blob: ec012c24eba93832dc0341622dbe20188fd02378 [file] [log] [blame]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements type-checking of identifiers and type expressions.
package types2
import (
"cmd/compile/internal/syntax"
"fmt"
"go/constant"
. "internal/types/errors"
"strings"
)
// ident type-checks identifier e and initializes x with the value or type of e.
// If an error occurred, x.mode is set to invalid.
// For the meaning of def, see Checker.definedType, below.
// If wantType is set, the identifier e is expected to denote a type.
func (check *Checker) ident(x *operand, e *syntax.Name, def *TypeName, wantType bool) {
x.mode = invalid
x.expr = e
// Note that we cannot use check.lookup here because the returned scope
// may be different from obj.Parent(). See also Scope.LookupParent doc.
scope, obj := check.scope.LookupParent(e.Value, check.pos)
switch obj {
case nil:
if e.Value == "_" {
// Blank identifiers are never declared, but the current identifier may
// be a placeholder for a receiver type parameter. In this case we can
// resolve its type and object from Checker.recvTParamMap.
if tpar := check.recvTParamMap[e]; tpar != nil {
x.mode = typexpr
x.typ = tpar
} else {
check.error(e, InvalidBlank, "cannot use _ as value or type")
}
} else {
check.errorf(e, UndeclaredName, "undefined: %s", e.Value)
}
return
case universeAny, universeComparable:
if !check.verifyVersionf(e, go1_18, "predeclared %s", e.Value) {
return // avoid follow-on errors
}
}
check.recordUse(e, obj)
// If we want a type but don't have one, stop right here and avoid potential problems
// with missing underlying types. This also gives better error messages in some cases
// (see go.dev/issue/65344).
_, gotType := obj.(*TypeName)
if !gotType && wantType {
check.errorf(e, NotAType, "%s is not a type", obj.Name())
// avoid "declared but not used" errors
// (don't use Checker.use - we don't want to evaluate too much)
if v, _ := obj.(*Var); v != nil && v.pkg == check.pkg /* see Checker.use1 */ {
v.used = true
}
return
}
// Type-check the object.
// Only call Checker.objDecl if the object doesn't have a type yet
// (in which case we must actually determine it) or the object is a
// TypeName and we also want a type (in which case we might detect
// a cycle which needs to be reported). Otherwise we can skip the
// call and avoid a possible cycle error in favor of the more
// informative "not a type/value" error that this function's caller
// will issue (see go.dev/issue/25790).
typ := obj.Type()
if typ == nil || gotType && wantType {
check.objDecl(obj, def)
typ = obj.Type() // type must have been assigned by Checker.objDecl
}
assert(typ != nil)
// The object may have been dot-imported.
// If so, mark the respective package as used.
// (This code is only needed for dot-imports. Without them,
// we only have to mark variables, see *Var case below).
if pkgName := check.dotImportMap[dotImportKey{scope, obj.Name()}]; pkgName != nil {
pkgName.used = true
}
switch obj := obj.(type) {
case *PkgName:
check.errorf(e, InvalidPkgUse, "use of package %s not in selector", quote(obj.name))
return
case *Const:
check.addDeclDep(obj)
if !isValid(typ) {
return
}
if obj == universeIota {
if check.iota == nil {
check.error(e, InvalidIota, "cannot use iota outside constant declaration")
return
}
x.val = check.iota
} else {
x.val = obj.val
}
assert(x.val != nil)
x.mode = constant_
case *TypeName:
if !check.conf.EnableAlias && check.isBrokenAlias(obj) {
check.errorf(e, InvalidDeclCycle, "invalid use of type alias %s in recursive type (see go.dev/issue/50729)", quote(obj.name))
return
}
x.mode = typexpr
case *Var:
// It's ok to mark non-local variables, but ignore variables
// from other packages to avoid potential race conditions with
// dot-imported variables.
if obj.pkg == check.pkg {
obj.used = true
}
check.addDeclDep(obj)
if !isValid(typ) {
return
}
x.mode = variable
case *Func:
check.addDeclDep(obj)
x.mode = value
case *Builtin:
x.id = obj.id
x.mode = builtin
case *Nil:
x.mode = nilvalue
default:
panic("unreachable")
}
x.typ = typ
}
// typ type-checks the type expression e and returns its type, or Typ[Invalid].
