blob: 43b33fe94428648cc1cd3802336426f0e91b4e69 [file] [log] [blame] [edit]
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package os
import (
"errors"
"internal/testlog"
"runtime"
"sync"
"sync/atomic"
"syscall"
"time"
)
// ErrProcessDone indicates a [Process] has finished.
var ErrProcessDone = errors.New("os: process already finished")
// processStatus describes the status of a [Process].
type processStatus uint32
const (
// statusOK means that the Process is ready to use.
statusOK processStatus = iota
// statusDone indicates that the PID/handle should not be used because
// the process is done (has been successfully Wait'd on).
statusDone
// statusReleased indicates that the PID/handle should not be used
// because the process is released.
statusReleased
)
// Process stores the information about a process created by [StartProcess].
type Process struct {
Pid int
// state contains the atomic process state.
//
// This consists of the processStatus fields,
// which indicate if the process is done/released.
state atomic.Uint32
// Used only when handle is nil
sigMu sync.RWMutex // avoid race between wait and signal
// handle, if not nil, is a pointer to a struct
// that holds the OS-specific process handle.
// This pointer is set when Process is created,
// and never changed afterward.
// This is a pointer to a separate memory allocation
// so that we can use runtime.AddCleanup.
handle *processHandle
// cleanup is used to clean up the process handle.
cleanup runtime.Cleanup
}
// processHandle holds an operating system handle to a process.
// This is only used on systems that support that concept,
// currently Linux and Windows.
// This maintains a reference count to the handle,
// and closes the handle when the reference drops to zero.
type processHandle struct {
// The actual handle. This field should not be used directly.
// Instead, use the acquire and release methods.
//
// On Windows this is a handle returned by OpenProcess.
// On Linux this is a pidfd.
handle uintptr
// Number of active references. When this drops to zero
// the handle is closed.
refs atomic.Int32
}
// acquire adds a reference and returns the handle.
// The bool result reports whether acquire succeeded;
// it fails if the handle is already closed.
// Every successful call to acquire should be paired with a call to release.
func (ph *processHandle) acquire() (uintptr, bool) {
for {
refs := ph.refs.Load()
if refs < 0 {
panic("internal error: negative process handle reference count")
}
if refs == 0 {
return 0, false
}
if ph.refs.CompareAndSwap(refs, refs+1) {
return ph.handle, true
}
}
}
// release releases a reference to the handle.
func (ph *processHandle) release() {
for {
refs := ph.refs.Load()
if refs <= 0 {
panic("internal error: too many releases of process handle")
}
if ph.refs.CompareAndSwap(refs, refs-1) {
if refs == 1 {
ph.closeHandle()
}
return
}
}
}
// newPIDProcess returns a [Process] for the given PID.
func newPIDProcess(pid int) *Process {
p := &Process{
Pid: pid,
}
return p
}
// newHandleProcess returns a [Process] with the given PID and handle.
func newHandleProcess(pid int, handle uintptr) *Process {
ph := &processHandle{
handle: handle,
}
// Start the reference count as 1,
// meaning the reference from the returned Process.
ph.refs.Store(1)
p := &Process{
Pid: pid,
handle: ph,
}
p.cleanup = runtime.AddCleanup(p, (*processHandle).release, ph)
return p
}
// newDoneProcess returns a [Process] for the given PID
// that is already marked as done. This is used on Unix systems
// if the process is known to not exist.
func newDoneProcess(pid int) *Process {
p := &Process{
Pid: pid,
}
p.state.Store(uint32(statusDone)) // No persistent reference, as there is no handle.
return p
}
// handleTransientAcquire returns the process handle or,
// if the process is not ready, the current status.
func (p *Process) handleTransientAcquire() (uintptr, processStatus) {
if p.handle == nil {
panic("handleTransientAcquire called in invalid mode")
}
status := processStatus(p.state.Load())
if status != statusOK {
return 0, status
}
h, ok := p.handle.acquire()
if ok {
return h, statusOK
}
// This case means that the handle has been closed.
// We always set the status to non-zero before closing the handle.
// If we get here the status must have been set non-zero after
// we just checked it above.
status = processStatus(p.state.Load())
if status == statusOK {
panic("inconsistent process status")
}
return 0, status
}
// handleTransientRelease releases a handle returned by handleTransientAcquire.
func (p *Process) handleTransientRelease() {
if p.handle == nil {
panic("handleTransientRelease called in invalid mode")
}
p.handle.release()
}
// pidStatus returns the current process status.
func (p *Process) pidStatus() processStatus {
if p.handle != nil {
panic("pidStatus called in invalid mode")
}
return processStatus(p.state.Load())
}
// ProcAttr holds the attributes that will be applied to a new process
// started by StartProcess.
type ProcAttr struct {
// If Dir is non-empty, the child changes into the directory before
// creating the process.
Dir string
// If Env is non-nil, it gives the environment variables for the
// new process in the form returned by Environ.
// If it is nil, the result of Environ will be used.
Env []string
// Files specifies the open files inherited by the new process. The
// first three entries correspond to standard input, standard output, and
// standard error. An implementation may support additional entries,
// depending on the underlying operating system. A nil entry corresponds
// to that file being closed when the process starts.
