| // Code generated by "go test -run=Generate -write=all"; DO NOT EDIT. |
| // Source: ../../cmd/compile/internal/types2/infer.go |
| |
| // Copyright 2018 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // This file implements type parameter inference. |
| |
| package types |
| |
| import ( |
| "fmt" |
| "go/token" |
| "slices" |
| "strings" |
| ) |
| |
| // If enableReverseTypeInference is set, uninstantiated and |
| // partially instantiated generic functions may be assigned |
| // (incl. returned) to variables of function type and type |
| // inference will attempt to infer the missing type arguments. |
| // Available with go1.21. |
| const enableReverseTypeInference = true // disable for debugging |
| |
| // infer attempts to infer the complete set of type arguments for generic function instantiation/call |
| // based on the given type parameters tparams, type arguments targs, function parameters params, and |
| // function arguments args, if any. There must be at least one type parameter, no more type arguments |
| // than type parameters, and params and args must match in number (incl. zero). |
| // If reverse is set, an error message's contents are reversed for a better error message for some |
| // errors related to reverse type inference (where the function call is synthetic). |
| // If successful, infer returns the complete list of given and inferred type arguments, one for each |
| // type parameter. Otherwise the result is nil. Errors are reported through the err parameter. |
| // Note: infer may fail (return nil) due to invalid args operands without reporting additional errors. |
| func (check *Checker) infer(posn positioner, tparams []*TypeParam, targs []Type, params *Tuple, args []*operand, reverse bool, err *error_) (inferred []Type) { |
| // Don't verify result conditions if there's no error handler installed: |
| // in that case, an error leads to an exit panic and the result value may |
| // be incorrect. But in that case it doesn't matter because callers won't |
| // be able to use it either. |
| if check.conf.Error != nil { |
| defer func() { |
| assert(inferred == nil || len(inferred) == len(tparams) && !slices.Contains(inferred, nil)) |
| }() |
| } |
| |
| if traceInference { |
| check.dump("== infer : %s%s ➞ %s", tparams, params, targs) // aligned with rename print below |
| defer func() { |
| check.dump("=> %s ➞ %s\n", tparams, inferred) |
| }() |
| } |
| |
| // There must be at least one type parameter, and no more type arguments than type parameters. |
| n := len(tparams) |
| assert(n > 0 && len(targs) <= n) |
| |
| // Parameters and arguments must match in number. |
| assert(params.Len() == len(args)) |
| |
| // If we already have all type arguments, we're done. |
| if len(targs) == n && !slices.Contains(targs, nil) { |
| return targs |
| } |
| |
| // If we have invalid (ordinary) arguments, an error was reported before. |
| // Avoid additional inference errors and exit early (go.dev/issue/60434). |
| for _, arg := range args { |
| if arg.mode == invalid { |
| return nil |
| } |
| } |
| |
| // Make sure we have a "full" list of type arguments, some of which may |
| // be nil (unknown). Make a copy so as to not clobber the incoming slice. |
| if len(targs) < n { |
| targs2 := make([]Type, n) |
| copy(targs2, targs) |
| targs = targs2 |
| } |
| // len(targs) == n |
| |
| // Continue with the type arguments we have. Avoid matching generic |
| // parameters that already have type arguments against function arguments: |
| // It may fail because matching uses type identity while parameter passing |
| // uses assignment rules. Instantiate the parameter list with the type |
| // arguments we have, and continue with that parameter list. |
| |
| // Substitute type arguments for their respective type parameters in params, |
| // if any. Note that nil targs entries are ignored by check.subst. |
| // We do this for better error messages; it's not needed for correctness. |
| // For instance, given: |
| // |
| // func f[P, Q any](P, Q) {} |
| // |
| // func _(s string) { |
| // f[int](s, s) // ERROR |
| // } |
| // |
| // With substitution, we get the error: |
