blob: 8978b377c767265979e1020c028d41c700433d12 [file] [log] [blame] [edit]
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
//go:build goexperiment.swissmap
package reflect
import (
"internal/abi"
"internal/goarch"
"unsafe"
)
// mapType represents a map type.
type mapType struct {
abi.SwissMapType
}
func (t *rtype) Key() Type {
if t.Kind() != Map {
panic("reflect: Key of non-map type " + t.String())
}
tt := (*mapType)(unsafe.Pointer(t))
return toType(tt.Key)
}
// MapOf returns the map type with the given key and element types.
// For example, if k represents int and e represents string,
// MapOf(k, e) represents map[int]string.
//
// If the key type is not a valid map key type (that is, if it does
// not implement Go's == operator), MapOf panics.
func MapOf(key, elem Type) Type {
ktyp := key.common()
etyp := elem.common()
if ktyp.Equal == nil {
panic("reflect.MapOf: invalid key type " + stringFor(ktyp))
}
// Look in cache.
ckey := cacheKey{Map, ktyp, etyp, 0}
if mt, ok := lookupCache.Load(ckey); ok {
return mt.(Type)
}
// Look in known types.
s := "map[" + stringFor(ktyp) + "]" + stringFor(etyp)
for _, tt := range typesByString(s) {
mt := (*mapType)(unsafe.Pointer(tt))
if mt.Key == ktyp && mt.Elem == etyp {
ti, _ := lookupCache.LoadOrStore(ckey, toRType(tt))
return ti.(Type)
}
}
// Make a map type.
// Note: flag values must match those used in the TMAP case
// in ../cmd/compile/internal/reflectdata/reflect.go:writeType.
var imap any = (map[unsafe.Pointer]unsafe.Pointer)(nil)
mt := **(**mapType)(unsafe.Pointer(&imap))
mt.Str = resolveReflectName(newName(s, "", false, false))
mt.TFlag = 0
mt.Hash = fnv1(etyp.Hash, 'm', byte(ktyp.Hash>>24), byte(ktyp.Hash>>16), byte(ktyp.Hash>>8), byte(ktyp.Hash))
mt.Key = ktyp
mt.Elem = etyp
mt.Bucket = bucketOf(ktyp, etyp)
mt.Hasher = func(p unsafe.Pointer, seed uintptr) uintptr {
return typehash(ktyp, p, seed)
}
mt.Flags = 0
if ktyp.Size_ > abi.SwissMapMaxKeyBytes {
mt.KeySize = uint8(goarch.PtrSize)
mt.Flags |= 1 // indirect key
} else {
mt.KeySize = uint8(ktyp.Size_)
}
if etyp.Size_ > abi.SwissMapMaxElemBytes {
mt.ValueSize = uint8(goarch.PtrSize)
mt.Flags |= 2 // indirect value
} else {
mt.ValueSize = uint8(etyp.Size_)
}
mt.BucketSize = uint16(mt.Bucket.Size_)
if isReflexive(ktyp) {
mt.Flags |= 4
}
if needKeyUpdate(ktyp) {
mt.Flags |= 8
}
if hashMightPanic(ktyp) {
mt.Flags |= 16
}
mt.PtrToThis = 0
ti, _ := lookupCache.LoadOrStore(ckey, toRType(&mt.Type))
return ti.(Type)
}
func bucketOf(ktyp, etyp *abi.Type) *abi.Type {
if ktyp.Size_ > abi.SwissMapMaxKeyBytes {
ktyp = ptrTo(ktyp)
}
if etyp.Size_ > abi.SwissMapMaxElemBytes {
etyp = ptrTo(etyp)
}
// Prepare GC data if any.
// A bucket is at most bucketSize*(1+maxKeySize+maxValSize)+ptrSize bytes,
// or 2064 bytes, or 258 pointer-size words, or 33 bytes of pointer bitmap.
