is, time variables and struct fields should be of
// type [time.Time], not *time.Time.
//
// A Time value can be used by multiple goroutines simultaneously except
// that the methods [Time.GobDecode], [Time.UnmarshalBinary], [Time.UnmarshalJSON] and
// [Time.UnmarshalText] are not concurrency-safe.
//
// Time instants can be compared using the [Time.Before], [Time.After], and [Time.Equal] methods.
// The [Time.Sub] method subtracts two instants, producing a [Duration].
// The [Time.Add] method adds a Time and a Duration, producing a Time.
//
// The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC.
// As this time is unlikely to come up in practice, the [Time.IsZero] method gives
// a simple way of detecting a time that has not been initialized explicitly.
//
// Each time has an associated [Location]. The methods [Time.Local], [Time.UTC], and Time.In return a
// Time with a specific Location. Changing the Location of a Time value with
// these methods does not change the actual instant it represents, only the time
// zone in which to interpret it.
//
// Representations of a Time value saved by the [Time.GobEncode], [Time.MarshalBinary], [Time.AppendBinary],
// [Time.MarshalJSON], [Time.MarshalText] and [Time.AppendText] methods store the [Time.Location]'s offset,
// but not the location name. They therefore lose information about Daylight Saving Time.
//
// In addition to the required “wall clock” reading, a Time may contain an optional
// reading of the current process's monotonic clock, to provide additional precision
// for comparison or subtraction.
// See the “Monotonic Clocks” section in the package documentation for details.
//
// Note that the Go == operator compares not just the time instant but also the
// Location and the monotonic clock reading. Therefore, Time values should not
// be used as map or database keys without first guaranteeing that the
// identical Location has been set for all values, which can be achieved
// through use of the UTC or Local method, and that the monotonic clock reading
// has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u)
// to t == u, since t.Equal uses the most accurate comparison available and
// correctly handles the case when only one of its arguments has a monotonic
// clock reading.
type Time struct {
// wall and ext encode the wall time seconds, wall time nanoseconds,
// and optional monotonic clock reading in nanoseconds.
//
// From high to low bit position, wall encodes a 1-bit flag (hasMonotonic),
// a 33-bit seconds field, and a 30-bit wall time nanoseconds field.
// The nanoseconds field is in the range [0, 999999999].
// If the hasMonotonic bit is 0, then the 33-bit field must be zero
// and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext.
// If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit
// unsigned wall seconds since Jan 1 year 1885, and ext holds a
// signed 64-bit monotonic clock reading, nanoseconds since process start.
wall uint64
ext int64
// loc specifies the Location that should be used to
// determine the minute, hour, month, day, and year
// that correspond to this Time.
// The nil location means UTC.
// All UTC times are represented with loc==nil, never loc==&utcLoc.
loc *Location
}
const (
hasMonotonic = 1 << 63
maxWall = wallToInternal + (1<<33 - 1) // year 2157
minWall = wallToInternal // year 1885
nsecMask = 1<<30 - 1
nsecShift = 30
)
// These helpers for manipulating the wall and monotonic clock readings
// take pointer receivers, even when they don't modify the time,
// to make them cheaper to call.
// nsec returns the time's nanoseconds.
func (t *Time) nsec() int32 {
return int32(t.wall & nsecMask)
}
// sec returns the time's seconds since Jan 1 year 1.
func (t *Time) sec() int64 {
if t.wall&hasMonotonic != 0 {
return wallToInternal + int64(t.wall<<1>>(nsecShift+1))
}
return t.ext
}
// unixSec returns the time's seconds since Jan 1 1970 (Unix time).
func (t *Time) unixSec() int64 { return t.sec() + internalToUnix }
// addSec adds d seconds to the time.
func (t *Time) addSec(d int64) {
if t.wall&hasMonotonic != 0 {
sec := int64(t.wall << 1 >> (nsecShift + 1))
dsec := sec + d
if 0 <= dsec && dsec <= 1<<33-1 {
t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic
return
}
// Wall second now out of range for packed field.
// Move to ext.
t.stripMono()
}
// Check if the sum of t.ext and d overflows and handle it properly.
sum := t.ext + d
if (sum > t.ext) == (d > 0) {
t.ext = sum
} else if d > 0 {
t.ext = 1<<63 - 1
} else {
t.ext = -(1<<63 - 1)
}
}
// setLoc sets the location associated with the time.
func (t *Time) setLoc(loc *Location) {
if loc == &utcLoc {
loc = nil
}
t.stripMono()
t.loc = loc
}
// stripMono strips the monotonic clock reading in t.
func (t *Time) stripMono() {
if t.wall&hasMonotonic != 0 {
t.ext = t.sec()
t.wall &= nsecMask
}
}
// setMono sets the monotonic clock reading in t.
// If t cannot hold a monotonic clock reading,
// because its wall time is too large,
// setMono is a no-op.
func (t *Time) setMono(m int64) {
if t.wall&hasMonotonic == 0 {
sec := t.ext
if sec < minWall || maxWall < sec {
return
}
t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift
}
t.ext = m
}
// mono returns t's monotonic clock reading.
// It returns 0 for a missing reading.
// This function is used only for testing,
// so it's OK that technically 0 is a valid
// monotonic clock reading as well.
func (t *Time) mono() int64 {
if t.wall&hasMonotonic == 0 {
return 0
}
return t.ext
}
// IsZero reports whether t represents the zero time instant,
// January 1, year 1, 00:00:00 UTC.
func (t Time) IsZero() bool {
return t.sec() == 0 && t.nsec() == 0
}
// After reports whether the time instant t is after u.
func (t Time) After(u Time) bool {
if t.wall&u.wall&hasMonotonic != 0 {
return t.ext > u.ext
}
ts := t.sec()
us := u.sec()
return ts > us || ts == us && t.nsec() > u.nsec()
}
// Before reports whether the time instant t is before u.
func (t Time) Before(u Time) bool {
if t.wall&u.wall&hasMonotonic != 0 {
return t.ext < u.ext
}
ts := t.sec()
us := u.sec()
return ts < us || ts == us && t.nsec() < u.nsec()
}
// Compare compares the time instant t with u. If t is before u, it returns -1;
// if t is after u, it returns +1; if they're the same, it returns 0.
func (t Time) Compare(u Time) int {
var tc, uc int64
if t.wall&u.wall&hasMonotonic != 0 {
tc, uc = t.ext, u.ext
} else {
tc, uc = t.sec(), u.sec()
if tc == uc {
tc, uc = int64(t.nsec()), int64(u.nsec())
}
}
switch {
case tc < uc:
return -1
case tc > uc:
return +1
}
return 0
}
// Equal reports whether t and u represent the same time instant.
// Two times can be equal even if they are in different locations.
// For example, 6:00 +0200 and 4:00 UTC are Equal.
