| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package rand implements pseudo-random number generators suitable for tasks |
| // such as simulation, but it should not be used for security-sensitive work. |
| // |
| // Random numbers are generated by a [Source], usually wrapped in a [Rand]. |
| // Both types should be used by a single goroutine at a time: sharing among |
| // multiple goroutines requires some kind of synchronization. |
| // |
| // Top-level functions, such as [Float64] and [Int], |
| // are safe for concurrent use by multiple goroutines. |
| // |
| // This package's outputs might be easily predictable regardless of how it's |
| // seeded. For random numbers suitable for security-sensitive work, see the |
| // [crypto/rand] package. |
| package rand |
| |
| import ( |
| "math/bits" |
| _ "unsafe" // for go:linkname |
| ) |
| |
| // A Source is a source of uniformly-distributed |
| // pseudo-random uint64 values in the range [0, 1<<64). |
| // |
| // A Source is not safe for concurrent use by multiple goroutines. |
| type Source interface { |
| Uint64() uint64 |
| } |
| |
| // A Rand is a source of random numbers. |
| type Rand struct { |
| src Source |
| } |
| |
| // New returns a new Rand that uses random values from src |
| // to generate other random values. |
| func New(src Source) *Rand { |
| return &Rand{src: src} |
| } |
| |
| // Int64 returns a non-negative pseudo-random 63-bit integer as an int64. |
| func (r *Rand) Int64() int64 { return int64(r.src.Uint64() &^ (1 << 63)) } |
| |
| // Uint32 returns a pseudo-random 32-bit value as a uint32. |
| func (r *Rand) Uint32() uint32 { return uint32(r.src.Uint64() >> 32) } |
| |
| // Uint64 returns a pseudo-random 64-bit value as a uint64. |
| func (r *Rand) Uint64() uint64 { return r.src.Uint64() } |
| |
| // Int32 returns a non-negative pseudo-random 31-bit integer as an int32. |
| func (r *Rand) Int32() int32 { return int32(r.src.Uint64() >> 33) } |
| |
| // Int returns a non-negative pseudo-random int. |
| func (r *Rand) Int() int { return int(uint(r.src.Uint64()) << 1 >> 1) } |
| |
| // Uint returns a pseudo-random uint. |
| func (r *Rand) Uint() uint { return uint(r.src.Uint64()) } |
| |
| // Int64N returns, as an int64, a non-negative pseudo-random number in the half-open interval [0,n). |
| // It panics if n <= 0. |
| func (r *Rand) Int64N(n int64) int64 { |
| if n <= 0 { |
| panic("invalid argument to Int64N") |
| } |
| return int64(r.uint64n(uint64(n))) |
| } |
| |
| // Uint64N returns, as a uint64, a non-negative pseudo-random number in the half-open interval [0,n). |
| // It panics if n == 0. |
| func (r *Rand) Uint64N(n uint64) uint64 { |
| if n == 0 { |
| panic("invalid argument to Uint64N") |
| } |
| return r.uint64n(n) |
| } |
| |
| // uint64n is the no-bounds-checks version of Uint64N. |
| func (r *Rand) uint64n(n uint64) uint64 { |
| if is32bit && uint64(uint32(n)) == n { |
| return uint64(r.uint32n(uint32(n))) |
| } |
| if n&(n-1) == 0 { // n is power of two, can mask |
| return r.Uint64() & (n - 1) |
| } |
| |
| // Suppose we have a uint64 x uniform in the range [0,2⁶⁴) |
| // and want to reduce it to the range [0,n) preserving exact uniformity. |
| // We can simulate a scaling arbitrary precision x * (n/2⁶⁴) by |
| // the high bits of a double-width multiply of x*n, meaning (x*n)/2⁶⁴. |
| // Since there are 2⁶⁴ possible inputs x and only n possible outputs, |
| // the output is necessarily biased if n does not divide 2⁶⁴. |
| // In general (x*n)/2⁶⁴ = k for x*n in [k*2⁶⁴,(k+1)*2⁶⁴). |