// Note that since the key and value are known to be <= 128 bytes,
// they're guaranteed to have bitmaps instead of GC programs.
var gcdata *byte
var ptrdata uintptr
size := abi.SwissMapBucketCount*(1+ktyp.Size_+etyp.Size_) + goarch.PtrSize
if size&uintptr(ktyp.Align_-1) != 0 || size&uintptr(etyp.Align_-1) != 0 {
panic("reflect: bad size computation in MapOf")
}
if ktyp.Pointers() || etyp.Pointers() {
nptr := (abi.SwissMapBucketCount*(1+ktyp.Size_+etyp.Size_) + goarch.PtrSize) / goarch.PtrSize
n := (nptr + 7) / 8
// Runtime needs pointer masks to be a multiple of uintptr in size.
n = (n + goarch.PtrSize - 1) &^ (goarch.PtrSize - 1)
mask := make([]byte, n)
base := uintptr(abi.SwissMapBucketCount / goarch.PtrSize)
if ktyp.Pointers() {
emitGCMask(mask, base, ktyp, abi.SwissMapBucketCount)
}
base += abi.SwissMapBucketCount * ktyp.Size_ / goarch.PtrSize
if etyp.Pointers() {
emitGCMask(mask, base, etyp, abi.SwissMapBucketCount)
}
base += abi.SwissMapBucketCount * etyp.Size_ / goarch.PtrSize
word := base
mask[word/8] |= 1 << (word % 8)
gcdata = &mask[0]
ptrdata = (word + 1) * goarch.PtrSize
// overflow word must be last
if ptrdata != size {
panic("reflect: bad layout computation in MapOf")
}
}
b := &abi.Type{
Align_: goarch.PtrSize,
Size_: size,
Kind_: abi.Struct,
PtrBytes: ptrdata,
GCData: gcdata,
}
s := "bucket(" + stringFor(ktyp) + "," + stringFor(etyp) + ")"
b.Str = resolveReflectName(newName(s, "", false, false))
return b
}
var stringType = rtypeOf("")
// MapIndex returns the value associated with key in the map v.
// It panics if v's Kind is not [Map].
// It returns the zero Value if key is not found in the map or if v represents a nil map.
// As in Go, the key's value must be assignable to the map's key type.
func (v Value) MapIndex(key Value) Value {
v.mustBe(Map)
tt := (*mapType)(unsafe.Pointer(v.typ()))
// Do not require key to be exported, so that DeepEqual
// and other programs can use all the keys returned by
// MapKeys as arguments to MapIndex. If either the map
// or the key is unexported, though, the result will be
// considered unexported. This is consistent with the
// behavior for structs, which allow read but not write
// of unexported fields.
var e unsafe.Pointer
// TODO(#54766): temporarily disable specialized variants.
if false && (tt.Key == stringType || key.kind() == String) && tt.Key == key.typ() && tt.Elem.Size() <= abi.SwissMapMaxElemBytes {
k := *(*string)(key.ptr)
e = mapaccess_faststr(v.typ(), v.pointer(), k)
} else {
key = key.assignTo("reflect.Value.MapIndex", tt.Key, nil)
var k unsafe.Pointer
if key.flag&flagIndir != 0 {
k = key.ptr
} else {
k = unsafe.Pointer(&key.ptr)
}
e = mapaccess(v.typ(), v.pointer(), k)
}
if e == nil {
return Value{}
}
typ := tt.Elem
fl := (v.flag | key.flag).ro()
fl |= flag(typ.Kind())
return copyVal(typ, fl, e)
}
// MapKeys returns a slice containing all the keys present in the map,
// in unspecified order.
// It panics if v's Kind is not [Map].
// It returns an empty slice if v represents a nil map.
func (v Value) MapKeys() []Value {
v.mustBe(Map)
tt := (*mapType)(unsafe.Pointer(v.typ()))
keyType := tt.Key
fl := v.flag.ro() | flag(keyType.Kind())
m := v.pointer()
mlen := int(0)
if m != nil {
mlen = maplen(m)
}
var it hiter
mapiterinit(v.typ(), m, &it)
a := make([]Value, mlen)
var i int
for i = 0; i < len(a); i++ {
key := it.key
if key == nil {
// Someone deleted an entry from the map since we
// called maplen above. It's a data race, but nothing
// we can do about it.
break
}
a[i] = copyVal(keyType, fl, key)
mapiternext(&it)
}
return a[:i]
}
// hiter's structure matches runtime.hiter's structure.