// See the documentation on the Time type for the pitfalls of using == with
// Time values; most code should use Equal instead.
func (t Time) Equal(u Time) bool {
if t.wall&u.wall&hasMonotonic != 0 {
return t.ext == u.ext
}
return t.sec() == u.sec() && t.nsec() == u.nsec()
}
// A Month specifies a month of the year (January = 1, ...).
type Month int
const (
January Month = 1 + iota
February
March
April
May
June
July
August
September
October
November
December
)
// String returns the English name of the month ("January", "February", ...).
func (m Month) String() string {
if January <= m && m <= December {
return longMonthNames[m-1]
}
buf := make([]byte, 20)
n := fmtInt(buf, uint64(m))
return "%!Month(" + string(buf[n:]) + ")"
}
// A Weekday specifies a day of the week (Sunday = 0, ...).
type Weekday int
const (
Sunday Weekday = iota
Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
)
// String returns the English name of the day ("Sunday", "Monday", ...).
func (d Weekday) String() string {
if Sunday <= d && d <= Saturday {
return longDayNames[d]
}
buf := make([]byte, 20)
n := fmtInt(buf, uint64(d))
return "%!Weekday(" + string(buf[n:]) + ")"
}
// Computations on Times
//
// The zero value for a Time is defined to be
// January 1, year 1, 00:00:00.000000000 UTC
// which (1) looks like a zero, or as close as you can get in a date
// (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to
// be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a
// non-negative year even in time zones west of UTC, unlike 1-1-0
// 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York.
//
// The zero Time value does not force a specific epoch for the time
// representation. For example, to use the Unix epoch internally, we
// could define that to distinguish a zero value from Jan 1 1970, that
// time would be represented by sec=-1, nsec=1e9. However, it does
// suggest a representation, namely using 1-1-1 00:00:00 UTC as the
// epoch, and that's what we do.
//
// The Add and Sub computations are oblivious to the choice of epoch.
//
// The presentation computations - year, month, minute, and so on - all
// rely heavily on division and modulus by positive constants. For
// calendrical calculations we want these divisions to round down, even
// for negative values, so that the remainder is always positive, but
// Go's division (like most hardware division instructions) rounds to
// zero. We can still do those computations and then adjust the result
// for a negative numerator, but it's annoying to write the adjustment
// over and over. Instead, we can change to a different epoch so long
// ago that all the times we care about will be positive, and then round
// to zero and round down coincide. These presentation routines already
// have to add the zone offset, so adding the translation to the
// alternate epoch is cheap. For example, having a non-negative time t
// means that we can write
//
// sec = t % 60
//
// instead of
//
// sec = t % 60
// if sec < 0 {
// sec += 60
// }
//
// everywhere.
//
// The calendar runs on an exact 400 year cycle: a 400-year calendar
// printed for 1970-2369 will apply as well to 2370-2769. Even the days
// of the week match up. It simplifies date computations to choose the
// cycle boundaries so that the exceptional years are always delayed as
// long as possible: March 1, year 0 is such a day:
// the first leap day (Feb 29) is four years minus one day away,
// the first multiple-of-4 year without a Feb 29 is 100 years minus one day away,
// and the first multiple-of-100 year with a Feb 29 is 400 years minus one day away.
// March 1 year Y for any Y = 0 mod 400 is also such a day.
//
// Finally, it's convenient if the delta between the Unix epoch and
// long-ago epoch is representable by an int64 constant.
//
// These three considerations—choose an epoch as early as possible, that
// starts on March 1 of a year equal to 0 mod 400, and that is no more than
// 2⁶³ seconds earlier than 1970—bring us to the year -292277022400.
// We refer to this moment as the absolute zero instant, and to times
// measured as a uint64 seconds since this year as absolute times.
//
// Times measured as an int64 seconds since the year 1—the representation
// used for Time's sec field—are called internal times.
//
// Times measured as an int64 seconds since the year 1970 are called Unix
// times.
//
// It is tempting to just use the year 1 as the absolute epoch, defining
// that the routines are only valid for years >= 1. However, the
// routines would then be invalid when displaying the epoch in time zones
// west of UTC, since it is year 0. It doesn't seem tenable to say that
// printing the zero time correctly isn't supported in half the time
// zones. By comparison, it's reasonable to mishandle some times in
// the year -292277022400.
//
// All this is opaque to clients of the API and can be changed if a
// better implementation presents itself.
//
// The date calculations are implemented using the following clever math from
// Cassio Neri and Lorenz Schneider, “Euclidean affine functions and their
// application to calendar algorithms,” SP&E 2023. https://doi.org/10.1002/spe.3172
//
// Define a “calendrical division” (f, f°, f*) to be a triple of functions converting
// one time unit into a whole number of larger units and the remainder and back.
// For example, in a calendar with no leap years, (d/365, d%365, y*365) is the
// calendrical division for days into years:
//
// (f) year := days/365
// (f°) yday := days%365
// (f*) days := year*365 (+ yday)
//
// Note that f* is usually the “easy” function to write: it's the
// calendrical multiplication that inverts the more complex division.
//
// Neri and Schneider prove that when f* takes the form
//
// f*(n) = (a n + b) / c
//
// using integer division rounding down with a ≥ c > 0,
// which they call a Euclidean affine function or EAF, then:
//
// f(n) = (c n + c - b - 1) / a
// f°(n) = (c n + c - b - 1) % a / c
//
// This gives a fairly direct calculation for any calendrical division for which
// we can write the calendrical multiplication in EAF form.
// Because the epoch has been shifted to March 1, all the calendrical
// multiplications turn out to be possible to write in EAF form.
// When a date is broken into [century, cyear, amonth, mday],
// with century, cyear, and mday 0-based,
// and amonth 3-based (March = 3, ..., January = 13, February = 14),
// the calendrical multiplications written in EAF form are:
//
// yday = (153 (amonth-3) + 2) / 5 = (153 amonth - 457) / 5
// cday = 365 cyear + cyear/4 = 1461 cyear / 4
// centurydays = 36524 century + century/4 = 146097 century / 4
// days = centurydays + cday + yday + mday.
//
// We can only handle one periodic cycle per equation, so the year
// calculation must be split into [century, cyear], handling both the
// 100-year cycle and the 400-year cycle.
//
// The yday calculation is not obvious but derives from the fact
// that the March through January calendar repeats the 5-month
// 153-day cycle 31, 30, 31, 30, 31 (we don't care about February
// because yday only ever count the days _before_ February 1,
// since February is the last month).
//
// Using the rule for deriving f and f° from f*, these multiplications
// convert to these divisions:
//
// century := (4 days + 3) / 146097
// cdays := (4 days + 3) % 146097 / 4
// cyear := (4 cdays + 3) / 1461
// ayday := (4 cdays + 3) % 1461 / 4
// amonth := (5 ayday + 461) / 153
// mday := (5 ayday + 461) % 153 / 5
//
// The a in ayday and amonth stands for absolute (March 1-based)
// to distinguish from the standard yday (January 1-based).
//
// After computing these, we can translate from the March 1 calendar
// to the standard January 1 calendar with branch-free math assuming a
// branch-free conversion from bool to int 0 or 1, denoted int(b) here:
//
// isJanFeb := int(yday >= marchThruDecember)
// month := amonth - isJanFeb*12
// year := century*100 + cyear + isJanFeb
// isLeap := int(cyear%4 == 0) & (int(cyear != 0) | int(century%4 == 0))
// day := 1 + mday
// yday := 1 + ayday + 31 + 28 + isLeap&^isJanFeb - 365*isJanFeb
//
// isLeap is the standard leap-year rule, but the split year form
// makes the divisions all reduce to binary masking.
