blob: 8fd120e7775c1c6f209db84322a4b1112745f57d [file] [log] [blame]
// Copyright 2023 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Patterns for ServeMux routing.
package http
import (
"errors"
"fmt"
"net/url"
"strings"
"unicode"
)
// A pattern is something that can be matched against an HTTP request.
// It has an optional method, an optional host, and a path.
type pattern struct {
str string // original string
method string
host string
// The representation of a path differs from the surface syntax, which
// simplifies most algorithms.
//
// Paths ending in '/' are represented with an anonymous "..." wildcard.
// For example, the path "a/" is represented as a literal segment "a" followed
// by a segment with multi==true.
//
// Paths ending in "{$}" are represented with the literal segment "/".
// For example, the path "a/{$}" is represented as a literal segment "a" followed
// by a literal segment "/".
segments []segment
loc string // source location of registering call, for helpful messages
}
func (p *pattern) String() string { return p.str }
func (p *pattern) lastSegment() segment {
return p.segments[len(p.segments)-1]
}
// A segment is a pattern piece that matches one or more path segments, or
// a trailing slash.
//
// If wild is false, it matches a literal segment, or, if s == "/", a trailing slash.
// Examples:
//
// "a" => segment{s: "a"}
// "/{$}" => segment{s: "/"}
//
// If wild is true and multi is false, it matches a single path segment.
// Example:
//
// "{x}" => segment{s: "x", wild: true}
//
// If both wild and multi are true, it matches all remaining path segments.
// Example:
//
// "{rest...}" => segment{s: "rest", wild: true, multi: true}
type segment struct {
s string // literal or wildcard name or "/" for "/{$}".
wild bool
multi bool // "..." wildcard
}
// parsePattern parses a string into a Pattern.
// The string's syntax is
//
// [METHOD] [HOST]/[PATH]
//
// where:
// - METHOD is an HTTP method
// - HOST is a hostname
// - PATH consists of slash-separated segments, where each segment is either
// a literal or a wildcard of the form "{name}", "{name...}", or "{$}".
//
// METHOD, HOST and PATH are all optional; that is, the string can be "/".
// If METHOD is present, it must be followed by at least one space or tab.
// Wildcard names must be valid Go identifiers.
// The "{$}" and "{name...}" wildcard must occur at the end of PATH.
// PATH may end with a '/'.
// Wildcard names in a path must be distinct.
func parsePattern(s string) (_ *pattern, err error) {
if len(s) == 0 {
return nil, errors.New("empty pattern")
}
off := 0 // offset into string
defer func() {
if err != nil {
err = fmt.Errorf("at offset %d: %w", off, err)
}
}()
method, rest, found := s, "", false
if i := strings.IndexAny(s, " \t"); i >= 0 {
method, rest, found = s[:i], strings.TrimLeft(s[i+1:], " \t"), true
}
if !found {
rest = method
method = ""
}
if method != "" && !validMethod(method) {
return nil, fmt.Errorf("invalid method %q", method)
}
p := &pattern{str: s, method: method}
if found {
off = len(method) + 1
}
i := strings.IndexByte(rest, '/')
if i < 0 {
return nil, errors.New("host/path missing /")
}
p.host = rest[:i]
rest = rest[i:]
if j := strings.IndexByte(p.host, '{'); j >= 0 {
off += j
return nil, errors.New("host contains '{' (missing initial '/'?)")
}
// At this point, rest is the path.
off += i
// An unclean path with a method that is not CONNECT can never match,
// because paths are cleaned before matching.
if method != "" && method != "CONNECT" && rest != cleanPath(rest) {
return nil, errors.New("non-CONNECT pattern with unclean path can never match")
}
seenNames := map[string]bool{} // remember wildcard names to catch dups
for len(rest) > 0 {
// Invariant: rest[0] == '/'.
rest = rest[1:]
off = len(s) - len(rest)
if len(rest) == 0 {
// Trailing slash.