// On Unix systems, StartProcess will change these File values
// to blocking mode, which means that SetDeadline will stop working
// and calling Close will not interrupt a Read or Write.
Files []*File
// Operating system-specific process creation attributes.
// Note that setting this field means that your program
// may not execute properly or even compile on some
// operating systems.
Sys *syscall.SysProcAttr
}
// A Signal represents an operating system signal.
// The usual underlying implementation is operating system-dependent:
// on Unix it is syscall.Signal.
type Signal interface {
String() string
Signal() // to distinguish from other Stringers
}
// Getpid returns the process id of the caller.
func Getpid() int { return syscall.Getpid() }
// Getppid returns the process id of the caller's parent.
func Getppid() int { return syscall.Getppid() }
// FindProcess looks for a running process by its pid.
//
// The [Process] it returns can be used to obtain information
// about the underlying operating system process.
//
// On Unix systems, FindProcess always succeeds and returns a Process
// for the given pid, regardless of whether the process exists. To test whether
// the process actually exists, see whether p.Signal(syscall.Signal(0)) reports
// an error.
func FindProcess(pid int) (*Process, error) {
return findProcess(pid)
}
// StartProcess starts a new process with the program, arguments and attributes
// specified by name, argv and attr. The argv slice will become [os.Args] in the
// new process, so it normally starts with the program name.
//
// If the calling goroutine has locked the operating system thread
// with [runtime.LockOSThread] and modified any inheritable OS-level
// thread state (for example, Linux or Plan 9 name spaces), the new
// process will inherit the caller's thread state.
//
// StartProcess is a low-level interface. The [os/exec] package provides
// higher-level interfaces.
//
// If there is an error, it will be of type [*PathError].
func StartProcess(name string, argv []string, attr *ProcAttr) (*Process, error) {
testlog.Open(name)
return startProcess(name, argv, attr)
}
// Release releases any resources associated with the [Process] p,
// rendering it unusable in the future.
// Release only needs to be called if [Process.Wait] is not.
func (p *Process) Release() error {
// Unfortunately, for historical reasons, on systems other
// than Windows, Release sets the Pid field to -1.
// This causes the race detector to report a problem
// on concurrent calls to Release, but we can't change it now.
if runtime.GOOS != "windows" {
p.Pid = -1
}
oldStatus := p.doRelease(statusReleased)
// For backward compatibility, on Windows only,
// we return EINVAL on a second call to Release.
if runtime.GOOS == "windows" {
if oldStatus == statusReleased {
return syscall.EINVAL
}
}
return nil
}
// doRelease releases a [Process], setting the status to newStatus.
// If the previous status is not statusOK, this does nothing.
// It returns the previous status.
func (p *Process) doRelease(newStatus processStatus) processStatus {
for {
state := p.state.Load()
oldStatus := processStatus(state)
if oldStatus != statusOK {
return oldStatus
}
if !p.state.CompareAndSwap(state, uint32(newStatus)) {
continue
}
// We have successfully released the Process.
// If it has a handle, release the reference we
// created in newHandleProcess.
if p.handle != nil {
// No need for more cleanup.
// We must stop the cleanup before calling release;
// otherwise the cleanup might run concurrently
// with the release, which would cause the reference
// counts to be invalid, causing a panic.
p.cleanup.Stop()
p.handle.release()
}
return statusOK
}
}
// Kill causes the [Process] to exit immediately. Kill does not wait until
// the Process has actually exited. This only kills the Process itself,
// not any other processes it may have started.
func (p *Process) Kill() error {
return p.kill()
}
// Wait waits for the [Process] to exit, and then returns a
// ProcessState describing its status and an error, if any.
// Wait releases any resources associated with the Process.
// On most operating systems, the Process must be a child
// of the current process or an error will be returned.
func (p *Process) Wait() (*ProcessState, error) {
return p.wait()
}
// Signal sends a signal to the [Process].
// Sending [Interrupt] on Windows is not implemented.
func (p *Process) Signal(sig Signal) error {
return p.signal(sig)
}
// UserTime returns the user CPU time of the exited process and its children.
func (p *ProcessState) UserTime() time.Duration {
return p.userTime()
}
// SystemTime returns the system CPU time of the exited process and its children.
func (p *ProcessState) SystemTime() time.Duration {
return p.systemTime()
}
// Exited reports whether the program has exited.
// On Unix systems this reports true if the program exited due to calling exit,
// but false if the program terminated due to a signal.
func (p *ProcessState) Exited() bool {
return p.exited()
}
// Success reports whether the program exited successfully,
// such as with exit status 0 on Unix.
func (p *ProcessState) Success() bool {
return p.success()
}
// Sys returns system-dependent exit information about
// the process. Convert it to the appropriate underlying
// type, such as [syscall.WaitStatus] on Unix, to access its contents.
func (p *ProcessState) Sys() any {
return p.sys()
}
// SysUsage returns system-dependent resource usage information about
// the exited process. Convert it to the appropriate underlying
// type, such as [*syscall.Rusage] on Unix, to access its contents.
// (On Unix, *syscall.Rusage matches struct rusage as defined in the
// getrusage(2) manual page.)
func (p *ProcessState) SysUsage() any {
return p.sysUsage()
}