| // There are either floor(2⁶⁴/n) or ceil(2⁶⁴/n) possible products |
| // in that range, depending on k. |
| // But suppose we reject the sample and try again when |
| // x*n is in [k*2⁶⁴, k*2⁶⁴+(2⁶⁴%n)), meaning rejecting fewer than n possible |
| // outcomes out of the 2⁶⁴. |
| // Now there are exactly floor(2⁶⁴/n) possible ways to produce |
| // each output value k, so we've restored uniformity. |
| // To get valid uint64 math, 2⁶⁴ % n = (2⁶⁴ - n) % n = -n % n, |
| // so the direct implementation of this algorithm would be: |
| // |
| // hi, lo := bits.Mul64(r.Uint64(), n) |
| // thresh := -n % n |
| // for lo < thresh { |
| // hi, lo = bits.Mul64(r.Uint64(), n) |
| // } |
| // |
| // That still leaves an expensive 64-bit division that we would rather avoid. |
| // We know that thresh < n, and n is usually much less than 2⁶⁴, so we can |
| // avoid the last four lines unless lo < n. |
| // |
| // See also: |
| // https://lemire.me/blog/2016/06/27/a-fast-alternative-to-the-modulo-reduction |
| // https://lemire.me/blog/2016/06/30/fast-random-shuffling |
| hi, lo := bits.Mul64(r.Uint64(), n) |
| if lo < n { |
| thresh := -n % n |
| for lo < thresh { |
| hi, lo = bits.Mul64(r.Uint64(), n) |
| } |
| } |
| return hi |
| } |
| |
| // uint32n is an identical computation to uint64n |
| // but optimized for 32-bit systems. |
| func (r *Rand) uint32n(n uint32) uint32 { |
| if n&(n-1) == 0 { // n is power of two, can mask |
| return uint32(r.Uint64()) & (n - 1) |
| } |
| // On 64-bit systems we still use the uint64 code below because |
| // the probability of a random uint64 lo being < a uint32 n is near zero, |
| // meaning the unbiasing loop almost never runs. |
| // On 32-bit systems, here we need to implement that same logic in 32-bit math, |
| // both to preserve the exact output sequence observed on 64-bit machines |
| // and to preserve the optimization that the unbiasing loop almost never runs. |
| // |
| // We want to compute |
| // hi, lo := bits.Mul64(r.Uint64(), n) |
| // In terms of 32-bit halves, this is: |
| // x1:x0 := r.Uint64() |
| // 0:hi, lo1:lo0 := bits.Mul64(x1:x0, 0:n) |
| // Writing out the multiplication in terms of bits.Mul32 allows |
| // using direct hardware instructions and avoiding |
| // the computations involving these zeros. |
| x := r.Uint64() |
| lo1a, lo0 := bits.Mul32(uint32(x), n) |
| hi, lo1b := bits.Mul32(uint32(x>>32), n) |
| lo1, c := bits.Add32(lo1a, lo1b, 0) |
| hi += c |
| if lo1 == 0 && lo0 < uint32(n) { |
| n64 := uint64(n) |
| thresh := uint32(-n64 % n64) |
| for lo1 == 0 && lo0 < thresh { |
| x := r.Uint64() |
| lo1a, lo0 = bits.Mul32(uint32(x), n) |
| hi, lo1b = bits.Mul32(uint32(x>>32), n) |
| lo1, c = bits.Add32(lo1a, lo1b, 0) |
| hi += c |
| } |
| } |
| return hi |
| } |
| |
| // Int32N returns, as an int32, a non-negative pseudo-random number in the half-open interval [0,n). |
| // It panics if n <= 0. |
| func (r *Rand) Int32N(n int32) int32 { |
| if n <= 0 { |
| panic("invalid argument to Int32N") |
| } |
| return int32(r.uint64n(uint64(n))) |
| } |
| |
| // Uint32N returns, as a uint32, a non-negative pseudo-random number in the half-open interval [0,n). |
| // It panics if n == 0. |
| func (r *Rand) Uint32N(n uint32) uint32 { |
| if n == 0 { |
| panic("invalid argument to Uint32N") |
| } |
| return uint32(r.uint64n(uint64(n))) |
| } |
| |
| const is32bit = ^uint(0)>>32 == 0 |
| |
| // IntN returns, as an int, a non-negative pseudo-random number in the half-open interval [0,n). |