p.segments = append(p.segments, segment{wild: true, multi: true})
break
}
i := strings.IndexByte(rest, '/')
if i < 0 {
i = len(rest)
}
var seg string
seg, rest = rest[:i], rest[i:]
if i := strings.IndexByte(seg, '{'); i < 0 {
// Literal.
seg = pathUnescape(seg)
p.segments = append(p.segments, segment{s: seg})
} else {
// Wildcard.
if i != 0 {
return nil, errors.New("bad wildcard segment (must start with '{')")
}
if seg[len(seg)-1] != '}' {
return nil, errors.New("bad wildcard segment (must end with '}')")
}
name := seg[1 : len(seg)-1]
if name == "$" {
if len(rest) != 0 {
return nil, errors.New("{$} not at end")
}
p.segments = append(p.segments, segment{s: "/"})
break
}
name, multi := strings.CutSuffix(name, "...")
if multi && len(rest) != 0 {
return nil, errors.New("{...} wildcard not at end")
}
if name == "" {
return nil, errors.New("empty wildcard")
}
if !isValidWildcardName(name) {
return nil, fmt.Errorf("bad wildcard name %q", name)
}
if seenNames[name] {
return nil, fmt.Errorf("duplicate wildcard name %q", name)
}
seenNames[name] = true
p.segments = append(p.segments, segment{s: name, wild: true, multi: multi})
}
}
return p, nil
}
func isValidWildcardName(s string) bool {
if s == "" {
return false
}
// Valid Go identifier.
for i, c := range s {
if !unicode.IsLetter(c) && c != '_' && (i == 0 || !unicode.IsDigit(c)) {
return false
}
}
return true
}
func pathUnescape(path string) string {
u, err := url.PathUnescape(path)
if err != nil {
// Invalidly escaped path; use the original
return path
}
return u
}
// relationship is a relationship between two patterns, p1 and p2.
type relationship string
const (
equivalent relationship = "equivalent" // both match the same requests
moreGeneral relationship = "moreGeneral" // p1 matches everything p2 does & more
moreSpecific relationship = "moreSpecific" // p2 matches everything p1 does & more
disjoint relationship = "disjoint" // there is no request that both match
overlaps relationship = "overlaps" // there is a request that both match, but neither is more specific
)
// conflictsWith reports whether p1 conflicts with p2, that is, whether
// there is a request that both match but where neither is higher precedence
// than the other.
//
// Precedence is defined by two rules:
// 1. Patterns with a host win over patterns without a host.
// 2. Patterns whose method and path is more specific win. One pattern is more
// specific than another if the second matches all the (method, path) pairs
// of the first and more.
//
// If rule 1 doesn't apply, then two patterns conflict if their relationship
// is either equivalence (they match the same set of requests) or overlap
// (they both match some requests, but neither is more specific than the other).
func (p1 *pattern) conflictsWith(p2 *pattern) bool {
if p1.host != p2.host {
// Either one host is empty and the other isn't, in which case the
// one with the host wins by rule 1, or neither host is empty
// and they differ, so they won't match the same paths.
return false
}
rel := p1.comparePathsAndMethods(p2)
return rel == equivalent || rel == overlaps
}
func (p1 *pattern) comparePathsAndMethods(p2 *pattern) relationship {
mrel := p1.compareMethods(p2)
// Optimization: avoid a call to comparePaths.
if mrel == disjoint {
return disjoint
}
prel := p1.comparePaths(p2)
return combineRelationships(mrel, prel)
}
// compareMethods determines the relationship between the method
// part of patterns p1 and p2.
//
// A method can either be empty, "GET", or something else.
// The empty string matches any method, so it is the most general.
// "GET" matches both GET and HEAD.
