blob: ee7e2e86836a89cf18eb7aa40579c877f19ad751 [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements the Check function, which drives type-checking.
package types2
import (
"cmd/compile/internal/syntax"
"fmt"
"go/constant"
"internal/godebug"
. "internal/types/errors"
)
// nopos indicates an unknown position
var nopos syntax.Pos
// debugging/development support
const debug = false // leave on during development
// gotypesalias controls the use of Alias types.
// As of Apr 16 2024 they are used by default.
// To disable their use, set GODEBUG to gotypesalias=0.
// This GODEBUG flag will be removed in the near future (tentatively Go 1.24).
var gotypesalias = godebug.New("gotypesalias")
// exprInfo stores information about an untyped expression.
type exprInfo struct {
isLhs bool // expression is lhs operand of a shift with delayed type-check
mode operandMode
typ *Basic
val constant.Value // constant value; or nil (if not a constant)
}
// An environment represents the environment within which an object is
// type-checked.
type environment struct {
decl *declInfo // package-level declaration whose init expression/function body is checked
scope *Scope // top-most scope for lookups
pos syntax.Pos // if valid, identifiers are looked up as if at position pos (used by Eval)
iota constant.Value // value of iota in a constant declaration; nil otherwise
errpos syntax.Pos // if valid, identifier position of a constant with inherited initializer
inTParamList bool // set if inside a type parameter list
sig *Signature // function signature if inside a function; nil otherwise
isPanic map[*syntax.CallExpr]bool // set of panic call expressions (used for termination check)
hasLabel bool // set if a function makes use of labels (only ~1% of functions); unused outside functions
hasCallOrRecv bool // set if an expression contains a function call or channel receive operation
}
// lookup looks up name in the current environment and returns the matching object, or nil.
func (env *environment) lookup(name string) Object {
_, obj := env.scope.LookupParent(name, env.pos)
return obj
}
// An importKey identifies an imported package by import path and source directory
// (directory containing the file containing the import). In practice, the directory
// may always be the same, or may not matter. Given an (import path, directory), an
// importer must always return the same package (but given two different import paths,
// an importer may still return the same package by mapping them to the same package
// paths).
type importKey struct {
path, dir string
}
// A dotImportKey describes a dot-imported object in the given scope.
type dotImportKey struct {
scope *Scope
name string
}
// An action describes a (delayed) action.
type action struct {
f func() // action to be executed
desc *actionDesc // action description; may be nil, requires debug to be set
}
// If debug is set, describef sets a printf-formatted description for action a.
// Otherwise, it is a no-op.
func (a *action) describef(pos poser, format string, args ...interface{}) {
if debug {
a.desc = &actionDesc{pos, format, args}
}
}
// An actionDesc provides information on an action.
// For debugging only.
type actionDesc struct {
pos poser
format string
args []interface{}
}
// A Checker maintains the state of the type checker.
// It must be created with NewChecker.
type Checker struct {
// package information
// (initialized by NewChecker, valid for the life-time of checker)
conf *Config
ctxt *Context // context for de-duplicating instances
pkg *Package
*Info
version goVersion // accepted language version
nextID uint64 // unique Id for type parameters (first valid Id is 1)
objMap map[Object]*declInfo // maps package-level objects and (non-interface) methods to declaration info
impMap map[importKey]*Package // maps (import path, source directory) to (complete or fake) package
// see TODO in validtype.go
// valids instanceLookup // valid *Named (incl. instantiated) types per the validType check
// pkgPathMap maps package names to the set of distinct import paths we've
// seen for that name, anywhere in the import graph. It is used for
// disambiguating package names in error messages.
//
// pkgPathMap is allocated lazily, so that we don't pay the price of building
// it on the happy path. seenPkgMap tracks the packages that we've already
// walked.