| // "cannot use s (variable of type string) as int value in argument to f[int]" |
| // |
| // Without substitution we get the (worse) error: |
| // "type string of s does not match inferred type int for P" |
| // even though the type int was provided (not inferred) for P. |
| // |
| // TODO(gri) We might be able to finesse this in the error message reporting |
| // (which only happens in case of an error) and then avoid doing |
| // the substitution (which always happens). |
| if params.Len() > 0 { |
| smap := makeSubstMap(tparams, targs) |
| params = check.subst(nopos, params, smap, nil, check.context()).(*Tuple) |
| } |
| |
| // Unify parameter and argument types for generic parameters with typed arguments |
| // and collect the indices of generic parameters with untyped arguments. |
| // Terminology: generic parameter = function parameter with a type-parameterized type |
| u := newUnifier(tparams, targs, check.allowVersion(go1_21)) |
| |
| errorf := func(tpar, targ Type, arg *operand) { |
| // provide a better error message if we can |
| targs := u.inferred(tparams) |
| if targs[0] == nil { |
| // The first type parameter couldn't be inferred. |
| // If none of them could be inferred, don't try |
| // to provide the inferred type in the error msg. |
| allFailed := true |
| for _, targ := range targs { |
| if targ != nil { |
| allFailed = false |
| break |
| } |
| } |
| if allFailed { |
| err.addf(arg, "type %s of %s does not match %s (cannot infer %s)", targ, arg.expr, tpar, typeParamsString(tparams)) |
| return |
| } |
| } |
| smap := makeSubstMap(tparams, targs) |
| // TODO(gri): pass a poser here, rather than arg.Pos(). |
| inferred := check.subst(arg.Pos(), tpar, smap, nil, check.context()) |
| // CannotInferTypeArgs indicates a failure of inference, though the actual |
| // error may be better attributed to a user-provided type argument (hence |
| // InvalidTypeArg). We can't differentiate these cases, so fall back on |
| // the more general CannotInferTypeArgs. |
| if inferred != tpar { |
| if reverse { |
| err.addf(arg, "inferred type %s for %s does not match type %s of %s", inferred, tpar, targ, arg.expr) |
| } else { |
| err.addf(arg, "type %s of %s does not match inferred type %s for %s", targ, arg.expr, inferred, tpar) |
| } |
| } else { |
| err.addf(arg, "type %s of %s does not match %s", targ, arg.expr, tpar) |
| } |
| } |
| |
| // indices of generic parameters with untyped arguments, for later use |
| var untyped []int |
| |
| // --- 1 --- |
| // use information from function arguments |
| |
| if traceInference { |
| u.tracef("== function parameters: %s", params) |
| u.tracef("-- function arguments : %s", args) |
| } |
| |
| for i, arg := range args { |
| if arg.mode == invalid { |
| // An error was reported earlier. Ignore this arg |
| // and continue, we may still be able to infer all |
| // targs resulting in fewer follow-on errors. |
| // TODO(gri) determine if we still need this check |
| continue |
| } |
| par := params.At(i) |
| if isParameterized(tparams, par.typ) || isParameterized(tparams, arg.typ) { |
| // Function parameters are always typed. Arguments may be untyped. |
| // Collect the indices of untyped arguments and handle them later. |
| if isTyped(arg.typ) { |
| if !u.unify(par.typ, arg.typ, assign) { |
| errorf(par.typ, arg.typ, arg) |
| return nil |
| } |
| } else if _, ok := par.typ.(*TypeParam); ok && !arg.isNil() { |
| // Since default types are all basic (i.e., non-composite) types, an |
| // untyped argument will never match a composite parameter type; the |
| // only parameter type it can possibly match against is a *TypeParam. |
| // Thus, for untyped arguments we only need to look at parameter types |
| // that are single type parameters. |
| // Also, untyped nils don't have a default type and can be ignored. |
| // Finally, it's not possible to have an alias type denoting a type |
| // parameter declared by the current function and use it in the same |
| // function signature; hence we don't need to Unalias before the |
| // .(*TypeParam) type assertion above. |
| untyped = append(untyped, i) |
| } |
| } |
| } |
| |
| if traceInference { |
