blob: e4da86db51ad8b2ca143290c75dab28d47484067 [file] [log] [blame] [edit]
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssagen
import (
"fmt"
"internal/abi"
"internal/buildcfg"
"cmd/compile/internal/base"
"cmd/compile/internal/ir"
"cmd/compile/internal/ssa"
"cmd/compile/internal/types"
"cmd/internal/sys"
)
var intrinsics intrinsicBuilders
// An intrinsicBuilder converts a call node n into an ssa value that
// implements that call as an intrinsic. args is a list of arguments to the func.
type intrinsicBuilder func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value
type intrinsicKey struct {
arch *sys.Arch
pkg string
fn string
}
// intrinsicBuildConfig specifies the config to use for intrinsic building.
type intrinsicBuildConfig struct {
instrumenting bool
go386 string
goamd64 int
goarm buildcfg.GoarmFeatures
goarm64 buildcfg.Goarm64Features
gomips string
gomips64 string
goppc64 int
goriscv64 int
}
type intrinsicBuilders map[intrinsicKey]intrinsicBuilder
// add adds the intrinsic builder b for pkg.fn for the given architecture.
func (ib intrinsicBuilders) add(arch *sys.Arch, pkg, fn string, b intrinsicBuilder) {
if _, found := ib[intrinsicKey{arch, pkg, fn}]; found {
panic(fmt.Sprintf("intrinsic already exists for %v.%v on %v", pkg, fn, arch.Name))
}
ib[intrinsicKey{arch, pkg, fn}] = b
}
// addForArchs adds the intrinsic builder b for pkg.fn for the given architectures.
func (ib intrinsicBuilders) addForArchs(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) {
for _, arch := range archs {
ib.add(arch, pkg, fn, b)
}
}
// addForFamilies does the same as addForArchs but operates on architecture families.
func (ib intrinsicBuilders) addForFamilies(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) {
for _, arch := range sys.Archs {
if arch.InFamily(archFamilies...) {
intrinsics.add(arch, pkg, fn, b)
}
}
}
// alias aliases pkg.fn to targetPkg.targetFn for all architectures in archs
// for which targetPkg.targetFn already exists.
func (ib intrinsicBuilders) alias(pkg, fn, targetPkg, targetFn string, archs ...*sys.Arch) {
// TODO(jsing): Consider making this work even if the alias is added
// before the intrinsic.
aliased := false
for _, arch := range archs {
if b := intrinsics.lookup(arch, targetPkg, targetFn); b != nil {
intrinsics.add(arch, pkg, fn, b)
aliased = true
}
}
if !aliased {
panic(fmt.Sprintf("attempted to alias undefined intrinsic: %s.%s", pkg, fn))
}
}
// lookup looks up the intrinsic for a pkg.fn on the specified architecture.
func (ib intrinsicBuilders) lookup(arch *sys.Arch, pkg, fn string) intrinsicBuilder {
return intrinsics[intrinsicKey{arch, pkg, fn}]
}
func initIntrinsics(cfg *intrinsicBuildConfig) {
if cfg == nil {
cfg = &intrinsicBuildConfig{
instrumenting: base.Flag.Cfg.Instrumenting,
go386: buildcfg.GO386,
goamd64: buildcfg.GOAMD64,
goarm: buildcfg.GOARM,
goarm64: buildcfg.GOARM64,
gomips: buildcfg.GOMIPS,
gomips64: buildcfg.GOMIPS64,
goppc64: buildcfg.GOPPC64,
goriscv64: buildcfg.GORISCV64,
}
}
intrinsics = intrinsicBuilders{}
var p4 []*sys.Arch
var p8 []*sys.Arch
var lwatomics []*sys.Arch
for _, a := range sys.Archs {
if a.PtrSize == 4 {
p4 = append(p4, a)
} else {
p8 = append(p8, a)
}
if a.Family != sys.PPC64 {
lwatomics = append(lwatomics, a)
}
}
all := sys.Archs[:]
add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) {
intrinsics.addForArchs(pkg, fn, b, archs...)
}
addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) {
intrinsics.addForFamilies(pkg, fn, b, archFamilies...)
}
alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) {
intrinsics.alias(pkg, fn, pkg2, fn2, archs...)
}
/******** runtime ********/
if !cfg.instrumenting {
add("runtime", "slicebytetostringtmp",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
// Compiler frontend optimizations emit OBYTES2STRTMP nodes
// for the backend instead of slicebytetostringtmp calls
// when not instrumenting.
return s.newValue2(ssa.OpStringMake, n.Type(), args[0], args[1])
},
all...)