// The type must not be an (uninstantiated) generic type.
func (check *Checker) typ(e syntax.Expr) Type {
return check.definedType(e, nil)
}
// varType type-checks the type expression e and returns its type, or Typ[Invalid].
// The type must not be an (uninstantiated) generic type and it must not be a
// constraint interface.
func (check *Checker) varType(e syntax.Expr) Type {
typ := check.definedType(e, nil)
check.validVarType(e, typ)
return typ
}
// validVarType reports an error if typ is a constraint interface.
// The expression e is used for error reporting, if any.
func (check *Checker) validVarType(e syntax.Expr, typ Type) {
// If we have a type parameter there's nothing to do.
if isTypeParam(typ) {
return
}
// We don't want to call under() or complete interfaces while we are in
// the middle of type-checking parameter declarations that might belong
// to interface methods. Delay this check to the end of type-checking.
check.later(func() {
if t, _ := under(typ).(*Interface); t != nil {
pos := syntax.StartPos(e)
tset := computeInterfaceTypeSet(check, pos, t) // TODO(gri) is this the correct position?
if !tset.IsMethodSet() {
if tset.comparable {
check.softErrorf(pos, MisplacedConstraintIface, "cannot use type %s outside a type constraint: interface is (or embeds) comparable", typ)
} else {
check.softErrorf(pos, MisplacedConstraintIface, "cannot use type %s outside a type constraint: interface contains type constraints", typ)
}
}
}
}).describef(e, "check var type %s", typ)
}
// definedType is like typ but also accepts a type name def.
// If def != nil, e is the type specification for the type named def, declared
// in a type declaration, and def.typ.underlying will be set to the type of e
// before any components of e are type-checked.
func (check *Checker) definedType(e syntax.Expr, def *TypeName) Type {
typ := check.typInternal(e, def)
assert(isTyped(typ))
if isGeneric(typ) {
check.errorf(e, WrongTypeArgCount, "cannot use generic type %s without instantiation", typ)
typ = Typ[Invalid]
}
check.recordTypeAndValue(e, typexpr, typ, nil)
return typ
}
// genericType is like typ but the type must be an (uninstantiated) generic
// type. If cause is non-nil and the type expression was a valid type but not
// generic, cause will be populated with a message describing the error.
func (check *Checker) genericType(e syntax.Expr, cause *string) Type {
typ := check.typInternal(e, nil)
assert(isTyped(typ))
if isValid(typ) && !isGeneric(typ) {
if cause != nil {
*cause = check.sprintf("%s is not a generic type", typ)
}
typ = Typ[Invalid]
}
// TODO(gri) what is the correct call below?
check.recordTypeAndValue(e, typexpr, typ, nil)
return typ
}
// goTypeName returns the Go type name for typ and
// removes any occurrences of "types2." from that name.
func goTypeName(typ Type) string {
return strings.ReplaceAll(fmt.Sprintf("%T", typ), "types2.", "")
}
// typInternal drives type checking of types.
// Must only be called by definedType or genericType.
func (check *Checker) typInternal(e0 syntax.Expr, def *TypeName) (T Type) {
if check.conf.Trace {
check.trace(e0.Pos(), "-- type %s", e0)
check.indent++
defer func() {
check.indent--
var under Type
if T != nil {
// Calling under() here may lead to endless instantiations.
// Test case: type T[P any] *T[P]
under = safeUnderlying(T)
}
if T == under {
check.trace(e0.Pos(), "=> %s // %s", T, goTypeName(T))
} else {
check.trace(e0.Pos(), "=> %s (under = %s) // %s", T, under, goTypeName(T))
}
}()
}
switch e := e0.(type) {
case *syntax.BadExpr:
// ignore - error reported before
case *syntax.Name:
var x operand
check.ident(&x, e, def, true)
switch x.mode {
case typexpr:
typ := x.typ
setDefType(def, typ)
return typ
case invalid:
// ignore - error reported before
case novalue:
check.errorf(&x, NotAType, "%s used as type", &x)
default:
check.errorf(&x, NotAType, "%s is not a type", &x)
}
case *syntax.SelectorExpr:
var x operand
check.selector(&x, e, def, true)
switch x.mode {
case typexpr:
typ := x.typ
setDefType(def, typ)
return typ
case invalid:
// ignore - error reported before
case novalue:
check.errorf(&x, NotAType, "%s used as type", &x)
default:
check.errorf(&x, NotAType, "%s is not a type", &x)
}
case *syntax.IndexExpr:
check.verifyVersionf(e, go1_18, "type instantiation")
return check.instantiatedType(e.X, syntax.UnpackListExpr(e.Index), def)
case *syntax.ParenExpr:
// Generic types must be instantiated before they can be used in any form.