// Note that day and yday are 1-based, in contrast to mday and ayday.
// To keep the various units separate, we define integer types
// for each. These are never stored in interfaces nor allocated,
// so their type information does not appear in Go binaries.
const (
secondsPerMinute = 60
secondsPerHour = 60 * secondsPerMinute
secondsPerDay = 24 * secondsPerHour
secondsPerWeek = 7 * secondsPerDay
daysPer400Years = 365*400 + 97
// Days from March 1 through end of year
marchThruDecember = 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31
// absoluteYears is the number of years we subtract from internal time to get absolute time.
// This value must be 0 mod 400, and it defines the “absolute zero instant”
// mentioned in the “Computations on Times” comment above: March 1, -absoluteYears.
// Dates before the absolute epoch will not compute correctly,
// but otherwise the value can be changed as needed.
absoluteYears = 292277022400
// The year of the zero Time.
// Assumed by the unixToInternal computation below.
internalYear = 1
// Offsets to convert between internal and absolute or Unix times.
absoluteToInternal int64 = -(absoluteYears*365.2425 + marchThruDecember) * secondsPerDay
internalToAbsolute = -absoluteToInternal
unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay
internalToUnix int64 = -unixToInternal
absoluteToUnix = absoluteToInternal + internalToUnix
unixToAbsolute = unixToInternal + internalToAbsolute
wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay
)
// An absSeconds counts the number of seconds since the absolute zero instant.
type absSeconds uint64
// An absDays counts the number of days since the absolute zero instant.
type absDays uint64
// An absCentury counts the number of centuries since the absolute zero instant.
type absCentury uint64
// An absCyear counts the number of years since the start of a century.
type absCyear int
// An absYday counts the number of days since the start of a year.
// Note that absolute years start on March 1.
type absYday int
// An absMonth counts the number of months since the start of a year.
// absMonth=0 denotes March.
type absMonth int
// An absLeap is a single bit (0 or 1) denoting whether a given year is a leap year.
type absLeap int
// An absJanFeb is a single bit (0 or 1) denoting whether a given day falls in January or February.
// That is a special case because the absolute years start in March (unlike normal calendar years).
type absJanFeb int
// dateToAbsDays takes a standard year/month/day and returns the
// number of days from the absolute epoch to that day.
// The days argument can be out of range and in particular can be negative.
func dateToAbsDays(year int64, month Month, day int) absDays {
// See “Computations on Times” comment above.
amonth := uint32(month)
janFeb := uint32(0)
if amonth < 3 {
janFeb = 1
}
amonth += 12 * janFeb
y := uint64(year) - uint64(janFeb) + absoluteYears
// For amonth is in the range [3,14], we want:
//
// ayday := (153*amonth - 457) / 5
//
// (See the “Computations on Times” comment above
// as well as Neri and Schneider, section 7.)
//
// That is equivalent to:
//
// ayday := (979*amonth - 2919) >> 5
//
// and the latter form uses a couple fewer instructions,
// so use it, saving a few cycles.
// See Neri and Schneider, section 8.3
// for more about this optimization.
//
// (Note that there is no saved division, because the compiler
// implements / 5 without division in all cases.)
ayday := (979*amonth - 2919) >> 5
century := y / 100
cyear := uint32(y % 100)
cday := 1461 * cyear / 4
centurydays := 146097 * century / 4
return absDays(centurydays + uint64(int64(cday+ayday)+int64(day)-1))
}
// days converts absolute seconds to absolute days.
func (abs absSeconds) days() absDays {
return absDays(abs / secondsPerDay)
}
// split splits days into century, cyear, ayday.
func (days absDays) split() (century absCentury, cyear absCyear, ayday absYday) {
// See “Computations on Times” comment above.
d := 4*uint64(days) + 3
century = absCentury(d / 146097)
// This should be
// cday := uint32(d % 146097) / 4
// cd := 4*cday + 3
// which is to say
// cday := uint32(d % 146097) >> 2
// cd := cday<<2 + 3
// but of course (x>>2<<2)+3 == x|3,
// so do that instead.
cd := uint32(d%146097) | 3
// For cdays in the range [0,146097] (100 years), we want:
//
// cyear := (4 cdays + 3) / 1461
// yday := (4 cdays + 3) % 1461 / 4
//
// (See the “Computations on Times” comment above
// as well as Neri and Schneider, section 7.)
//
// That is equivalent to:
//
// cyear := (2939745 cdays) >> 32
// yday := (2939745 cdays) & 0xFFFFFFFF / 2939745 / 4
//
// so do that instead, saving a few cycles.
// See Neri and Schneider, section 8.3
// for more about this optimization.
hi, lo := bits.Mul32(2939745, uint32(cd))
cyear = absCyear(hi)
ayday = absYday(lo / 2939745 / 4)
return
}
// split splits ayday into absolute month and standard (1-based) day-in-month.
func (ayday absYday) split() (m absMonth, mday int) {
// See “Computations on Times” comment above.
//
// For yday in the range [0,366],
//
// amonth := (5 yday + 461) / 153
// mday := (5 yday + 461) % 153 / 5
//
// is equivalent to:
//
// amonth = (2141 yday + 197913) >> 16
// mday = (2141 yday + 197913) & 0xFFFF / 2141
//
// so do that instead, saving a few cycles.
// See Neri and Schneider, section 8.3.
d := 2141*uint32(ayday) + 197913
return absMonth(d >> 16), 1 + int((d&0xFFFF)/2141)
}
// janFeb returns 1 if the March 1-based ayday is in January or February, 0 otherwise.
func (ayday absYday) janFeb() absJanFeb {
// See “Computations on Times” comment above.
jf := absJanFeb(0)
if ayday >= marchThruDecember {
jf = 1
}
return jf
}
// month returns the standard Month for (m, janFeb)
func (m absMonth) month(janFeb absJanFeb) Month {
// See “Computations on Times” comment above.
return Month(m) - Month(janFeb)*12
}
// leap returns 1 if (century, cyear) is a leap year, 0 otherwise.
func (century absCentury) leap(cyear absCyear) absLeap {
// See “Computations on Times” comment above.
y4ok := 0
if cyear%4 == 0 {
y4ok = 1
}
y100ok := 0
if cyear != 0 {
y100ok = 1
}
y400ok := 0
if century%4 == 0 {
y400ok = 1
}
return absLeap(y4ok & (y100ok | y400ok))
}
// year returns the standard year for (century, cyear, janFeb).
func (century absCentury) year(cyear absCyear, janFeb absJanFeb) int {
// See “Computations on Times” comment above.
return int(uint64(century)*100-absoluteYears) + int(cyear) + int(janFeb)
}
// yday returns the standard 1-based yday for (ayday, janFeb, leap).
func (ayday absYday) yday(janFeb absJanFeb, leap absLeap) int {
// See “Computations on Times” comment above.
return int(ayday) + (1 + 31 + 28) + int(leap)&^int(janFeb) - 365*int(janFeb)
}
// date converts days into standard year, month, day.
func (days absDays) date() (year int, month Month, day int) {
century, cyear, ayday := days.split()
amonth, day := ayday.split()
janFeb := ayday.janFeb()
year = century.year(cyear, janFeb)
month = amonth.month(janFeb)
return
}
// yearYday converts days into the standard year and 1-based yday.
func (days absDays) yearYday() (year, yday int) {
century, cyear, ayday := days.split()
janFeb := ayday.janFeb()
year = century.year(cyear, janFeb)
yday = ayday.yday(janFeb, century.leap(cyear))
return
}
// absSec returns the time t as an absolute seconds, adjusted by the zone offset.