// Anything else matches only itself.
func (p1 *pattern) compareMethods(p2 *pattern) relationship {
if p1.method == p2.method {
return equivalent
}
if p1.method == "" {
// p1 matches any method, but p2 does not, so p1 is more general.
return moreGeneral
}
if p2.method == "" {
return moreSpecific
}
if p1.method == "GET" && p2.method == "HEAD" {
// p1 matches GET and HEAD; p2 matches only HEAD.
return moreGeneral
}
if p2.method == "GET" && p1.method == "HEAD" {
return moreSpecific
}
return disjoint
}
// comparePaths determines the relationship between the path
// part of two patterns.
func (p1 *pattern) comparePaths(p2 *pattern) relationship {
// Optimization: if a path pattern doesn't end in a multi ("...") wildcard, then it
// can only match paths with the same number of segments.
if len(p1.segments) != len(p2.segments) && !p1.lastSegment().multi && !p2.lastSegment().multi {
return disjoint
}
// Consider corresponding segments in the two path patterns.
var segs1, segs2 []segment
rel := equivalent
for segs1, segs2 = p1.segments, p2.segments; len(segs1) > 0 && len(segs2) > 0; segs1, segs2 = segs1[1:], segs2[1:] {
rel = combineRelationships(rel, compareSegments(segs1[0], segs2[0]))
if rel == disjoint {
return rel
}
}
// We've reached the end of the corresponding segments of the patterns.
// If they have the same number of segments, then we've already determined
// their relationship.
if len(segs1) == 0 && len(segs2) == 0 {
return rel
}
// Otherwise, the only way they could fail to be disjoint is if the shorter
// pattern ends in a multi. In that case, that multi is more general
// than the remainder of the longer pattern, so combine those two relationships.
if len(segs1) < len(segs2) && p1.lastSegment().multi {
return combineRelationships(rel, moreGeneral)
}
if len(segs2) < len(segs1) && p2.lastSegment().multi {
return combineRelationships(rel, moreSpecific)
}
return disjoint
}
// compareSegments determines the relationship between two segments.
func compareSegments(s1, s2 segment) relationship {
if s1.multi && s2.multi {
return equivalent
}
if s1.multi {
return moreGeneral
}
if s2.multi {
return moreSpecific
}
if s1.wild && s2.wild {
return equivalent
}
if s1.wild {
if s2.s == "/" {
// A single wildcard doesn't match a trailing slash.
return disjoint
}
return moreGeneral
}
if s2.wild {
if s1.s == "/" {
return disjoint
}
return moreSpecific
}
// Both literals.
if s1.s == s2.s {
return equivalent
}
return disjoint
}
// combineRelationships determines the overall relationship of two patterns
// given the relationships of a partition of the patterns into two parts.
//
// For example, if p1 is more general than p2 in one way but equivalent
// in the other, then it is more general overall.
//
// Or if p1 is more general in one way and more specific in the other, then
// they overlap.
func combineRelationships(r1, r2 relationship) relationship {
switch r1 {
case equivalent:
return r2
case disjoint:
return disjoint
case overlaps:
if r2 == disjoint {
return disjoint
}
return overlaps
case moreGeneral, moreSpecific:
switch r2 {
case equivalent:
return r1
case inverseRelationship(r1):
return overlaps
default:
return r2
}
default:
panic(fmt.Sprintf("unknown relationship %q", r1))
}
}
// If p1 has relationship `r` to p2, then
// p2 has inverseRelationship(r) to p1.
func inverseRelationship(r relationship) relationship {
switch r {
case moreSpecific:
return moreGeneral
case moreGeneral:
return moreSpecific
default:
return r
}
}
// isLitOrSingle reports whether the segment is a non-dollar literal or a single wildcard.
func isLitOrSingle(seg segment) bool {
if seg.wild {
return !seg.multi
}
return seg.s != "/"
}
// describeConflict returns an explanation of why two patterns conflict.
func describeConflict(p1, p2 *pattern) string {
mrel := p1.compareMethods(p2)
prel := p1.comparePaths(p2)
rel := combineRelationships(mrel, prel)
if rel == equivalent {
return fmt.Sprintf("%s matches the same requests as %s", p1, p2)
}
if rel != overlaps {
panic("describeConflict called with non-conflicting patterns")
}
if prel == overlaps {
return fmt.Sprintf(`%[1]s and %[2]s both match some paths, like %[3]q.