// Having a clone here allows us to embed a map iterator
// inside type MapIter so that MapIters can be re-used
// without doing any allocations.
type hiter struct {
key unsafe.Pointer
elem unsafe.Pointer
t unsafe.Pointer
h unsafe.Pointer
buckets unsafe.Pointer
bptr unsafe.Pointer
overflow *[]unsafe.Pointer
oldoverflow *[]unsafe.Pointer
startBucket uintptr
offset uint8
wrapped bool
B uint8
i uint8
bucket uintptr
checkBucket uintptr
}
func (h *hiter) initialized() bool {
return h.t != nil
}
// A MapIter is an iterator for ranging over a map.
// See [Value.MapRange].
type MapIter struct {
m Value
hiter hiter
}
// Key returns the key of iter's current map entry.
func (iter *MapIter) Key() Value {
if !iter.hiter.initialized() {
panic("MapIter.Key called before Next")
}
iterkey := iter.hiter.key
if iterkey == nil {
panic("MapIter.Key called on exhausted iterator")
}
t := (*mapType)(unsafe.Pointer(iter.m.typ()))
ktype := t.Key
return copyVal(ktype, iter.m.flag.ro()|flag(ktype.Kind()), iterkey)
}
// SetIterKey assigns to v the key of iter's current map entry.
// It is equivalent to v.Set(iter.Key()), but it avoids allocating a new Value.
// As in Go, the key must be assignable to v's type and
// must not be derived from an unexported field.
func (v Value) SetIterKey(iter *MapIter) {
if !iter.hiter.initialized() {
panic("reflect: Value.SetIterKey called before Next")
}
iterkey := iter.hiter.key
if iterkey == nil {
panic("reflect: Value.SetIterKey called on exhausted iterator")
}
v.mustBeAssignable()
var target unsafe.Pointer
if v.kind() == Interface {
target = v.ptr
}
t := (*mapType)(unsafe.Pointer(iter.m.typ()))
ktype := t.Key
iter.m.mustBeExported() // do not let unexported m leak
key := Value{ktype, iterkey, iter.m.flag | flag(ktype.Kind()) | flagIndir}
key = key.assignTo("reflect.MapIter.SetKey", v.typ(), target)
typedmemmove(v.typ(), v.ptr, key.ptr)
}
// Value returns the value of iter's current map entry.
func (iter *MapIter) Value() Value {
if !iter.hiter.initialized() {
panic("MapIter.Value called before Next")
}
iterelem := iter.hiter.elem
if iterelem == nil {
panic("MapIter.Value called on exhausted iterator")
}
t := (*mapType)(unsafe.Pointer(iter.m.typ()))
vtype := t.Elem
return copyVal(vtype, iter.m.flag.ro()|flag(vtype.Kind()), iterelem)
}
// SetIterValue assigns to v the value of iter's current map entry.
// It is equivalent to v.Set(iter.Value()), but it avoids allocating a new Value.
// As in Go, the value must be assignable to v's type and
// must not be derived from an unexported field.
func (v Value) SetIterValue(iter *MapIter) {
if !iter.hiter.initialized() {
panic("reflect: Value.SetIterValue called before Next")
}
iterelem := iter.hiter.elem
if iterelem == nil {
panic("reflect: Value.SetIterValue called on exhausted iterator")
}
v.mustBeAssignable()
var target unsafe.Pointer
if v.kind() == Interface {
target = v.ptr
}
t := (*mapType)(unsafe.Pointer(iter.m.typ()))
vtype := t.Elem
iter.m.mustBeExported() // do not let unexported m leak
elem := Value{vtype, iterelem, iter.m.flag | flag(vtype.Kind()) | flagIndir}
elem = elem.assignTo("reflect.MapIter.SetValue", v.typ(), target)
typedmemmove(v.typ(), v.ptr, elem.ptr)
}
// Next advances the map iterator and reports whether there is another
// entry. It returns false when iter is exhausted; subsequent
// calls to [MapIter.Key], [MapIter.Value], or [MapIter.Next] will panic.