// It is called when computing a presentation property like Month or Hour.
// We'd rather call it abs, but there are linknames to abs that make that problematic.
// See timeAbs below.
func (t Time) absSec() absSeconds {
l := t.loc
// Avoid function calls when possible.
if l == nil || l == &localLoc {
l = l.get()
}
sec := t.unixSec()
if l != &utcLoc {
if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
sec += int64(l.cacheZone.offset)
} else {
_, offset, _, _, _ := l.lookup(sec)
sec += int64(offset)
}
}
return absSeconds(sec + (unixToInternal + internalToAbsolute))
}
// locabs is a combination of the Zone and abs methods,
// extracting both return values from a single zone lookup.
func (t Time) locabs() (name string, offset int, abs absSeconds) {
l := t.loc
if l == nil || l == &localLoc {
l = l.get()
}
// Avoid function call if we hit the local time cache.
sec := t.unixSec()
if l != &utcLoc {
if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd {
name = l.cacheZone.name
offset = l.cacheZone.offset
} else {
name, offset, _, _, _ = l.lookup(sec)
}
sec += int64(offset)
} else {
name = "UTC"
}
abs = absSeconds(sec + (unixToInternal + internalToAbsolute))
return
}
// Date returns the year, month, and day in which t occurs.
func (t Time) Date() (year int, month Month, day int) {
return t.absSec().days().date()
}
// Year returns the year in which t occurs.
func (t Time) Year() int {
century, cyear, ayday := t.absSec().days().split()
janFeb := ayday.janFeb()
return century.year(cyear, janFeb)
}
// Month returns the month of the year specified by t.
func (t Time) Month() Month {
_, _, ayday := t.absSec().days().split()
amonth, _ := ayday.split()
return amonth.month(ayday.janFeb())
}
// Day returns the day of the month specified by t.
func (t Time) Day() int {
_, _, ayday := t.absSec().days().split()
_, day := ayday.split()
return day
}
// Weekday returns the day of the week specified by t.
func (t Time) Weekday() Weekday {
return t.absSec().days().weekday()
}
// weekday returns the day of the week specified by days.
func (days absDays) weekday() Weekday {
// March 1 of the absolute year, like March 1 of 2000, was a Wednesday.
return Weekday((uint64(days) + uint64(Wednesday)) % 7)
}
// ISOWeek returns the ISO 8601 year and week number in which t occurs.
// Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to
// week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1
// of year n+1.
func (t Time) ISOWeek() (year, week int) {
// According to the rule that the first calendar week of a calendar year is
// the week including the first Thursday of that year, and that the last one is
// the week immediately preceding the first calendar week of the next calendar year.
// See https://www.iso.org/obp/ui#iso:std:iso:8601:-1:ed-1:v1:en:term:3.1.1.23 for details.
// weeks start with Monday
// Monday Tuesday Wednesday Thursday Friday Saturday Sunday
// 1 2 3 4 5 6 7
// +3 +2 +1 0 -1 -2 -3
// the offset to Thursday
days := t.absSec().days()
thu := days + absDays(Thursday-((days-1).weekday()+1))
year, yday := thu.yearYday()
return year, (yday-1)/7 + 1
}
// Clock returns the hour, minute, and second within the day specified by t.
func (t Time) Clock() (hour, min, sec int) {
return t.absSec().clock()
}
// clock returns the hour, minute, and second within the day specified by abs.
func (abs absSeconds) clock() (hour, min, sec int) {
sec = int(abs % secondsPerDay)
hour = sec / secondsPerHour
sec -= hour * secondsPerHour
min = sec / secondsPerMinute
sec -= min * secondsPerMinute
return
}
// Hour returns the hour within the day specified by t, in the range [0, 23].
func (t Time) Hour() int {
return int(t.absSec()%secondsPerDay) / secondsPerHour
}
// Minute returns the minute offset within the hour specified by t, in the range [0, 59].
func (t Time) Minute() int {
return int(t.absSec()%secondsPerHour) / secondsPerMinute
}
// Second returns the second offset within the minute specified by t, in the range [0, 59].
func (t Time) Second() int {
return int(t.absSec() % secondsPerMinute)
}
// Nanosecond returns the nanosecond offset within the second specified by t,
// in the range [0, 999999999].
func (t Time) Nanosecond() int {
return int(t.nsec())
}
// YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years,
// and [1,366] in leap years.
func (t Time) YearDay() int {
_, yday := t.absSec().days().yearYday()
return yday
}
// A Duration represents the elapsed time between two instants
// as an int64 nanosecond count. The representation limits the
// largest representable duration to approximately 290 years.
type Duration int64
const (
minDuration Duration = -1 << 63
maxDuration Duration = 1<<63 - 1
)
// Common durations. There is no definition for units of Day or larger
// to avoid confusion across daylight savings time zone transitions.
//
// To count the number of units in a [Duration], divide:
//
// second := time.Second
// fmt.Print(int64(second/time.Millisecond)) // prints 1000
//
// To convert an integer number of units to a Duration, multiply:
//
// seconds := 10
// fmt.Print(time.Duration(seconds)*time.Second) // prints 10s
const (
Nanosecond Duration = 1
Microsecond = 1000 * Nanosecond
Millisecond = 1000 * Microsecond
Second = 1000 * Millisecond
Minute = 60 * Second
Hour = 60 * Minute
)
// String returns a string representing the duration in the form "72h3m0.5s".
// Leading zero units are omitted. As a special case, durations less than one
// second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure
// that the leading digit is non-zero. The zero duration formats as 0s.
func (d Duration) String() string {
// This is inlinable to take advantage of "function outlining".