| inferred := u.inferred(tparams) |
| u.tracef("=> %s ➞ %s\n", tparams, inferred) |
| } |
| |
| // --- 2 --- |
| // use information from type parameter constraints |
| |
| if traceInference { |
| u.tracef("== type parameters: %s", tparams) |
| } |
| |
| // Unify type parameters with their constraints as long |
| // as progress is being made. |
| // |
| // This is an O(n^2) algorithm where n is the number of |
| // type parameters: if there is progress, at least one |
| // type argument is inferred per iteration, and we have |
| // a doubly nested loop. |
| // |
| // In practice this is not a problem because the number |
| // of type parameters tends to be very small (< 5 or so). |
| // (It should be possible for unification to efficiently |
| // signal newly inferred type arguments; then the loops |
| // here could handle the respective type parameters only, |
| // but that will come at a cost of extra complexity which |
| // may not be worth it.) |
| for i := 0; ; i++ { |
| nn := u.unknowns() |
| if traceInference { |
| if i > 0 { |
| fmt.Println() |
| } |
| u.tracef("-- iteration %d", i) |
| } |
| |
| for _, tpar := range tparams { |
| tx := u.at(tpar) |
| core, single := coreTerm(tpar) |
| if traceInference { |
| u.tracef("-- type parameter %s = %s: core(%s) = %s, single = %v", tpar, tx, tpar, core, single) |
| } |
| |
| // If the type parameter's constraint has a core term (i.e., a core type with tilde information) |
| // try to unify the type parameter with that core type. |
| if core != nil { |
| // A type parameter can be unified with its constraint's core type in two cases. |
| switch { |
| case tx != nil: |
| if traceInference { |
| u.tracef("-> unify type parameter %s (type %s) with constraint core type %s", tpar, tx, core.typ) |
| } |
| // The corresponding type argument tx is known. There are 2 cases: |
| // 1) If the core type has a tilde, per spec requirement for tilde |
| // elements, the core type is an underlying (literal) type. |
| // And because of the tilde, the underlying type of tx must match |
| // against the core type. |
| // But because unify automatically matches a defined type against |
| // an underlying literal type, we can simply unify tx with the |
| // core type. |
| // 2) If the core type doesn't have a tilde, we also must unify tx |
| // with the core type. |
| if !u.unify(tx, core.typ, 0) { |
| // TODO(gri) Type parameters that appear in the constraint and |
| // for which we have type arguments inferred should |
| // use those type arguments for a better error message. |
| err.addf(posn, "%s (type %s) does not satisfy %s", tpar, tx, tpar.Constraint()) |
| return nil |
| } |
| case single && !core.tilde: |
| if traceInference { |
| u.tracef("-> set type parameter %s to constraint's common underlying type %s", tpar, core.typ) |
| } |
| // The corresponding type argument tx is unknown and the core term |
| // describes a single specific type and no tilde. |
| // In this case the type argument must be that single type; set it. |
| u.set(tpar, core.typ) |
| } |
| } |
| |
| // Independent of whether there is a core term, if the type argument tx is known |
| // it must implement the methods of the type constraint, possibly after unification |
| // of the relevant method signatures, otherwise tx cannot satisfy the constraint. |
| // This unification step may provide additional type arguments. |
| // |
| // Note: The type argument tx may be known but contain references to other type |
| // parameters (i.e., tx may still be parameterized). |
| // In this case the methods of tx don't correctly reflect the final method set |
| // and we may get a missing method error below. Skip this step in this case. |
| // |
| // TODO(gri) We should be able continue even with a parameterized tx if we add |
| // a simplify step beforehand (see below). This will require factoring out the |
| // simplify phase so we can call it from here. |
| if tx != nil && !isParameterized(tparams, tx) { |
| if traceInference { |
| u.tracef("-> unify type parameter %s (type %s) methods with constraint methods", tpar, tx) |
| } |
| // TODO(gri) Now that unification handles interfaces, this code can |
