blob: 5b6de9425a583f17c67b8c2da7de5b2a3d17dd0d [file] [log] [blame]
// Copyright 2018 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package par implements parallel execution helpers.
package par
import (
"errors"
"math/rand"
"sync"
"sync/atomic"
)
// Work manages a set of work items to be executed in parallel, at most once each.
// The items in the set must all be valid map keys.
type Work[T comparable] struct {
f func(T) // function to run for each item
running int // total number of runners
mu sync.Mutex
added map[T]bool // items added to set
todo []T // items yet to be run
wait sync.Cond // wait when todo is empty
waiting int // number of runners waiting for todo
}
func (w *Work[T]) init() {
if w.added == nil {
w.added = make(map[T]bool)
}
}
// Add adds item to the work set, if it hasn't already been added.
func (w *Work[T]) Add(item T) {
w.mu.Lock()
w.init()
if !w.added[item] {
w.added[item] = true
w.todo = append(w.todo, item)
if w.waiting > 0 {
w.wait.Signal()
}
}
w.mu.Unlock()
}
// Do runs f in parallel on items from the work set,
// with at most n invocations of f running at a time.
// It returns when everything added to the work set has been processed.
// At least one item should have been added to the work set
// before calling Do (or else Do returns immediately),
// but it is allowed for f(item) to add new items to the set.
// Do should only be used once on a given Work.
func (w *Work[T]) Do(n int, f func(item T)) {
if n < 1 {
panic("par.Work.Do: n < 1")
}
if w.running >= 1 {
panic("par.Work.Do: already called Do")
}
w.running = n
w.f = f
w.wait.L = &w.mu
for i := 0; i < n-1; i++ {
go w.runner()
}
w.runner()
}
// runner executes work in w until both nothing is left to do
// and all the runners are waiting for work.
// (Then all the runners return.)
func (w *Work[T]) runner() {
for {
// Wait for something to do.
w.mu.Lock()
for len(w.todo) == 0 {
w.waiting++
if w.waiting == w.running {
// All done.
w.wait.Broadcast()
w.mu.Unlock()
return
}
w.wait.Wait()
w.waiting--
}
// Pick something to do at random,
// to eliminate pathological contention
// in case items added at about the same time
// are most likely to contend.
i := rand.Intn(len(w.todo))
item := w.todo[i]
w.todo[i] = w.todo[len(w.todo)-1]
w.todo = w.todo[:len(w.todo)-1]
w.mu.Unlock()
w.f(item)
}
}
// ErrCache is like Cache except that it also stores
// an error value alongside the cached value V.
type ErrCache[K comparable, V any] struct {
Cache[K, errValue[V]]
}
type errValue[V any] struct {
v V
err error
}
func (c *ErrCache[K, V]) Do(key K, f func() (V, error)) (V, error) {
v := c.Cache.Do(key, func() errValue[V] {
v, err := f()
return errValue[V]{v, err}
})
return v.v, v.err
}
var ErrCacheEntryNotFound = errors.New("cache entry not found")
// Get returns the cached result associated with key.
// It returns ErrCacheEntryNotFound if there is no such result.
func (c *ErrCache[K, V]) Get(key K) (V, error) {
v, ok := c.Cache.Get(key)
if !ok {
v.err = ErrCacheEntryNotFound
}
return v.v, v.err
}
// Cache runs an action once per key and caches the result.
type Cache[K comparable, V any] struct {
m sync.Map
}
type cacheEntry[V any] struct {
done atomic.Bool
mu sync.Mutex
result V
}
// Do calls the function f if and only if Do is being called for the first time with this key.
// No call to Do with a given key returns until the one call to f returns.
// Do returns the value returned by the one call to f.
func (c *Cache[K, V]) Do(key K, f func() V) V {
entryIface, ok := c.m.Load(key)
if !ok {
entryIface, _ = c.m.LoadOrStore(key, new(cacheEntry[V]))
}
e := entryIface.(*cacheEntry[V])
if !e.done.Load() {
e.mu.Lock()
if !e.done.Load() {
e.result = f()
e.done.Store(true)
}
e.mu.Unlock()
}
return e.result
}
// Get returns the cached result associated with key
// and reports whether there is such a result.
//
// If the result for key is being computed, Get does not wait for the computation to finish.
func (c *Cache[K, V]) Get(key K) (V, bool) {
entryIface, ok := c.m.Load(key)
if !ok {
return *new(V), false
}
e := entryIface.(*cacheEntry[V])
if !e.done.Load() {
return *new(V), false
}
return e.result, true
}
// Clear removes all entries in the cache.
//
// Concurrent calls to Get may return old values. Concurrent calls to Do
// may return old values or store results in entries that have been deleted.
//
// TODO(jayconrod): Delete this after the package cache clearing functions
// in internal/load have been removed.
func (c *Cache[K, V]) Clear() {
c.m.Range(func(key, value any) bool {
c.m.Delete(key)
return true
})
}
// Delete removes an entry from the map. It is safe to call Delete for an
// entry that does not exist. Delete will return quickly, even if the result
// for a key is still being computed; the computation will finish, but the
// result won't be accessible through the cache.
//
// TODO(jayconrod): Delete this after the package cache clearing functions
// in internal/load have been removed.
func (c *Cache[K, V]) Delete(key K) {
c.m.Delete(key)
}
// DeleteIf calls pred for each key in the map. If pred returns true for a key,
// DeleteIf removes the corresponding entry. If the result for a key is
// still being computed, DeleteIf will remove the entry without waiting for
// the computation to finish. The result won't be accessible through the cache.
//
// TODO(jayconrod): Delete this after the package cache clearing functions
// in internal/load have been removed.
func (c *Cache[K, V]) DeleteIf(pred func(key K) bool) {
c.m.Range(func(key, _ any) bool {
if key := key.(K); pred(key) {
c.Delete(key)
}
return true
})
}