pkgPathMap map[string]map[string]bool
seenPkgMap map[*Package]bool
// information collected during type-checking of a set of package files
// (initialized by Files, valid only for the duration of check.Files;
// maps and lists are allocated on demand)
files []*syntax.File // list of package files
versions map[*syntax.PosBase]string // maps files to version strings (each file has an entry); shared with Info.FileVersions if present
imports []*PkgName // list of imported packages
dotImportMap map[dotImportKey]*PkgName // maps dot-imported objects to the package they were dot-imported through
recvTParamMap map[*syntax.Name]*TypeParam // maps blank receiver type parameters to their type
brokenAliases map[*TypeName]bool // set of aliases with broken (not yet determined) types
unionTypeSets map[*Union]*_TypeSet // computed type sets for union types
mono monoGraph // graph for detecting non-monomorphizable instantiation loops
firstErr error // first error encountered
methods map[*TypeName][]*Func // maps package scope type names to associated non-blank (non-interface) methods
untyped map[syntax.Expr]exprInfo // map of expressions without final type
delayed []action // stack of delayed action segments; segments are processed in FIFO order
objPath []Object // path of object dependencies during type inference (for cycle reporting)
cleaners []cleaner // list of types that may need a final cleanup at the end of type-checking
// environment within which the current object is type-checked (valid only
// for the duration of type-checking a specific object)
environment
// debugging
indent int // indentation for tracing
}
// addDeclDep adds the dependency edge (check.decl -> to) if check.decl exists
func (check *Checker) addDeclDep(to Object) {
from := check.decl
if from == nil {
return // not in a package-level init expression
}
if _, found := check.objMap[to]; !found {
return // to is not a package-level object
}
from.addDep(to)
}
// Note: The following three alias-related functions are only used
// when Alias types are not enabled.
// brokenAlias records that alias doesn't have a determined type yet.
// It also sets alias.typ to Typ[Invalid].
// Not used if check.conf.EnableAlias is set.
func (check *Checker) brokenAlias(alias *TypeName) {
assert(!check.conf.EnableAlias)
if check.brokenAliases == nil {
check.brokenAliases = make(map[*TypeName]bool)
}
check.brokenAliases[alias] = true
alias.typ = Typ[Invalid]
}
// validAlias records that alias has the valid type typ (possibly Typ[Invalid]).
func (check *Checker) validAlias(alias *TypeName, typ Type) {
assert(!check.conf.EnableAlias)
delete(check.brokenAliases, alias)
alias.typ = typ
}
// isBrokenAlias reports whether alias doesn't have a determined type yet.
func (check *Checker) isBrokenAlias(alias *TypeName) bool {
assert(!check.conf.EnableAlias)
return check.brokenAliases[alias]
}
func (check *Checker) rememberUntyped(e syntax.Expr, lhs bool, mode operandMode, typ *Basic, val constant.Value) {
m := check.untyped
if m == nil {
m = make(map[syntax.Expr]exprInfo)
check.untyped = m
}
m[e] = exprInfo{lhs, mode, typ, val}
}
// later pushes f on to the stack of actions that will be processed later;
// either at the end of the current statement, or in case of a local constant
// or variable declaration, before the constant or variable is in scope
// (so that f still sees the scope before any new declarations).
// later returns the pushed action so one can provide a description
// via action.describef for debugging, if desired.
func (check *Checker) later(f func()) *action {
i := len(check.delayed)
check.delayed = append(check.delayed, action{f: f})
return &check.delayed[i]
}
// push pushes obj onto the object path and returns its index in the path.
func (check *Checker) push(obj Object) int {
check.objPath = append(check.objPath, obj)
return len(check.objPath) - 1
}
// pop pops and returns the topmost object from the object path.
func (check *Checker) pop() Object {
i := len(check.objPath) - 1
obj := check.objPath[i]
check.objPath[i] = nil
check.objPath = check.objPath[:i]
return obj
}
type cleaner interface {
cleanup()
}
// needsCleanup records objects/types that implement the cleanup method
// which will be called at the end of type-checking.
func (check *Checker) needsCleanup(c cleaner) {
check.cleaners = append(check.cleaners, c)
}
// NewChecker returns a new Checker instance for a given package.
// Package files may be added incrementally via checker.Files.
func NewChecker(conf *Config, pkg *Package, info *Info) *Checker {
// make sure we have a configuration
if conf == nil {
conf = new(Config)
}
// make sure we have an info struct
if info == nil {
info = new(Info)
}
// Note: clients may call NewChecker with the Unsafe package, which is
// globally shared and must not be mutated. Therefore NewChecker must not
// mutate *pkg.
//
// (previously, pkg.goVersion was mutated here: go.dev/issue/61212)
return &Checker{
conf: conf,
ctxt: conf.Context,
pkg: pkg,
Info: info,
version: asGoVersion(conf.GoVersion),
objMap: make(map[Object]*declInfo),
impMap: make(map[importKey]*Package),
}
}
// initFiles initializes the files-specific portion of checker.