func (iter *MapIter) Next() bool {
if !iter.m.IsValid() {
panic("MapIter.Next called on an iterator that does not have an associated map Value")
}
if !iter.hiter.initialized() {
mapiterinit(iter.m.typ(), iter.m.pointer(), &iter.hiter)
} else {
if iter.hiter.key == nil {
panic("MapIter.Next called on exhausted iterator")
}
mapiternext(&iter.hiter)
}
return iter.hiter.key != nil
}
// Reset modifies iter to iterate over v.
// It panics if v's Kind is not [Map] and v is not the zero Value.
// Reset(Value{}) causes iter to not to refer to any map,
// which may allow the previously iterated-over map to be garbage collected.
func (iter *MapIter) Reset(v Value) {
if v.IsValid() {
v.mustBe(Map)
}
iter.m = v
iter.hiter = hiter{}
}
// MapRange returns a range iterator for a map.
// It panics if v's Kind is not [Map].
//
// Call [MapIter.Next] to advance the iterator, and [MapIter.Key]/[MapIter.Value] to access each entry.
// [MapIter.Next] returns false when the iterator is exhausted.
// MapRange follows the same iteration semantics as a range statement.
//
// Example:
//
// iter := reflect.ValueOf(m).MapRange()
// for iter.Next() {
// k := iter.Key()
// v := iter.Value()
// ...
// }
func (v Value) MapRange() *MapIter {
// This is inlinable to take advantage of "function outlining".
// The allocation of MapIter can be stack allocated if the caller
// does not allow it to escape.
// See https://blog.filippo.io/efficient-go-apis-with-the-inliner/
if v.kind() != Map {
v.panicNotMap()
}
return &MapIter{m: v}
}
// SetMapIndex sets the element associated with key in the map v to elem.
// It panics if v's Kind is not [Map].
// If elem is the zero Value, SetMapIndex deletes the key from the map.
// Otherwise if v holds a nil map, SetMapIndex will panic.
// As in Go, key's elem must be assignable to the map's key type,
// and elem's value must be assignable to the map's elem type.
func (v Value) SetMapIndex(key, elem Value) {
v.mustBe(Map)
v.mustBeExported()
key.mustBeExported()
tt := (*mapType)(unsafe.Pointer(v.typ()))
// TODO(#54766): temporarily disable specialized variants.
if false && (tt.Key == stringType || key.kind() == String) && tt.Key == key.typ() && tt.Elem.Size() <= abi.SwissMapMaxElemBytes {
k := *(*string)(key.ptr)
if elem.typ() == nil {
mapdelete_faststr(v.typ(), v.pointer(), k)
return
}
elem.mustBeExported()
elem = elem.assignTo("reflect.Value.SetMapIndex", tt.Elem, nil)
var e unsafe.Pointer
if elem.flag&flagIndir != 0 {
e = elem.ptr
} else {
e = unsafe.Pointer(&elem.ptr)
}
mapassign_faststr(v.typ(), v.pointer(), k, e)
return
}
key = key.assignTo("reflect.Value.SetMapIndex", tt.Key, nil)
var k unsafe.Pointer
if key.flag&flagIndir != 0 {
k = key.ptr
} else {
k = unsafe.Pointer(&key.ptr)
}
if elem.typ() == nil {
mapdelete(v.typ(), v.pointer(), k)
return
}
elem.mustBeExported()
elem = elem.assignTo("reflect.Value.SetMapIndex", tt.Elem, nil)
var e unsafe.Pointer
if elem.flag&flagIndir != 0 {
e = elem.ptr
} else {
e = unsafe.Pointer(&elem.ptr)
}
mapassign(v.typ(), v.pointer(), k, e)
}
// Force slow panicking path not inlined, so it won't add to the
// inlining budget of the caller.
// TODO: undo when the inliner is no longer bottom-up only.
//
//go:noinline
func (f flag) panicNotMap() {
f.mustBe(Map)
}