| // be reduced to calling u.unify(tx, tpar.iface(), assign) |
| // (which will compare signatures exactly as we do below). |
| // We leave it as is for now because missingMethod provides |
| // a failure cause which allows for a better error message. |
| // Eventually, unify should return an error with cause. |
| var cause string |
| constraint := tpar.iface() |
| if !check.hasAllMethods(tx, constraint, true, func(x, y Type) bool { return u.unify(x, y, exact) }, &cause) { |
| // TODO(gri) better error message (see TODO above) |
| err.addf(posn, "%s (type %s) does not satisfy %s %s", tpar, tx, tpar.Constraint(), cause) |
| return nil |
| } |
| } |
| } |
| |
| if u.unknowns() == nn { |
| break // no progress |
| } |
| } |
| |
| if traceInference { |
| inferred := u.inferred(tparams) |
| u.tracef("=> %s ➞ %s\n", tparams, inferred) |
| } |
| |
| // --- 3 --- |
| // use information from untyped constants |
| |
| if traceInference { |
| u.tracef("== untyped arguments: %v", untyped) |
| } |
| |
| // Some generic parameters with untyped arguments may have been given a type by now. |
| // Collect all remaining parameters that don't have a type yet and determine the |
| // maximum untyped type for each of those parameters, if possible. |
| var maxUntyped map[*TypeParam]Type // lazily allocated (we may not need it) |
| for _, index := range untyped { |
| tpar := params.At(index).typ.(*TypeParam) // is type parameter (no alias) by construction of untyped |
| if u.at(tpar) == nil { |
| arg := args[index] // arg corresponding to tpar |
| if maxUntyped == nil { |
| maxUntyped = make(map[*TypeParam]Type) |
| } |
| max := maxUntyped[tpar] |
| if max == nil { |
| max = arg.typ |
| } else { |
| m := maxType(max, arg.typ) |
| if m == nil { |
| err.addf(arg, "mismatched types %s and %s (cannot infer %s)", max, arg.typ, tpar) |
| return nil |
| } |
| max = m |
| } |
| maxUntyped[tpar] = max |
| } |
| } |
| // maxUntyped contains the maximum untyped type for each type parameter |
| // which doesn't have a type yet. Set the respective default types. |
| for tpar, typ := range maxUntyped { |
| d := Default(typ) |
| assert(isTyped(d)) |
| u.set(tpar, d) |
| } |
| |
| // --- simplify --- |
| |
| // u.inferred(tparams) now contains the incoming type arguments plus any additional type |
| // arguments which were inferred. The inferred non-nil entries may still contain |
| // references to other type parameters found in constraints. |
| // For instance, for [A any, B interface{ []C }, C interface{ *A }], if A == int |
| // was given, unification produced the type list [int, []C, *A]. We eliminate the |
| // remaining type parameters by substituting the type parameters in this type list |
| // until nothing changes anymore. |
| inferred = u.inferred(tparams) |
| if debug { |
| for i, targ := range targs { |
| assert(targ == nil || inferred[i] == targ) |
| } |
| } |
| |
| // The data structure of each (provided or inferred) type represents a graph, where |
| // each node corresponds to a type and each (directed) vertex points to a component |
| // type. The substitution process described above repeatedly replaces type parameter |
| // nodes in these graphs with the graphs of the types the type parameters stand for, |
| // which creates a new (possibly bigger) graph for each type. |
| // The substitution process will not stop if the replacement graph for a type parameter |
| // also contains that type parameter. |
| // For instance, for [A interface{ *A }], without any type argument provided for A, |
| // unification produces the type list [*A]. Substituting A in *A with the value for |
| // A will lead to infinite expansion by producing [**A], [****A], [********A], etc., |
| // because the graph A -> *A has a cycle through A. |
| // Generally, cycles may occur across multiple type parameters and inferred types |
| // (for instance, consider [P interface{ *Q }, Q interface{ func(P) }]). |
| // We eliminate cycles by walking the graphs for all type parameters. If a cycle |
| // through a type parameter is detected, killCycles nils out the respective type |
| // (in the inferred list) which kills the cycle, and marks the corresponding type |