// Consequently, generic types cannot be parenthesized.
return check.definedType(e.X, def)
case *syntax.ArrayType:
typ := new(Array)
setDefType(def, typ)
if e.Len != nil {
typ.len = check.arrayLength(e.Len)
} else {
// [...]array
check.error(e, BadDotDotDotSyntax, "invalid use of [...] array (outside a composite literal)")
typ.len = -1
}
typ.elem = check.varType(e.Elem)
if typ.len >= 0 {
return typ
}
// report error if we encountered [...]
case *syntax.SliceType:
typ := new(Slice)
setDefType(def, typ)
typ.elem = check.varType(e.Elem)
return typ
case *syntax.DotsType:
// dots are handled explicitly where they are legal
// (array composite literals and parameter lists)
check.error(e, InvalidDotDotDot, "invalid use of '...'")
check.use(e.Elem)
case *syntax.StructType:
typ := new(Struct)
setDefType(def, typ)
check.structType(typ, e)
return typ
case *syntax.Operation:
if e.Op == syntax.Mul && e.Y == nil {
typ := new(Pointer)
typ.base = Typ[Invalid] // avoid nil base in invalid recursive type declaration
setDefType(def, typ)
typ.base = check.varType(e.X)
// If typ.base is invalid, it's unlikely that *base is particularly
// useful - even a valid dereferenciation will lead to an invalid
// type again, and in some cases we get unexpected follow-on errors
// (e.g., go.dev/issue/49005). Return an invalid type instead.
if !isValid(typ.base) {
return Typ[Invalid]
}
return typ
}
check.errorf(e0, NotAType, "%s is not a type", e0)
check.use(e0)
case *syntax.FuncType:
typ := new(Signature)
setDefType(def, typ)
check.funcType(typ, nil, nil, e)
return typ
case *syntax.InterfaceType:
typ := check.newInterface()
setDefType(def, typ)
check.interfaceType(typ, e, def)
return typ
case *syntax.MapType:
typ := new(Map)
setDefType(def, typ)
typ.key = check.varType(e.Key)
typ.elem = check.varType(e.Value)
// spec: "The comparison operators == and != must be fully defined
// for operands of the key type; thus the key type must not be a
// function, map, or slice."
//
// Delay this check because it requires fully setup types;
// it is safe to continue in any case (was go.dev/issue/6667).
check.later(func() {
if !Comparable(typ.key) {
var why string
if isTypeParam(typ.key) {
why = " (missing comparable constraint)"
}
check.errorf(e.Key, IncomparableMapKey, "invalid map key type %s%s", typ.key, why)
}
}).describef(e.Key, "check map key %s", typ.key)
return typ
case *syntax.ChanType:
typ := new(Chan)
setDefType(def, typ)
dir := SendRecv
switch e.Dir {
case 0:
// nothing to do
case syntax.SendOnly:
dir = SendOnly
case syntax.RecvOnly:
dir = RecvOnly
default:
check.errorf(e, InvalidSyntaxTree, "unknown channel direction %d", e.Dir)
// ok to continue
}
typ.dir = dir
typ.elem = check.varType(e.Elem)
return typ
default:
check.errorf(e0, NotAType, "%s is not a type", e0)
check.use(e0)
}
typ := Typ[Invalid]
setDefType(def, typ)
return typ
}
func setDefType(def *TypeName, typ Type) {
if def != nil {
switch t := def.typ.(type) {
case *Alias:
// t.fromRHS should always be set, either to an invalid type
// in the beginning, or to typ in certain cyclic declarations.