// Thus, the caller can decide whether a string must be heap allocated.
var arr [32]byte
n := d.format(&arr)
return string(arr[n:])
}
// format formats the representation of d into the end of buf and
// returns the offset of the first character.
func (d Duration) format(buf *[32]byte) int {
// Largest time is 2540400h10m10.000000000s
w := len(buf)
u := uint64(d)
neg := d < 0
if neg {
u = -u
}
if u < uint64(Second) {
// Special case: if duration is smaller than a second,
// use smaller units, like 1.2ms
var prec int
w--
buf[w] = 's'
w--
switch {
case u == 0:
buf[w] = '0'
return w
case u < uint64(Microsecond):
// print nanoseconds
prec = 0
buf[w] = 'n'
case u < uint64(Millisecond):
// print microseconds
prec = 3
// U+00B5 'µ' micro sign == 0xC2 0xB5
w-- // Need room for two bytes.
copy(buf[w:], "µ")
default:
// print milliseconds
prec = 6
buf[w] = 'm'
}
w, u = fmtFrac(buf[:w], u, prec)
w = fmtInt(buf[:w], u)
} else {
w--
buf[w] = 's'
w, u = fmtFrac(buf[:w], u, 9)
// u is now integer seconds
w = fmtInt(buf[:w], u%60)
u /= 60
// u is now integer minutes
if u > 0 {
w--
buf[w] = 'm'
w = fmtInt(buf[:w], u%60)
u /= 60
// u is now integer hours
// Stop at hours because days can be different lengths.
if u > 0 {
w--
buf[w] = 'h'
w = fmtInt(buf[:w], u)
}
}
}
if neg {
w--
buf[w] = '-'
}
return w
}
// fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the
// tail of buf, omitting trailing zeros. It omits the decimal
// point too when the fraction is 0. It returns the index where the
// output bytes begin and the value v/10**prec.
func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) {
// Omit trailing zeros up to and including decimal point.
w := len(buf)
print := false
for i := 0; i < prec; i++ {
digit := v % 10
print = print || digit != 0
if print {
w--
buf[w] = byte(digit) + '0'
}
v /= 10
}
if print {
w--
buf[w] = '.'
}
return w, v
}
// fmtInt formats v into the tail of buf.
// It returns the index where the output begins.
func fmtInt(buf []byte, v uint64) int {
w := len(buf)
if v == 0 {
w--
buf[w] = '0'
} else {
for v > 0 {
w--
buf[w] = byte(v%10) + '0'
v /= 10
}
}
return w
}
// Nanoseconds returns the duration as an integer nanosecond count.
func (d Duration) Nanoseconds() int64 { return int64(d) }
// Microseconds returns the duration as an integer microsecond count.
func (d Duration) Microseconds() int64 { return int64(d) / 1e3 }
// Milliseconds returns the duration as an integer millisecond count.
func (d Duration) Milliseconds() int64 { return int64(d) / 1e6 }
// These methods return float64 because the dominant
// use case is for printing a floating point number like 1.5s, and
// a truncation to integer would make them not useful in those cases.
// Splitting the integer and fraction ourselves guarantees that
// converting the returned float64 to an integer rounds the same
// way that a pure integer conversion would have, even in cases
// where, say, float64(d.Nanoseconds())/1e9 would have rounded
// differently.
// Seconds returns the duration as a floating point number of seconds.
func (d Duration) Seconds() float64 {
sec := d / Second
nsec := d % Second
return float64(sec) + float64(nsec)/1e9
}
// Minutes returns the duration as a floating point number of minutes.
func (d Duration) Minutes() float64 {
min := d / Minute
nsec := d % Minute
return float64(min) + float64(nsec)/(60*1e9)
}
// Hours returns the duration as a floating point number of hours.
func (d Duration) Hours() float64 {
hour := d / Hour
nsec := d % Hour
return float64(hour) + float64(nsec)/(60*60*1e9)
}
// Truncate returns the result of rounding d toward zero to a multiple of m.
// If m <= 0, Truncate returns d unchanged.
func (d Duration) Truncate(m Duration) Duration {
if m <= 0 {
return d
}
return d - d%m
}
// lessThanHalf reports whether x+x < y but avoids overflow,
// assuming x and y are both positive (Duration is signed).
func lessThanHalf(x, y Duration) bool {
return uint64(x)+uint64(x) < uint64(y)
}
// Round returns the result of rounding d to the nearest multiple of m.
// The rounding behavior for halfway values is to round away from zero.
// If the result exceeds the maximum (or minimum)
// value that can be stored in a [Duration],
// Round returns the maximum (or minimum) duration.
// If m <= 0, Round returns d unchanged.
func (d Duration) Round(m Duration) Duration {
if m <= 0 {
return d
}
r := d % m
if d < 0 {
r = -r
if lessThanHalf(r, m) {
return d + r
}
if d1 := d - m + r; d1 < d {
return d1
}
return minDuration // overflow
}
if lessThanHalf(r, m) {
return d - r
}
if d1 := d + m - r; d1 > d {
return d1
}
return maxDuration // overflow
}
// Abs returns the absolute value of d.
// As a special case, Duration([math.MinInt64]) is converted to Duration([math.MaxInt64]),
// reducing its magnitude by 1 nanosecond.
func (d Duration) Abs() Duration {
switch {
case d >= 0:
return d
case d == minDuration:
return maxDuration
default:
return -d
}
}
// Add returns the time t+d.
func (t Time) Add(d Duration) Time {
dsec := int64(d / 1e9)
nsec := t.nsec() + int32(d%1e9)
if nsec >= 1e9 {
dsec++
nsec -= 1e9
} else if nsec < 0 {
dsec--
nsec += 1e9
}
t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec
t.addSec(dsec)
if t.wall&hasMonotonic != 0 {
te := t.ext + int64(d)
if d < 0 && te > t.ext || d > 0 && te < t.ext {
// Monotonic clock reading now out of range; degrade to wall-only.
t.stripMono()
} else {
t.ext = te
}
}
return t
}
// Sub returns the duration t-u. If the result exceeds the maximum (or minimum)
// value that can be stored in a [Duration], the maximum (or minimum) duration
// will be returned.
// To compute t-d for a duration d, use t.Add(-d).
func (t Time) Sub(u Time) Duration {
if t.wall&u.wall&hasMonotonic != 0 {
return subMono(t.ext, u.ext)
}
d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec())
// Check for overflow or underflow.
switch {
case u.Add(d).Equal(t):
return d // d is correct
case t.Before(u):
return minDuration // t - u is negative out of range
default:
return maxDuration // t - u is positive out of range
}
}
func subMono(t, u int64) Duration {
d := Duration(t - u)
if d < 0 && t > u {
return maxDuration // t - u is positive out of range
}
if d > 0 && t < u {
return minDuration // t - u is negative out of range
}
return d
}
// Since returns the time elapsed since t.
// It is shorthand for time.Now().Sub(t).
func Since(t Time) Duration {
if t.wall&hasMonotonic != 0 {
// Common case optimization: if t has monotonic time, then Sub will use only it.
return subMono(runtimeNano()-startNano, t.ext)
}
return Now().Sub(t)
}
// Until returns the duration until t.
// It is shorthand for t.Sub(time.Now()).
func Until(t Time) Duration {
if t.wall&hasMonotonic != 0 {
// Common case optimization: if t has monotonic time, then Sub will use only it.
return subMono(t.ext, runtimeNano()-startNano)
}
return t.Sub(Now())
}
// AddDate returns the time corresponding to adding the
// given number of years, months, and days to t.
// For example, AddDate(-1, 2, 3) applied to January 1, 2011
// returns March 4, 2010.
//
// Note that dates are fundamentally coupled to timezones, and calendrical
// periods like days don't have fixed durations. AddDate uses the Location of
// the Time value to determine these durations. That means that the same
// AddDate arguments can produce a different shift in absolute time depending on
// the base Time value and its Location. For example, AddDate(0, 0, 1) applied
// to 12:00 on March 27 always returns 12:00 on March 28. At some locations and
// in some years this is a 24 hour shift. In others it's a 23 hour shift due to
// daylight savings time transitions.