// The provided files must all belong to the same package.
func (check *Checker) initFiles(files []*syntax.File) {
// start with a clean slate (check.Files may be called multiple times)
check.files = nil
check.imports = nil
check.dotImportMap = nil
check.firstErr = nil
check.methods = nil
check.untyped = nil
check.delayed = nil
check.objPath = nil
check.cleaners = nil
// determine package name and collect valid files
pkg := check.pkg
for _, file := range files {
switch name := file.PkgName.Value; pkg.name {
case "":
if name != "_" {
pkg.name = name
} else {
check.error(file.PkgName, BlankPkgName, "invalid package name _")
}
fallthrough
case name:
check.files = append(check.files, file)
default:
check.errorf(file, MismatchedPkgName, "package %s; expected %s", quote(name), quote(pkg.name))
// ignore this file
}
}
// reuse Info.FileVersions if provided
versions := check.Info.FileVersions
if versions == nil {
versions = make(map[*syntax.PosBase]string)
}
check.versions = versions
pkgVersionOk := check.version.isValid()
if pkgVersionOk && len(files) > 0 && check.version.cmp(go_current) > 0 {
check.errorf(files[0], TooNew, "package requires newer Go version %v (application built with %v)",
check.version, go_current)
}
downgradeOk := check.version.cmp(go1_21) >= 0
// determine Go version for each file
for _, file := range check.files {
// use unaltered Config.GoVersion by default
// (This version string may contain dot-release numbers as in go1.20.1,
// unlike file versions which are Go language versions only, if valid.)
v := check.conf.GoVersion
fileVersion := asGoVersion(file.GoVersion)
if fileVersion.isValid() {
// use the file version, if applicable
// (file versions are either the empty string or of the form go1.dd)
if pkgVersionOk {
cmp := fileVersion.cmp(check.version)
// Go 1.21 introduced the feature of setting the go.mod
// go line to an early version of Go and allowing //go:build lines
// to “upgrade” (cmp > 0) the Go version in a given file.
// We can do that backwards compatibly.
//
// Go 1.21 also introduced the feature of allowing //go:build lines
// to “downgrade” (cmp < 0) the Go version in a given file.
// That can't be done compatibly in general, since before the
// build lines were ignored and code got the module's Go version.
// To work around this, downgrades are only allowed when the
// module's Go version is Go 1.21 or later.
//
// If there is no valid check.version, then we don't really know what
// Go version to apply.
// Legacy tools may do this, and they historically have accepted everything.
// Preserve that behavior by ignoring //go:build constraints entirely in that
// case (!pkgVersionOk).
if cmp > 0 || cmp < 0 && downgradeOk {
v = file.GoVersion
}
}
// Report a specific error for each tagged file that's too new.
// (Normally the build system will have filtered files by version,
// but clients can present arbitrary files to the type checker.)
if fileVersion.cmp(go_current) > 0 {
// Use position of 'package [p]' for types/types2 consistency.
// (Ideally we would use the //build tag itself.)
check.errorf(file.PkgName, TooNew, "file requires newer Go version %v", fileVersion)
}
}
versions[base(file.Pos())] = v // base(file.Pos()) may be nil for tests
}
}
// A bailout panic is used for early termination.
type bailout struct{}
func (check *Checker) handleBailout(err *error) {
switch p := recover().(type) {
case nil, bailout:
// normal return or early exit
*err = check.firstErr
default:
// re-panic
panic(p)
}
}
// Files checks the provided files as part of the checker's package.
func (check *Checker) Files(files []*syntax.File) (err error) {
if check.pkg == Unsafe {
// Defensive handling for Unsafe, which cannot be type checked, and must
// not be mutated. See https://go.dev/issue/61212 for an example of where
// Unsafe is passed to NewChecker.
return nil
}
// Avoid early returns here! Nearly all errors can be
// localized to a piece of syntax and needn't prevent
// type-checking of the rest of the package.
defer check.handleBailout(&err)
check.checkFiles(files)
return
}
// checkFiles type-checks the specified files. Errors are reported as
// a side effect, not by returning early, to ensure that well-formed
// syntax is properly type annotated even in a package containing
// errors.