if t.fromRHS != Typ[Invalid] && t.fromRHS != typ {
panic(sprintf(nil, true, "t.fromRHS = %s, typ = %s\n", t.fromRHS, typ))
}
t.fromRHS = typ
case *Basic:
assert(t == Typ[Invalid])
case *Named:
t.underlying = typ
default:
panic(fmt.Sprintf("unexpected type %T", t))
}
}
}
func (check *Checker) instantiatedType(x syntax.Expr, xlist []syntax.Expr, def *TypeName) (res Type) {
if check.conf.Trace {
check.trace(x.Pos(), "-- instantiating type %s with %s", x, xlist)
check.indent++
defer func() {
check.indent--
// Don't format the underlying here. It will always be nil.
check.trace(x.Pos(), "=> %s", res)
}()
}
var cause string
gtyp := check.genericType(x, &cause)
if cause != "" {
check.errorf(x, NotAGenericType, invalidOp+"%s%s (%s)", x, xlist, cause)
}
if !isValid(gtyp) {
return gtyp // error already reported
}
orig := asNamed(gtyp)
if orig == nil {
panic(fmt.Sprintf("%v: cannot instantiate %v", x.Pos(), gtyp))
}
// evaluate arguments
targs := check.typeList(xlist)
if targs == nil {
setDefType(def, Typ[Invalid]) // avoid errors later due to lazy instantiation
return Typ[Invalid]
}
// create the instance
inst := asNamed(check.instance(x.Pos(), orig, targs, nil, check.context()))
setDefType(def, inst)
// orig.tparams may not be set up, so we need to do expansion later.
check.later(func() {
// This is an instance from the source, not from recursive substitution,
// and so it must be resolved during type-checking so that we can report
// errors.
check.recordInstance(x, inst.TypeArgs().list(), inst)
if check.validateTArgLen(x.Pos(), inst.obj.name, inst.TypeParams().Len(), inst.TypeArgs().Len()) {
if i, err := check.verify(x.Pos(), inst.TypeParams().list(), inst.TypeArgs().list(), check.context()); err != nil {
// best position for error reporting
pos := x.Pos()
if i < len(xlist) {
pos = syntax.StartPos(xlist[i])
}
check.softErrorf(pos, InvalidTypeArg, "%s", err)
} else {
check.mono.recordInstance(check.pkg, x.Pos(), inst.TypeParams().list(), inst.TypeArgs().list(), xlist)
}
}
// TODO(rfindley): remove this call: we don't need to call validType here,
// as cycles can only occur for types used inside a Named type declaration,
// and so it suffices to call validType from declared types.
check.validType(inst)
}).describef(x, "resolve instance %s", inst)
return inst
}
// arrayLength type-checks the array length expression e
// and returns the constant length >= 0, or a value < 0
// to indicate an error (and thus an unknown length).
func (check *Checker) arrayLength(e syntax.Expr) int64 {
// If e is an identifier, the array declaration might be an
// attempt at a parameterized type declaration with missing
// constraint. Provide an error message that mentions array
// length.
if name, _ := e.(*syntax.Name); name != nil {
obj := check.lookup(name.Value)
if obj == nil {
check.errorf(name, InvalidArrayLen, "undefined array length %s or missing type constraint", name.Value)
return -1
}
if _, ok := obj.(*Const); !ok {
check.errorf(name, InvalidArrayLen, "invalid array length %s", name.Value)
return -1
}
}
var x operand
check.expr(nil, &x, e)
if x.mode != constant_ {
if x.mode != invalid {
check.errorf(&x, InvalidArrayLen, "array length %s must be constant", &x)
}
return -1
}
if isUntyped(x.typ) || isInteger(x.typ) {
if val := constant.ToInt(x.val); val.Kind() == constant.Int {
if representableConst(val, check, Typ[Int], nil) {
if n, ok := constant.Int64Val(val); ok && n >= 0 {
return n
}
}
}
}
var msg string
if isInteger(x.typ) {
msg = "invalid array length %s"
} else {
msg = "array length %s must be integer"
}
check.errorf(&x, InvalidArrayLen, msg, &x)
return -1
}
// typeList provides the list of types corresponding to the incoming expression list.
// If an error occurred, the result is nil, but all list elements were type-checked.
func (check *Checker) typeList(list []syntax.Expr) []Type {
res := make([]Type, len(list)) // res != nil even if len(list) == 0
for i, x := range list {
t := check.varType(x)
if !isValid(t) {
res = nil
}
if res != nil {
res[i] = t
}
}
return res
}