//
// AddDate normalizes its result in the same way that Date does,
// so, for example, adding one month to October 31 yields
// December 1, the normalized form for November 31.
func (t Time) AddDate(years int, months int, days int) Time {
year, month, day := t.Date()
hour, min, sec := t.Clock()
return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location())
}
// daysBefore returns the number of days in a non-leap year before month m.
// daysBefore(December+1) returns 365.
func daysBefore(m Month) int {
adj := 0
if m >= March {
adj = -2
}
// With the -2 adjustment after February,
// we need to compute the running sum of:
// 0 31 30 31 30 31 30 31 31 30 31 30 31
// which is:
// 0 31 61 92 122 153 183 214 245 275 306 336 367
// This is almost exactly 367/12×(m-1) except for the
// occasonal off-by-one suggesting there may be an
// integer approximation of the form (a×m + b)/c.
// A brute force search over small a, b, c finds that
// (214×m - 211) / 7 computes the function perfectly.
return (214*int(m)-211)/7 + adj
}
func daysIn(m Month, year int) int {
if m == February {
if isLeap(year) {
return 29
}
return 28
}
// With the special case of February eliminated, the pattern is
// 31 30 31 30 31 30 31 31 30 31 30 31
// Adding m&1 produces the basic alternation;
// adding (m>>3)&1 inverts the alternation starting in August.
return 30 + int((m+m>>3)&1)
}
// Provided by package runtime.
//
// now returns the current real time, and is superseded by runtimeNow which returns
// the fake synctest clock when appropriate.
//
// now should be an internal detail,
// but widely used packages access it using linkname.
// Notable members of the hall of shame include:
// - gitee.com/quant1x/gox
// - github.com/phuslu/log
// - github.com/sethvargo/go-limiter
// - github.com/ulule/limiter/v3
//
// Do not remove or change the type signature.
// See go.dev/issue/67401.
func now() (sec int64, nsec int32, mono int64)
// runtimeNow returns the current time.
// When called within a synctest.Run bubble, it returns the group's fake clock.
//
//go:linkname runtimeNow
func runtimeNow() (sec int64, nsec int32, mono int64)
// runtimeNano returns the current value of the runtime clock in nanoseconds.
// When called within a synctest.Run bubble, it returns the group's fake clock.
//
//go:linkname runtimeNano
func runtimeNano() int64
// Monotonic times are reported as offsets from startNano.
// We initialize startNano to runtimeNano() - 1 so that on systems where
// monotonic time resolution is fairly low (e.g. Windows 2008
// which appears to have a default resolution of 15ms),
// we avoid ever reporting a monotonic time of 0.
// (Callers may want to use 0 as "time not set".)
var startNano int64 = runtimeNano() - 1
// x/tools uses a linkname of time.Now in its tests. No harm done.
//go:linkname Now
// Now returns the current local time.
func Now() Time {
sec, nsec, mono := runtimeNow()
if mono == 0 {
return Time{uint64(nsec), sec + unixToInternal, Local}
}
mono -= startNano
sec += unixToInternal - minWall
if uint64(sec)>>33 != 0 {
// Seconds field overflowed the 33 bits available when
// storing a monotonic time. This will be true after
// March 16, 2157.
return Time{uint64(nsec), sec + minWall, Local}
}
return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono, Local}
}
func unixTime(sec int64, nsec int32) Time {
return Time{uint64(nsec), sec + unixToInternal, Local}
}
// UTC returns t with the location set to UTC.
func (t Time) UTC() Time {
t.setLoc(&utcLoc)
return t
}
// Local returns t with the location set to local time.
func (t Time) Local() Time {
t.setLoc(Local)
return t
}
// In returns a copy of t representing the same time instant, but
// with the copy's location information set to loc for display
// purposes.
//
// In panics if loc is nil.
func (t Time) In(loc *Location) Time {
if loc == nil {
panic("time: missing Location in call to Time.In")
}
t.setLoc(loc)
return t
}
// Location returns the time zone information associated with t.
func (t Time) Location() *Location {
l := t.loc
if l == nil {
l = UTC
}
return l
}
// Zone computes the time zone in effect at time t, returning the abbreviated
// name of the zone (such as "CET") and its offset in seconds east of UTC.
func (t Time) Zone() (name string, offset int) {
name, offset, _, _, _ = t.loc.lookup(t.unixSec())
return
}
// ZoneBounds returns the bounds of the time zone in effect at time t.
// The zone begins at start and the next zone begins at end.
// If the zone begins at the beginning of time, start will be returned as a zero Time.
// If the zone goes on forever, end will be returned as a zero Time.
// The Location of the returned times will be the same as t.
func (t Time) ZoneBounds() (start, end Time) {
_, _, startSec, endSec, _ := t.loc.lookup(t.unixSec())
if startSec != alpha {
start = unixTime(startSec, 0)
start.setLoc(t.loc)
}
if endSec != omega {
end = unixTime(endSec, 0)
end.setLoc(t.loc)
}
return
}
// Unix returns t as a Unix time, the number of seconds elapsed
// since January 1, 1970 UTC. The result does not depend on the
// location associated with t.
// Unix-like operating systems often record time as a 32-bit
// count of seconds, but since the method here returns a 64-bit
// value it is valid for billions of years into the past or future.
func (t Time) Unix() int64 {
return t.unixSec()
}
// UnixMilli returns t as a Unix time, the number of milliseconds elapsed since
// January 1, 1970 UTC. The result is undefined if the Unix time in
// milliseconds cannot be represented by an int64 (a date more than 292 million
// years before or after 1970). The result does not depend on the
// location associated with t.
func (t Time) UnixMilli() int64 {
return t.unixSec()*1e3 + int64(t.nsec())/1e6
}
// UnixMicro returns t as a Unix time, the number of microseconds elapsed since
// January 1, 1970 UTC. The result is undefined if the Unix time in
// microseconds cannot be represented by an int64 (a date before year -290307 or
// after year 294246). The result does not depend on the location associated
// with t.
func (t Time) UnixMicro() int64 {
return t.unixSec()*1e6 + int64(t.nsec())/1e3
}
// UnixNano returns t as a Unix time, the number of nanoseconds elapsed
// since January 1, 1970 UTC. The result is undefined if the Unix time
// in nanoseconds cannot be represented by an int64 (a date before the year
// 1678 or after 2262). Note that this means the result of calling UnixNano
// on the zero Time is undefined. The result does not depend on the
// location associated with t.
func (t Time) UnixNano() int64 {
return (t.unixSec())*1e9 + int64(t.nsec())
}
const (
timeBinaryVersionV1 byte = iota + 1 // For general situation
timeBinaryVersionV2 // For LMT only
)
// AppendBinary implements the [encoding.BinaryAppender] interface.
func (t Time) AppendBinary(b []byte) ([]byte, error) {
var offsetMin int16 // minutes east of UTC. -1 is UTC.