}
addF("internal/runtime/math", "MulUintptr",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if s.config.PtrSize == 4 {
return s.newValue2(ssa.OpMul32uover, types.NewTuple(types.Types[types.TUINT], types.Types[types.TUINT]), args[0], args[1])
}
return s.newValue2(ssa.OpMul64uover, types.NewTuple(types.Types[types.TUINT], types.Types[types.TUINT]), args[0], args[1])
},
sys.AMD64, sys.I386, sys.Loong64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.ARM64)
add("runtime", "KeepAlive",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0])
s.vars[memVar] = s.newValue2(ssa.OpKeepAlive, types.TypeMem, data, s.mem())
return nil
},
all...)
addF("runtime", "publicationBarrier",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue1(ssa.OpPubBarrier, types.TypeMem, s.mem())
return nil
},
sys.ARM64, sys.Loong64, sys.PPC64, sys.RISCV64)
/******** internal/runtime/sys ********/
add("internal/runtime/sys", "GetCallerPC",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue0(ssa.OpGetCallerPC, s.f.Config.Types.Uintptr)
},
all...)
add("internal/runtime/sys", "GetCallerSP",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpGetCallerSP, s.f.Config.Types.Uintptr, s.mem())
},
all...)
add("internal/runtime/sys", "GetClosurePtr",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue0(ssa.OpGetClosurePtr, s.f.Config.Types.Uintptr)
},
all...)
brev_arch := []sys.ArchFamily{sys.AMD64, sys.I386, sys.ARM64, sys.ARM, sys.Loong64, sys.S390X}
if cfg.goppc64 >= 10 {
// Use only on Power10 as the new byte reverse instructions that Power10 provide
// make it worthwhile as an intrinsic
brev_arch = append(brev_arch, sys.PPC64)
}
addF("internal/runtime/sys", "Bswap32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBswap32, types.Types[types.TUINT32], args[0])
},
brev_arch...)
addF("internal/runtime/sys", "Bswap64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBswap64, types.Types[types.TUINT64], args[0])
},
brev_arch...)
/****** Prefetch ******/
makePrefetchFunc := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue2(op, types.TypeMem, args[0], s.mem())
return nil
}
}
// Make Prefetch intrinsics for supported platforms
// On the unsupported platforms stub function will be eliminated
addF("internal/runtime/sys", "Prefetch", makePrefetchFunc(ssa.OpPrefetchCache),
sys.AMD64, sys.ARM64, sys.PPC64)
addF("internal/runtime/sys", "PrefetchStreamed", makePrefetchFunc(ssa.OpPrefetchCacheStreamed),
sys.AMD64, sys.ARM64, sys.PPC64)
/******** internal/runtime/atomic ********/
type atomicOpEmitter func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind, needReturn bool)
addF("internal/runtime/atomic", "Load",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue2(ssa.OpAtomicLoad32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v)
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "Load8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue2(ssa.OpAtomicLoad8, types.NewTuple(types.Types[types.TUINT8], types.TypeMem), args[0], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT8], v)
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "Load64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue2(ssa.OpAtomicLoad64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v)
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "LoadAcq",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue2(ssa.OpAtomicLoadAcq32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v)
},
sys.PPC64)
addF("internal/runtime/atomic", "LoadAcq64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue2(ssa.OpAtomicLoadAcq64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v)
},
sys.PPC64)
addF("internal/runtime/atomic", "Loadp",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue2(ssa.OpAtomicLoadPtr, types.NewTuple(s.f.Config.Types.BytePtr, types.TypeMem), args[0], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v)
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "Store",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicStore32, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "Store8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicStore8, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "Store64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicStore64, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.ARM64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "StorepNoWB",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "StoreRel",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicStoreRel32, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.PPC64)
addF("internal/runtime/atomic", "StoreRel64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicStoreRel64, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.PPC64)
makeAtomicStoreGuardedIntrinsicLoong64 := func(op0, op1 ssa.Op, typ types.Kind, emit atomicOpEmitter) intrinsicBuilder {
return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
// Target Atomic feature is identified by dynamic detection
addr := s.entryNewValue1A(ssa.OpAddr, types.Types[types.TBOOL].PtrTo(), ir.Syms.Loong64HasLAM_BH, s.sb)
v := s.load(types.Types[types.TBOOL], addr)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(v)
bTrue := s.f.NewBlock(ssa.BlockPlain)
bFalse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bTrue)
b.AddEdgeTo(bFalse)
b.Likely = ssa.BranchLikely
// We have atomic instructions - use it directly.