| // parameter as not inferred. |
| // |
| // TODO(gri) If useful, we could report the respective cycle as an error. We don't |
| // do this now because type inference will fail anyway, and furthermore, |
| // constraints with cycles of this kind cannot currently be satisfied by |
| // any user-supplied type. But should that change, reporting an error |
| // would be wrong. |
| killCycles(tparams, inferred) |
| |
| // dirty tracks the indices of all types that may still contain type parameters. |
| // We know that nil type entries and entries corresponding to provided (non-nil) |
| // type arguments are clean, so exclude them from the start. |
| var dirty []int |
| for i, typ := range inferred { |
| if typ != nil && (i >= len(targs) || targs[i] == nil) { |
| dirty = append(dirty, i) |
| } |
| } |
| |
| for len(dirty) > 0 { |
| if traceInference { |
| u.tracef("-- simplify %s ➞ %s", tparams, inferred) |
| } |
| // TODO(gri) Instead of creating a new substMap for each iteration, |
| // provide an update operation for substMaps and only change when |
| // needed. Optimization. |
| smap := makeSubstMap(tparams, inferred) |
| n := 0 |
| for _, index := range dirty { |
| t0 := inferred[index] |
| if t1 := check.subst(nopos, t0, smap, nil, check.context()); t1 != t0 { |
| // t0 was simplified to t1. |
| // If t0 was a generic function, but the simplified signature t1 does |
| // not contain any type parameters anymore, the function is not generic |
| // anymore. Remove its type parameters. (go.dev/issue/59953) |
| // Note that if t0 was a signature, t1 must be a signature, and t1 |
| // can only be a generic signature if it originated from a generic |
| // function argument. Those signatures are never defined types and |
| // thus there is no need to call under below. |
| // TODO(gri) Consider doing this in Checker.subst. |
| // Then this would fall out automatically here and also |
| // in instantiation (where we also explicitly nil out |
| // type parameters). See the *Signature TODO in subst. |
| if sig, _ := t1.(*Signature); sig != nil && sig.TypeParams().Len() > 0 && !isParameterized(tparams, sig) { |
| sig.tparams = nil |
| } |
| inferred[index] = t1 |
| dirty[n] = index |
| n++ |
| } |
| } |
| dirty = dirty[:n] |
| } |
| |
| // Once nothing changes anymore, we may still have type parameters left; |
| // e.g., a constraint with core type *P may match a type parameter Q but |
| // we don't have any type arguments to fill in for *P or Q (go.dev/issue/45548). |
| // Don't let such inferences escape; instead treat them as unresolved. |
| for i, typ := range inferred { |
| if typ == nil || isParameterized(tparams, typ) { |
| obj := tparams[i].obj |
| err.addf(posn, "cannot infer %s (declared at %v)", obj.name, obj.pos) |
| return nil |
| } |
| } |
| |
| return |
| } |
| |
| // renameTParams renames the type parameters in the given type such that each type |
| // parameter is given a new identity. renameTParams returns the new type parameters |
| // and updated type. If the result type is unchanged from the argument type, none |
| // of the type parameters in tparams occurred in the type. |
| // If typ is a generic function, type parameters held with typ are not changed and |
| // must be updated separately if desired. |
| // The positions is only used for debug traces. |
| func (check *Checker) renameTParams(pos token.Pos, tparams []*TypeParam, typ Type) ([]*TypeParam, Type) { |
| // For the purpose of type inference we must differentiate type parameters |
| // occurring in explicit type or value function arguments from the type |
| // parameters we are solving for via unification because they may be the |
| // same in self-recursive calls: |
| // |
| // func f[P constraint](x P) { |
| // f(x) |
| // } |
| // |
| // In this example, without type parameter renaming, the P used in the |
| // instantiation f[P] has the same pointer identity as the P we are trying |
| // to solve for through type inference. This causes problems for type |
| // unification. Because any such self-recursive call is equivalent to |
| // a mutually recursive call, type parameter renaming can be used to |