var offsetSec int8
version := timeBinaryVersionV1
if t.Location() == UTC {
offsetMin = -1
} else {
_, offset := t.Zone()
if offset%60 != 0 {
version = timeBinaryVersionV2
offsetSec = int8(offset % 60)
}
offset /= 60
if offset < -32768 || offset == -1 || offset > 32767 {
return b, errors.New("Time.MarshalBinary: unexpected zone offset")
}
offsetMin = int16(offset)
}
sec := t.sec()
nsec := t.nsec()
b = append(b,
version, // byte 0 : version
byte(sec>>56), // bytes 1-8: seconds
byte(sec>>48),
byte(sec>>40),
byte(sec>>32),
byte(sec>>24),
byte(sec>>16),
byte(sec>>8),
byte(sec),
byte(nsec>>24), // bytes 9-12: nanoseconds
byte(nsec>>16),
byte(nsec>>8),
byte(nsec),
byte(offsetMin>>8), // bytes 13-14: zone offset in minutes
byte(offsetMin),
)
if version == timeBinaryVersionV2 {
b = append(b, byte(offsetSec))
}
return b, nil
}
// MarshalBinary implements the [encoding.BinaryMarshaler] interface.
func (t Time) MarshalBinary() ([]byte, error) {
b, err := t.AppendBinary(make([]byte, 0, 16))
if err != nil {
return nil, err
}
return b, nil
}
// UnmarshalBinary implements the [encoding.BinaryUnmarshaler] interface.
func (t *Time) UnmarshalBinary(data []byte) error {
buf := data
if len(buf) == 0 {
return errors.New("Time.UnmarshalBinary: no data")
}
version := buf[0]
if version != timeBinaryVersionV1 && version != timeBinaryVersionV2 {
return errors.New("Time.UnmarshalBinary: unsupported version")
}
wantLen := /*version*/ 1 + /*sec*/ 8 + /*nsec*/ 4 + /*zone offset*/ 2
if version == timeBinaryVersionV2 {
wantLen++
}
if len(buf) != wantLen {
return errors.New("Time.UnmarshalBinary: invalid length")
}
buf = buf[1:]
sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 |
int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56
buf = buf[8:]
nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24
buf = buf[4:]
offset := int(int16(buf[1])|int16(buf[0])<<8) * 60
if version == timeBinaryVersionV2 {
offset += int(buf[2])
}
*t = Time{}
t.wall = uint64(nsec)
t.ext = sec
if offset == -1*60 {
t.setLoc(&utcLoc)
} else if _, localoff, _, _, _ := Local.lookup(t.unixSec()); offset == localoff {
t.setLoc(Local)
} else {
t.setLoc(FixedZone("", offset))
}
return nil
}
// TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2.
// The same semantics will be provided by the generic MarshalBinary, MarshalText,
// UnmarshalBinary, UnmarshalText.
// GobEncode implements the gob.GobEncoder interface.
func (t Time) GobEncode() ([]byte, error) {
return t.MarshalBinary()
}
// GobDecode implements the gob.GobDecoder interface.
func (t *Time) GobDecode(data []byte) error {
return t.UnmarshalBinary(data)
}
// MarshalJSON implements the [encoding/json.Marshaler] interface.
// The time is a quoted string in the RFC 3339 format with sub-second precision.
// If the timestamp cannot be represented as valid RFC 3339
// (e.g., the year is out of range), then an error is reported.
func (t Time) MarshalJSON() ([]byte, error) {
b := make([]byte, 0, len(RFC3339Nano)+len(`""`))
b = append(b, '"')
b, err := t.appendStrictRFC3339(b)
b = append(b, '"')
if err != nil {
return nil, errors.New("Time.MarshalJSON: " + err.Error())
}
return b, nil
}
// UnmarshalJSON implements the [encoding/json.Unmarshaler] interface.
// The time must be a quoted string in the RFC 3339 format.
func (t *Time) UnmarshalJSON(data []byte) error {
if string(data) == "null" {
return nil
}
// TODO(https://go.dev/issue/47353): Properly unescape a JSON string.
if len(data) < 2 || data[0] != '"' || data[len(data)-1] != '"' {
return errors.New("Time.UnmarshalJSON: input is not a JSON string")
}
data = data[len(`"`) : len(data)-len(`"`)]
var err error
*t, err = parseStrictRFC3339(data)
return err
}
func (t Time) appendTo(b []byte, errPrefix string) ([]byte, error) {
b, err := t.appendStrictRFC3339(b)
if err != nil {
return nil, errors.New(errPrefix + err.Error())
}
return b, nil
}
// AppendText implements the [encoding.TextAppender] interface.
// The time is formatted in RFC 3339 format with sub-second precision.
// If the timestamp cannot be represented as valid RFC 3339
// (e.g., the year is out of range), then an error is returned.
func (t Time) AppendText(b []byte) ([]byte, error) {
return t.appendTo(b, "Time.AppendText: ")
}
// MarshalText implements the [encoding.TextMarshaler] interface. The output
// matches that of calling the [Time.AppendText] method.
//
// See [Time.AppendText] for more information.
func (t Time) MarshalText() ([]byte, error) {
return t.appendTo(make([]byte, 0, len(RFC3339Nano)), "Time.MarshalText: ")
}
// UnmarshalText implements the [encoding.TextUnmarshaler] interface.
// The time must be in the RFC 3339 format.
func (t *Time) UnmarshalText(data []byte) error {
var err error
*t, err = parseStrictRFC3339(data)
return err
}
// Unix returns the local Time corresponding to the given Unix time,
// sec seconds and nsec nanoseconds since January 1, 1970 UTC.
// It is valid to pass nsec outside the range [0, 999999999].
// Not all sec values have a corresponding time value. One such
// value is 1<<63-1 (the largest int64 value).
func Unix(sec int64, nsec int64) Time {
if nsec < 0 || nsec >= 1e9 {
n := nsec / 1e9
sec += n
nsec -= n * 1e9
if nsec < 0 {
nsec += 1e9
sec--
}
}
return unixTime(sec, int32(nsec))
}
// UnixMilli returns the local Time corresponding to the given Unix time,
// msec milliseconds since January 1, 1970 UTC.
func UnixMilli(msec int64) Time {
return Unix(msec/1e3, (msec%1e3)*1e6)
}
// UnixMicro returns the local Time corresponding to the given Unix time,
// usec microseconds since January 1, 1970 UTC.
func UnixMicro(usec int64) Time {
return Unix(usec/1e6, (usec%1e6)*1e3)
}
// IsDST reports whether the time in the configured location is in Daylight Savings Time.
func (t Time) IsDST() bool {
_, _, _, _, isDST := t.loc.lookup(t.Unix())
return isDST
}
func isLeap(year int) bool {
// year%4 == 0 && (year%100 != 0 || year%400 == 0)
// Bottom 2 bits must be clear.
// For multiples of 25, bottom 4 bits must be clear.
// Thanks to Cassio Neri for this trick.
mask := 0xf
if year%25 != 0 {
mask = 3
}
return year&mask == 0
}
// norm returns nhi, nlo such that
//
// hi * base + lo == nhi * base + nlo
// 0 <= nlo < base
func norm(hi, lo, base int) (nhi, nlo int) {
if lo < 0 {
n := (-lo-1)/base + 1
hi -= n
lo += n * base
}
if lo >= base {
n := lo / base
hi += n
lo -= n * base
}
return hi, lo
}
// Date returns the Time corresponding to
//
// yyyy-mm-dd hh:mm:ss + nsec nanoseconds
//
// in the appropriate zone for that time in the given location.