| // It panics if n <= 0. |
| func (r *Rand) IntN(n int) int { |
| if n <= 0 { |
| panic("invalid argument to IntN") |
| } |
| return int(r.uint64n(uint64(n))) |
| } |
| |
| // UintN returns, as a uint, a non-negative pseudo-random number in the half-open interval [0,n). |
| // It panics if n == 0. |
| func (r *Rand) UintN(n uint) uint { |
| if n == 0 { |
| panic("invalid argument to UintN") |
| } |
| return uint(r.uint64n(uint64(n))) |
| } |
| |
| // Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0). |
| func (r *Rand) Float64() float64 { |
| // There are exactly 1<<53 float64s in [0,1). Use Intn(1<<53) / (1<<53). |
| return float64(r.Uint64()<<11>>11) / (1 << 53) |
| } |
| |
| // Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0). |
| func (r *Rand) Float32() float32 { |
| // There are exactly 1<<24 float32s in [0,1). Use Intn(1<<24) / (1<<24). |
| return float32(r.Uint32()<<8>>8) / (1 << 24) |
| } |
| |
| // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers |
| // in the half-open interval [0,n). |
| func (r *Rand) Perm(n int) []int { |
| p := make([]int, n) |
| for i := range p { |
| p[i] = i |
| } |
| r.Shuffle(len(p), func(i, j int) { p[i], p[j] = p[j], p[i] }) |
| return p |
| } |
| |
| // Shuffle pseudo-randomizes the order of elements. |
| // n is the number of elements. Shuffle panics if n < 0. |
| // swap swaps the elements with indexes i and j. |
| func (r *Rand) Shuffle(n int, swap func(i, j int)) { |
| if n < 0 { |
| panic("invalid argument to Shuffle") |
| } |
| |
| // Fisher-Yates shuffle: https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle |
| // Shuffle really ought not be called with n that doesn't fit in 32 bits. |
| // Not only will it take a very long time, but with 2³¹! possible permutations, |
| // there's no way that any PRNG can have a big enough internal state to |
| // generate even a minuscule percentage of the possible permutations. |
| // Nevertheless, the right API signature accepts an int n, so handle it as best we can. |
| for i := n - 1; i > 0; i-- { |
| j := int(r.uint64n(uint64(i + 1))) |
| swap(i, j) |
| } |
| } |
| |
| /* |
| * Top-level convenience functions |
| */ |
| |
| // globalRand is the source of random numbers for the top-level |
| // convenience functions. |
| var globalRand = &Rand{src: runtimeSource{}} |
| |
| //go:linkname runtime_rand runtime.rand |
| func runtime_rand() uint64 |
| |
| // runtimeSource is a Source that uses the runtime fastrand functions. |
| type runtimeSource struct{} |
| |
| func (runtimeSource) Uint64() uint64 { |
| return runtime_rand() |
| } |
| |
| // Int64 returns a non-negative pseudo-random 63-bit integer as an int64 |
| // from the default Source. |
| func Int64() int64 { return globalRand.Int64() } |
| |
| // Uint32 returns a pseudo-random 32-bit value as a uint32 |
| // from the default Source. |
| func Uint32() uint32 { return globalRand.Uint32() } |
| |
| // Uint64N returns, as a uint64, a pseudo-random number in the half-open interval [0,n) |
| // from the default Source. |
| // It panics if n == 0. |
| func Uint64N(n uint64) uint64 { return globalRand.Uint64N(n) } |
| |
| // Uint32N returns, as a uint32, a pseudo-random number in the half-open interval [0,n) |
| // from the default Source. |
| // It panics if n == 0. |
| func Uint32N(n uint32) uint32 { return globalRand.Uint32N(n) } |
| |
| // Uint64 returns a pseudo-random 64-bit value as a uint64 |
| // from the default Source. |
| func Uint64() uint64 { return globalRand.Uint64() } |
| |