But neither is more specific than the other.
%[1]s matches %[4]q, but %[2]s doesn't.
%[2]s matches %[5]q, but %[1]s doesn't.`,
p1, p2, commonPath(p1, p2), differencePath(p1, p2), differencePath(p2, p1))
}
if mrel == moreGeneral && prel == moreSpecific {
return fmt.Sprintf("%s matches more methods than %s, but has a more specific path pattern", p1, p2)
}
if mrel == moreSpecific && prel == moreGeneral {
return fmt.Sprintf("%s matches fewer methods than %s, but has a more general path pattern", p1, p2)
}
return fmt.Sprintf("bug: unexpected way for two patterns %s and %s to conflict: methods %s, paths %s", p1, p2, mrel, prel)
}
// writeMatchingPath writes to b a path that matches the segments.
func writeMatchingPath(b *strings.Builder, segs []segment) {
for _, s := range segs {
writeSegment(b, s)
}
}
func writeSegment(b *strings.Builder, s segment) {
b.WriteByte('/')
if !s.multi && s.s != "/" {
b.WriteString(s.s)
}
}
// commonPath returns a path that both p1 and p2 match.
// It assumes there is such a path.
func commonPath(p1, p2 *pattern) string {
var b strings.Builder
var segs1, segs2 []segment
for segs1, segs2 = p1.segments, p2.segments; len(segs1) > 0 && len(segs2) > 0; segs1, segs2 = segs1[1:], segs2[1:] {
if s1 := segs1[0]; s1.wild {
writeSegment(&b, segs2[0])
} else {
writeSegment(&b, s1)
}
}
if len(segs1) > 0 {
writeMatchingPath(&b, segs1)
} else if len(segs2) > 0 {
writeMatchingPath(&b, segs2)
}
return b.String()
}
// differencePath returns a path that p1 matches and p2 doesn't.
// It assumes there is such a path.
func differencePath(p1, p2 *pattern) string {
var b strings.Builder
var segs1, segs2 []segment
for segs1, segs2 = p1.segments, p2.segments; len(segs1) > 0 && len(segs2) > 0; segs1, segs2 = segs1[1:], segs2[1:] {
s1 := segs1[0]
s2 := segs2[0]
if s1.multi && s2.multi {
// From here the patterns match the same paths, so we must have found a difference earlier.
b.WriteByte('/')
return b.String()
}
if s1.multi && !s2.multi {
// s1 ends in a "..." wildcard but s2 does not.
// A trailing slash will distinguish them, unless s2 ends in "{$}",
// in which case any segment will do; prefer the wildcard name if
// it has one.
b.WriteByte('/')
if s2.s == "/" {
if s1.s != "" {
b.WriteString(s1.s)
} else {
b.WriteString("x")
}
}
return b.String()
}
if !s1.multi && s2.multi {
writeSegment(&b, s1)
} else if s1.wild && s2.wild {
// Both patterns will match whatever we put here; use
// the first wildcard name.
writeSegment(&b, s1)
} else if s1.wild && !s2.wild {
// s1 is a wildcard, s2 is a literal.
// Any segment other than s2.s will work.
// Prefer the wildcard name, but if it's the same as the literal,
// tweak the literal.
if s1.s != s2.s {
writeSegment(&b, s1)
} else {
b.WriteByte('/')
b.WriteString(s2.s + "x")
}
} else if !s1.wild && s2.wild {
writeSegment(&b, s1)
} else {
// Both are literals. A precondition of this function is that the
// patterns overlap, so they must be the same literal. Use it.
if s1.s != s2.s {
panic(fmt.Sprintf("literals differ: %q and %q", s1.s, s2.s))
}
writeSegment(&b, s1)
}
}
if len(segs1) > 0 {
// p1 is longer than p2, and p2 does not end in a multi.
// Anything that matches the rest of p1 will do.
writeMatchingPath(&b, segs1)
} else if len(segs2) > 0 {
writeMatchingPath(&b, segs2)
}
return b.String()
}