//
// The month, day, hour, min, sec, and nsec values may be outside
// their usual ranges and will be normalized during the conversion.
// For example, October 32 converts to November 1.
//
// A daylight savings time transition skips or repeats times.
// For example, in the United States, March 13, 2011 2:15am never occurred,
// while November 6, 2011 1:15am occurred twice. In such cases, the
// choice of time zone, and therefore the time, is not well-defined.
// Date returns a time that is correct in one of the two zones involved
// in the transition, but it does not guarantee which.
//
// Date panics if loc is nil.
func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time {
if loc == nil {
panic("time: missing Location in call to Date")
}
// Normalize month, overflowing into year.
m := int(month) - 1
year, m = norm(year, m, 12)
month = Month(m) + 1
// Normalize nsec, sec, min, hour, overflowing into day.
sec, nsec = norm(sec, nsec, 1e9)
min, sec = norm(min, sec, 60)
hour, min = norm(hour, min, 60)
day, hour = norm(day, hour, 24)
// Convert to absolute time and then Unix time.
unix := int64(dateToAbsDays(int64(year), month, day))*secondsPerDay +
int64(hour*secondsPerHour+min*secondsPerMinute+sec) +
absoluteToUnix
// Look for zone offset for expected time, so we can adjust to UTC.
// The lookup function expects UTC, so first we pass unix in the
// hope that it will not be too close to a zone transition,
// and then adjust if it is.
_, offset, start, end, _ := loc.lookup(unix)
if offset != 0 {
utc := unix - int64(offset)
// If utc is valid for the time zone we found, then we have the right offset.
// If not, we get the correct offset by looking up utc in the location.
if utc < start || utc >= end {
_, offset, _, _, _ = loc.lookup(utc)
}
unix -= int64(offset)
}
t := unixTime(unix, int32(nsec))
t.setLoc(loc)
return t
}
// Truncate returns the result of rounding t down to a multiple of d (since the zero time).
// If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged.
//
// Truncate operates on the time as an absolute duration since the
// zero time; it does not operate on the presentation form of the
// time. Thus, Truncate(Hour) may return a time with a non-zero
// minute, depending on the time's Location.
func (t Time) Truncate(d Duration) Time {
t.stripMono()
if d <= 0 {
return t
}
_, r := div(t, d)
return t.Add(-r)
}
// Round returns the result of rounding t to the nearest multiple of d (since the zero time).
// The rounding behavior for halfway values is to round up.
// If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged.
//
// Round operates on the time as an absolute duration since the
// zero time; it does not operate on the presentation form of the
// time. Thus, Round(Hour) may return a time with a non-zero
// minute, depending on the time's Location.
func (t Time) Round(d Duration) Time {
t.stripMono()
if d <= 0 {
return t
}
_, r := div(t, d)
if lessThanHalf(r, d) {
return t.Add(-r)
}
return t.Add(d - r)
}
// div divides t by d and returns the quotient parity and remainder.
// We don't use the quotient parity anymore (round half up instead of round to even)
// but it's still here in case we change our minds.
func div(t Time, d Duration) (qmod2 int, r Duration) {
neg := false
nsec := t.nsec()
sec := t.sec()
if sec < 0 {
// Operate on absolute value.
neg = true
sec = -sec
nsec = -nsec
if nsec < 0 {
nsec += 1e9
sec-- // sec >= 1 before the -- so safe
}
}
switch {
// Special case: 2d divides 1 second.
case d < Second && Second%(d+d) == 0:
qmod2 = int(nsec/int32(d)) & 1
r = Duration(nsec % int32(d))
// Special case: d is a multiple of 1 second.
case d%Second == 0:
d1 := int64(d / Second)
qmod2 = int(sec/d1) & 1
r = Duration(sec%d1)*Second + Duration(nsec)
// General case.
// This could be faster if more cleverness were applied,
// but it's really only here to avoid special case restrictions in the API.
// No one will care about these cases.
default:
// Compute nanoseconds as 128-bit number.
sec := uint64(sec)
tmp := (sec >> 32) * 1e9
u1 := tmp >> 32
u0 := tmp << 32
tmp = (sec & 0xFFFFFFFF) * 1e9
u0x, u0 := u0, u0+tmp
if u0 < u0x {
u1++
}
u0x, u0 = u0, u0+uint64(nsec)
if u0 < u0x {
u1++
}
// Compute remainder by subtracting r<<k for decreasing k.
// Quotient parity is whether we subtract on last round.
d1 := uint64(d)
for d1>>63 != 1 {
d1 <<= 1
}
d0 := uint64(0)
for {
qmod2 = 0
if u1 > d1 || u1 == d1 && u0 >= d0 {
// subtract
qmod2 = 1
u0x, u0 = u0, u0-d0
if u0 > u0x {
u1--
}
u1 -= d1
}
if d1 == 0 && d0 == uint64(d) {
break
}
d0 >>= 1
d0 |= (d1 & 1) << 63
d1 >>= 1
}
r = Duration(u0)
}
if neg && r != 0 {
// If input was negative and not an exact multiple of d, we computed q, r such that
// q*d + r = -t
// But the right answers are given by -(q-1), d-r:
// q*d + r = -t
// -q*d - r = t
// -(q-1)*d + (d - r) = t
qmod2 ^= 1
r = d - r
}
return
}
// Regrettable Linkname Compatibility
//
// timeAbs, absDate, and absClock mimic old internal details, no longer used.
// Widely used packages linknamed these to get “faster” time routines.
// Notable members of the hall of shame include:
// - gitee.com/quant1x/gox
// - github.com/phuslu/log
//
// phuslu hard-coded 'Unix time + 9223372028715321600' [sic]
// as the input to absDate and absClock, using the old Jan 1-based
// absolute times.
// quant1x linknamed the time.Time.abs method and passed the
// result of that method to absDate and absClock.
//
// Keeping both of these working forces us to provide these three
// routines here, operating on the old Jan 1-based epoch instead
// of the new March 1-based epoch. And the fact that time.Time.abs
// was linknamed means that we have to call the current abs method
// something different (time.Time.absSec, defined above) to make it
// possible to provide this simulation of the old routines here.
//
// None of this code is linked into the binary if not referenced by
// these linkname-happy packages. In particular, despite its name,
// time.Time.abs does not appear in the time.Time method table.
//
// Do not remove these routines or their linknames, or change the
// type signature or meaning of arguments.
//go:linkname legacyTimeTimeAbs time.Time.abs
func legacyTimeTimeAbs(t Time) uint64 {
return uint64(t.absSec() - marchThruDecember*secondsPerDay)
}
//go:linkname legacyAbsClock time.absClock
func legacyAbsClock(abs uint64) (hour, min, sec int) {
return absSeconds(abs + marchThruDecember*secondsPerDay).clock()
}
//go:linkname legacyAbsDate time.absDate
func legacyAbsDate(abs uint64, full bool) (year int, month Month, day int, yday int) {
d := absSeconds(abs + marchThruDecember*secondsPerDay).days()
year, month, day = d.date()
_, yday = d.yearYday()
yday-- // yearYday is 1-based, old API was 0-based
return
}