func (check *Checker) checkFiles(files []*syntax.File) {
print := func(msg string) {
if check.conf.Trace {
fmt.Println()
fmt.Println(msg)
}
}
print("== initFiles ==")
check.initFiles(files)
print("== collectObjects ==")
check.collectObjects()
print("== packageObjects ==")
check.packageObjects()
print("== processDelayed ==")
check.processDelayed(0) // incl. all functions
print("== cleanup ==")
check.cleanup()
print("== initOrder ==")
check.initOrder()
if !check.conf.DisableUnusedImportCheck {
print("== unusedImports ==")
check.unusedImports()
}
print("== recordUntyped ==")
check.recordUntyped()
if check.firstErr == nil {
// TODO(mdempsky): Ensure monomorph is safe when errors exist.
check.monomorph()
}
check.pkg.goVersion = check.conf.GoVersion
check.pkg.complete = true
// no longer needed - release memory
check.imports = nil
check.dotImportMap = nil
check.pkgPathMap = nil
check.seenPkgMap = nil
check.recvTParamMap = nil
check.brokenAliases = nil
check.unionTypeSets = nil
check.ctxt = nil
// TODO(gri) There's more memory we should release at this point.
}
// processDelayed processes all delayed actions pushed after top.
func (check *Checker) processDelayed(top int) {
// If each delayed action pushes a new action, the
// stack will continue to grow during this loop.
// However, it is only processing functions (which
// are processed in a delayed fashion) that may
// add more actions (such as nested functions), so
// this is a sufficiently bounded process.
for i := top; i < len(check.delayed); i++ {
a := &check.delayed[i]
if check.conf.Trace {
if a.desc != nil {
check.trace(a.desc.pos.Pos(), "-- "+a.desc.format, a.desc.args...)
} else {
check.trace(nopos, "-- delayed %p", a.f)
}
}
a.f() // may append to check.delayed
if check.conf.Trace {
fmt.Println()
}
}
assert(top <= len(check.delayed)) // stack must not have shrunk
check.delayed = check.delayed[:top]
}
// cleanup runs cleanup for all collected cleaners.
func (check *Checker) cleanup() {
// Don't use a range clause since Named.cleanup may add more cleaners.
for i := 0; i < len(check.cleaners); i++ {
check.cleaners[i].cleanup()
}
check.cleaners = nil
}
func (check *Checker) record(x *operand) {
// convert x into a user-friendly set of values
// TODO(gri) this code can be simplified
var typ Type
var val constant.Value
switch x.mode {
case invalid:
typ = Typ[Invalid]
case novalue:
typ = (*Tuple)(nil)
case constant_:
typ = x.typ
val = x.val
default:
typ = x.typ
}
assert(x.expr != nil && typ != nil)
if isUntyped(typ) {
// delay type and value recording until we know the type
// or until the end of type checking
check.rememberUntyped(x.expr, false, x.mode, typ.(*Basic), val)
} else {
check.recordTypeAndValue(x.expr, x.mode, typ, val)
}
}
func (check *Checker) recordUntyped() {
if !debug && !check.recordTypes() {
return // nothing to do
}
for x, info := range check.untyped {
if debug && isTyped(info.typ) {
check.dump("%v: %s (type %s) is typed", atPos(x), x, info.typ)
panic("unreachable")
}
check.recordTypeAndValue(x, info.mode, info.typ, info.val)
}
}
func (check *Checker) recordTypeAndValue(x syntax.Expr, mode operandMode, typ Type, val constant.Value) {
assert(x != nil)
assert(typ != nil)
if mode == invalid {
return // omit
}
if mode == constant_ {
assert(val != nil)
// We check allBasic(typ, IsConstType) here as constant expressions may be
// recorded as type parameters.
assert(!isValid(typ) || allBasic(typ, IsConstType))
}
if m := check.Types; m != nil {
m[x] = TypeAndValue{mode, typ, val}
}
if check.StoreTypesInSyntax {
tv := TypeAndValue{mode, typ, val}
stv := syntax.TypeAndValue{Type: typ, Value: val}
if tv.IsVoid() {
stv.SetIsVoid()
}
if tv.IsType() {
stv.SetIsType()
}
if tv.IsBuiltin() {
stv.SetIsBuiltin()
}
if tv.IsValue() {
stv.SetIsValue()
}
if tv.IsNil() {
stv.SetIsNil()
}
if tv.Addressable() {
stv.SetAddressable()
}
if tv.Assignable() {
stv.SetAssignable()
}
if tv.HasOk() {
stv.SetHasOk()
}
x.SetTypeInfo(stv)
}
}
func (check *Checker) recordBuiltinType(f syntax.Expr, sig *Signature) {
// f must be a (possibly parenthesized, possibly qualified)
// identifier denoting a built-in (including unsafe's non-constant
// functions Add and Slice): record the signature for f and possible
// children.