| // create separate, disentangled type parameters. The above example |
| // can be rewritten into the following equivalent code: |
| // |
| // func f[P constraint](x P) { |
| // f2(x) |
| // } |
| // |
| // func f2[P2 constraint](x P2) { |
| // f(x) |
| // } |
| // |
| // Type parameter renaming turns the first example into the second |
| // example by renaming the type parameter P into P2. |
| if len(tparams) == 0 { |
| return nil, typ // nothing to do |
| } |
| |
| tparams2 := make([]*TypeParam, len(tparams)) |
| for i, tparam := range tparams { |
| tname := NewTypeName(tparam.Obj().Pos(), tparam.Obj().Pkg(), tparam.Obj().Name(), nil) |
| tparams2[i] = NewTypeParam(tname, nil) |
| tparams2[i].index = tparam.index // == i |
| } |
| |
| renameMap := makeRenameMap(tparams, tparams2) |
| for i, tparam := range tparams { |
| tparams2[i].bound = check.subst(pos, tparam.bound, renameMap, nil, check.context()) |
| } |
| |
| return tparams2, check.subst(pos, typ, renameMap, nil, check.context()) |
| } |
| |
| // typeParamsString produces a string containing all the type parameter names |
| // in list suitable for human consumption. |
| func typeParamsString(list []*TypeParam) string { |
| // common cases |
| n := len(list) |
| switch n { |
| case 0: |
| return "" |
| case 1: |
| return list[0].obj.name |
| case 2: |
| return list[0].obj.name + " and " + list[1].obj.name |
| } |
| |
| // general case (n > 2) |
| var buf strings.Builder |
| for i, tname := range list[:n-1] { |
| if i > 0 { |
| buf.WriteString(", ") |
| } |
| buf.WriteString(tname.obj.name) |
| } |
| buf.WriteString(", and ") |
| buf.WriteString(list[n-1].obj.name) |
| return buf.String() |
| } |
| |
| // isParameterized reports whether typ contains any of the type parameters of tparams. |
| // If typ is a generic function, isParameterized ignores the type parameter declarations; |
| // it only considers the signature proper (incoming and result parameters). |
| func isParameterized(tparams []*TypeParam, typ Type) bool { |
| w := tpWalker{ |
| tparams: tparams, |
| seen: make(map[Type]bool), |
| } |
| return w.isParameterized(typ) |
| } |
| |
| type tpWalker struct { |
| tparams []*TypeParam |
| seen map[Type]bool |
| } |
| |
| func (w *tpWalker) isParameterized(typ Type) (res bool) { |
| // detect cycles |
| if x, ok := w.seen[typ]; ok { |
| return x |
| } |
| w.seen[typ] = false |
| defer func() { |
| w.seen[typ] = res |
| }() |
| |
| switch t := typ.(type) { |
| case *Basic: |
| // nothing to do |
| |
| case *Alias: |
| return w.isParameterized(Unalias(t)) |
| |
| case *Array: |
| return w.isParameterized(t.elem) |
| |
| case *Slice: |
| return w.isParameterized(t.elem) |
| |
| case *Struct: |
| return w.varList(t.fields) |
| |
| case *Pointer: |
| return w.isParameterized(t.base) |
| |
| case *Tuple: |
| // This case does not occur from within isParameterized |
| // because tuples only appear in signatures where they |
| // are handled explicitly. But isParameterized is also |
| // called by Checker.callExpr with a function result tuple |
| // if instantiation failed (go.dev/issue/59890). |
| return t != nil && w.varList(t.vars) |
| |
| case *Signature: |
| // t.tparams may not be nil if we are looking at a signature |
| // of a generic function type (or an interface method) that is |
| // part of the type we're testing. We don't care about these type |
| // parameters. |
| // Similarly, the receiver of a method may declare (rather than |
| // use) type parameters, we don't care about those either. |
| // Thus, we only need to look at the input and result parameters. |
| return t.params != nil && w.varList(t.params.vars) || t.results != nil && w.varList(t.results.vars) |
| |
| case *Interface: |
| tset := t.typeSet() |
| for _, m := range tset.methods { |
| if w.isParameterized(m.typ) { |
| return true |
| } |
| } |
| return tset.is(func(t *term) bool { |
| return t != nil && w.isParameterized(t.typ) |
| }) |
| |
| case *Map: |
| return w.isParameterized(t.key) || w.isParameterized(t.elem) |
| |
| case *Chan: |
| return w.isParameterized(t.elem) |
| |
| case *Named: |
| for _, t := range t.TypeArgs().list() { |
| if w.isParameterized(t) { |