| // Int32 returns a non-negative pseudo-random 31-bit integer as an int32 |
| // from the default Source. |
| func Int32() int32 { return globalRand.Int32() } |
| |
| // Int returns a non-negative pseudo-random int from the default Source. |
| func Int() int { return globalRand.Int() } |
| |
| // Uint returns a pseudo-random uint from the default Source. |
| func Uint() uint { return globalRand.Uint() } |
| |
| // Int64N returns, as an int64, a pseudo-random number in the half-open interval [0,n) |
| // from the default Source. |
| // It panics if n <= 0. |
| func Int64N(n int64) int64 { return globalRand.Int64N(n) } |
| |
| // Int32N returns, as an int32, a pseudo-random number in the half-open interval [0,n) |
| // from the default Source. |
| // It panics if n <= 0. |
| func Int32N(n int32) int32 { return globalRand.Int32N(n) } |
| |
| // IntN returns, as an int, a pseudo-random number in the half-open interval [0,n) |
| // from the default Source. |
| // It panics if n <= 0. |
| func IntN(n int) int { return globalRand.IntN(n) } |
| |
| // UintN returns, as a uint, a pseudo-random number in the half-open interval [0,n) |
| // from the default Source. |
| // It panics if n == 0. |
| func UintN(n uint) uint { return globalRand.UintN(n) } |
| |
| // N returns a pseudo-random number in the half-open interval [0,n) from the default Source. |
| // The type parameter Int can be any integer type. |
| // It panics if n <= 0. |
| func N[Int intType](n Int) Int { |
| if n <= 0 { |
| panic("invalid argument to N") |
| } |
| return Int(globalRand.uint64n(uint64(n))) |
| } |
| |
| type intType interface { |
| ~int | ~int8 | ~int16 | ~int32 | ~int64 | |
| ~uint | ~uint8 | ~uint16 | ~uint32 | ~uint64 | ~uintptr |
| } |
| |
| // Float64 returns, as a float64, a pseudo-random number in the half-open interval [0.0,1.0) |
| // from the default Source. |
| func Float64() float64 { return globalRand.Float64() } |
| |
| // Float32 returns, as a float32, a pseudo-random number in the half-open interval [0.0,1.0) |
| // from the default Source. |
| func Float32() float32 { return globalRand.Float32() } |
| |
| // Perm returns, as a slice of n ints, a pseudo-random permutation of the integers |
| // in the half-open interval [0,n) from the default Source. |
| func Perm(n int) []int { return globalRand.Perm(n) } |
| |
| // Shuffle pseudo-randomizes the order of elements using the default Source. |
| // n is the number of elements. Shuffle panics if n < 0. |
| // swap swaps the elements with indexes i and j. |
| func Shuffle(n int, swap func(i, j int)) { globalRand.Shuffle(n, swap) } |
| |
| // NormFloat64 returns a normally distributed float64 in the range |
| // [-math.MaxFloat64, +math.MaxFloat64] with |
| // standard normal distribution (mean = 0, stddev = 1) |
| // from the default Source. |
| // To produce a different normal distribution, callers can |
| // adjust the output using: |
| // |
| // sample = NormFloat64() * desiredStdDev + desiredMean |
| func NormFloat64() float64 { return globalRand.NormFloat64() } |
| |
| // ExpFloat64 returns an exponentially distributed float64 in the range |
| // (0, +math.MaxFloat64] with an exponential distribution whose rate parameter |
| // (lambda) is 1 and whose mean is 1/lambda (1) from the default Source. |
| // To produce a distribution with a different rate parameter, |
| // callers can adjust the output using: |
| // |
| // sample = ExpFloat64() / desiredRateParameter |
| func ExpFloat64() float64 { return globalRand.ExpFloat64() } |