for {
check.recordTypeAndValue(f, builtin, sig, nil)
switch p := f.(type) {
case *syntax.Name, *syntax.SelectorExpr:
return // we're done
case *syntax.ParenExpr:
f = p.X
default:
panic("unreachable")
}
}
}
// recordCommaOkTypes updates recorded types to reflect that x is used in a commaOk context
// (and therefore has tuple type).
func (check *Checker) recordCommaOkTypes(x syntax.Expr, a []*operand) {
assert(x != nil)
assert(len(a) == 2)
if a[0].mode == invalid {
return
}
t0, t1 := a[0].typ, a[1].typ
assert(isTyped(t0) && isTyped(t1) && (allBoolean(t1) || t1 == universeError))
if m := check.Types; m != nil {
for {
tv := m[x]
assert(tv.Type != nil) // should have been recorded already
pos := x.Pos()
tv.Type = NewTuple(
NewVar(pos, check.pkg, "", t0),
NewVar(pos, check.pkg, "", t1),
)
m[x] = tv
// if x is a parenthesized expression (p.X), update p.X
p, _ := x.(*syntax.ParenExpr)
if p == nil {
break
}
x = p.X
}
}
if check.StoreTypesInSyntax {
// Note: this loop is duplicated because the type of tv is different.
// Above it is types2.TypeAndValue, here it is syntax.TypeAndValue.
for {
tv := x.GetTypeInfo()
assert(tv.Type != nil) // should have been recorded already
pos := x.Pos()
tv.Type = NewTuple(
NewVar(pos, check.pkg, "", t0),
NewVar(pos, check.pkg, "", t1),
)
x.SetTypeInfo(tv)
p, _ := x.(*syntax.ParenExpr)
if p == nil {
break
}
x = p.X
}
}
}
// recordInstance records instantiation information into check.Info, if the
// Instances map is non-nil. The given expr must be an ident, selector, or
// index (list) expr with ident or selector operand.
//
// TODO(rfindley): the expr parameter is fragile. See if we can access the
// instantiated identifier in some other way.
func (check *Checker) recordInstance(expr syntax.Expr, targs []Type, typ Type) {
ident := instantiatedIdent(expr)
assert(ident != nil)
assert(typ != nil)
if m := check.Instances; m != nil {
m[ident] = Instance{newTypeList(targs), typ}
}
}
func instantiatedIdent(expr syntax.Expr) *syntax.Name {
var selOrIdent syntax.Expr
switch e := expr.(type) {
case *syntax.IndexExpr:
selOrIdent = e.X
case *syntax.SelectorExpr, *syntax.Name:
selOrIdent = e
}
switch x := selOrIdent.(type) {
case *syntax.Name:
return x
case *syntax.SelectorExpr:
return x.Sel
}
panic("instantiated ident not found")
}
func (check *Checker) recordDef(id *syntax.Name, obj Object) {
assert(id != nil)
if m := check.Defs; m != nil {
m[id] = obj
}
}
func (check *Checker) recordUse(id *syntax.Name, obj Object) {
assert(id != nil)
assert(obj != nil)
if m := check.Uses; m != nil {
m[id] = obj
}
}
func (check *Checker) recordImplicit(node syntax.Node, obj Object) {
assert(node != nil)
assert(obj != nil)
if m := check.Implicits; m != nil {
m[node] = obj
}
}
func (check *Checker) recordSelection(x *syntax.SelectorExpr, kind SelectionKind, recv Type, obj Object, index []int, indirect bool) {
assert(obj != nil && (recv == nil || len(index) > 0))
check.recordUse(x.Sel, obj)
if m := check.Selections; m != nil {
m[x] = &Selection{kind, recv, obj, index, indirect}
}
}
func (check *Checker) recordScope(node syntax.Node, scope *Scope) {
assert(node != nil)
assert(scope != nil)
if m := check.Scopes; m != nil {
m[node] = scope
}
}