| return true |
| } |
| } |
| |
| case *TypeParam: |
| return slices.Index(w.tparams, t) >= 0 |
| |
| default: |
| panic(fmt.Sprintf("unexpected %T", typ)) |
| } |
| |
| return false |
| } |
| |
| func (w *tpWalker) varList(list []*Var) bool { |
| for _, v := range list { |
| if w.isParameterized(v.typ) { |
| return true |
| } |
| } |
| return false |
| } |
| |
| // If the type parameter has a single specific type S, coreTerm returns (S, true). |
| // Otherwise, if tpar has a core type T, it returns a term corresponding to that |
| // core type and false. In that case, if any term of tpar has a tilde, the core |
| // term has a tilde. In all other cases coreTerm returns (nil, false). |
| func coreTerm(tpar *TypeParam) (*term, bool) { |
| n := 0 |
| var single *term // valid if n == 1 |
| var tilde bool |
| tpar.is(func(t *term) bool { |
| if t == nil { |
| assert(n == 0) |
| return false // no terms |
| } |
| n++ |
| single = t |
| if t.tilde { |
| tilde = true |
| } |
| return true |
| }) |
| if n == 1 { |
| if debug { |
| u, _ := commonUnder(tpar, nil) |
| assert(under(single.typ) == u) |
| } |
| return single, true |
| } |
| if typ, _ := commonUnder(tpar, nil); typ != nil { |
| // A core type is always an underlying type. |
| // If any term of tpar has a tilde, we don't |
| // have a precise core type and we must return |
| // a tilde as well. |
| return &term{tilde, typ}, false |
| } |
| return nil, false |
| } |
| |
| // killCycles walks through the given type parameters and looks for cycles |
| // created by type parameters whose inferred types refer back to that type |
| // parameter, either directly or indirectly. If such a cycle is detected, |
| // it is killed by setting the corresponding inferred type to nil. |
| // |
| // TODO(gri) Determine if we can simply abort inference as soon as we have |
| // found a single cycle. |
| func killCycles(tparams []*TypeParam, inferred []Type) { |
| w := cycleFinder{tparams, inferred, make(map[Type]bool)} |
| for _, t := range tparams { |
| w.typ(t) // t != nil |
| } |
| } |
| |
| type cycleFinder struct { |
| tparams []*TypeParam |
| inferred []Type |
| seen map[Type]bool |
| } |
| |
| func (w *cycleFinder) typ(typ Type) { |
| typ = Unalias(typ) |
| if w.seen[typ] { |
| // We have seen typ before. If it is one of the type parameters |
| // in w.tparams, iterative substitution will lead to infinite expansion. |
| // Nil out the corresponding type which effectively kills the cycle. |
| if tpar, _ := typ.(*TypeParam); tpar != nil { |
| if i := slices.Index(w.tparams, tpar); i >= 0 { |
| // cycle through tpar |
| w.inferred[i] = nil |
| } |
| } |
| // If we don't have one of our type parameters, the cycle is due |
| // to an ordinary recursive type and we can just stop walking it. |
| return |
| } |
| w.seen[typ] = true |
| defer delete(w.seen, typ) |
| |
| switch t := typ.(type) { |
| case *Basic: |
| // nothing to do |
| |
| // *Alias: |
| // This case should not occur because of Unalias(typ) at the top. |
| |
| case *Array: |
| w.typ(t.elem) |
| |
| case *Slice: |
| w.typ(t.elem) |
| |
| case *Struct: |
| w.varList(t.fields) |
| |
| case *Pointer: |
| w.typ(t.base) |
| |
| // case *Tuple: |
| // This case should not occur because tuples only appear |
| // in signatures where they are handled explicitly. |
| |
| case *Signature: |
| if t.params != nil { |
| w.varList(t.params.vars) |
| } |
| if t.results != nil { |
| w.varList(t.results.vars) |
| } |
| |
| case *Union: |
| for _, t := range t.terms { |
| w.typ(t.typ) |
| } |
| |
| case *Interface: |
| for _, m := range t.methods { |
| w.typ(m.typ) |
| } |
| for _, t := range t.embeddeds { |
| w.typ(t) |
| } |
| |
| case *Map: |
| w.typ(t.key) |
| w.typ(t.elem) |
| |
| case *Chan: |
| w.typ(t.elem) |
| |
| case *Named: |
| for _, tpar := range t.TypeArgs().list() { |
| w.typ(tpar) |
| } |
| |
| case *TypeParam: |
| if i := slices.Index(w.tparams, t); i >= 0 && w.inferred[i] != nil { |
| w.typ(w.inferred[i]) |
| } |
| |
| default: |
| panic(fmt.Sprintf("unexpected %T", typ)) |
| } |
| } |
| |
| func (w *cycleFinder) varList(list []*Var) { |
| for _, v := range list { |
| w.typ(v.typ) |
| } |
| } |