s.startBlock(bTrue)
emit(s, n, args, op1, typ, false)
s.endBlock().AddEdgeTo(bEnd)
// Use original instruction sequence.
s.startBlock(bFalse)
emit(s, n, args, op0, typ, false)
s.endBlock().AddEdgeTo(bEnd)
// Merge results.
s.startBlock(bEnd)
return nil
}
}
atomicStoreEmitterLoong64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind, needReturn bool) {
v := s.newValue3(op, types.NewTuple(types.Types[typ], types.TypeMem), args[0], args[1], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
if needReturn {
s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[typ], v)
}
}
addF("internal/runtime/atomic", "Store8",
makeAtomicStoreGuardedIntrinsicLoong64(ssa.OpAtomicStore8, ssa.OpAtomicStore8Variant, types.TUINT8, atomicStoreEmitterLoong64),
sys.Loong64)
addF("internal/runtime/atomic", "Store",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicStore32Variant, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.Loong64)
addF("internal/runtime/atomic", "Store64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicStore64Variant, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.Loong64)
addF("internal/runtime/atomic", "Xchg8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue3(ssa.OpAtomicExchange8, types.NewTuple(types.Types[types.TUINT8], types.TypeMem), args[0], args[1], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT8], v)
},
sys.AMD64, sys.PPC64)
addF("internal/runtime/atomic", "Xchg",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue3(ssa.OpAtomicExchange32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], args[1], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v)
},
sys.AMD64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "Xchg64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue3(ssa.OpAtomicExchange64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], args[1], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v)
},
sys.AMD64, sys.Loong64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
makeAtomicGuardedIntrinsicARM64common := func(op0, op1 ssa.Op, typ types.Kind, emit atomicOpEmitter, needReturn bool) intrinsicBuilder {
return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if cfg.goarm64.LSE {
emit(s, n, args, op1, typ, needReturn)
} else {
// Target Atomic feature is identified by dynamic detection
addr := s.entryNewValue1A(ssa.OpAddr, types.Types[types.TBOOL].PtrTo(), ir.Syms.ARM64HasATOMICS, s.sb)
v := s.load(types.Types[types.TBOOL], addr)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(v)
bTrue := s.f.NewBlock(ssa.BlockPlain)
bFalse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bTrue)
b.AddEdgeTo(bFalse)
b.Likely = ssa.BranchLikely
// We have atomic instructions - use it directly.
s.startBlock(bTrue)
emit(s, n, args, op1, typ, needReturn)
s.endBlock().AddEdgeTo(bEnd)
// Use original instruction sequence.
s.startBlock(bFalse)
emit(s, n, args, op0, typ, needReturn)
s.endBlock().AddEdgeTo(bEnd)
// Merge results.
s.startBlock(bEnd)
}
if needReturn {
return s.variable(n, types.Types[typ])
} else {
return nil
}
}
}
makeAtomicGuardedIntrinsicARM64 := func(op0, op1 ssa.Op, typ types.Kind, emit atomicOpEmitter) intrinsicBuilder {
return makeAtomicGuardedIntrinsicARM64common(op0, op1, typ, emit, true)
}
makeAtomicGuardedIntrinsicARM64old := func(op0, op1 ssa.Op, typ types.Kind, emit atomicOpEmitter) intrinsicBuilder {
return makeAtomicGuardedIntrinsicARM64common(op0, op1, typ, emit, false)
}
atomicEmitterARM64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind, needReturn bool) {
v := s.newValue3(op, types.NewTuple(types.Types[typ], types.TypeMem), args[0], args[1], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
if needReturn {
s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[typ], v)
}
}
addF("internal/runtime/atomic", "Xchg8",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicExchange8, ssa.OpAtomicExchange8Variant, types.TUINT8, atomicEmitterARM64),
sys.ARM64)
addF("internal/runtime/atomic", "Xchg",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicExchange32, ssa.OpAtomicExchange32Variant, types.TUINT32, atomicEmitterARM64),
sys.ARM64)
addF("internal/runtime/atomic", "Xchg64",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicExchange64, ssa.OpAtomicExchange64Variant, types.TUINT64, atomicEmitterARM64),
sys.ARM64)
makeAtomicXchg8GuardedIntrinsicLoong64 := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
addr := s.entryNewValue1A(ssa.OpAddr, types.Types[types.TBOOL].PtrTo(), ir.Syms.Loong64HasLAM_BH, s.sb)
v := s.load(types.Types[types.TBOOL], addr)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(v)
bTrue := s.f.NewBlock(ssa.BlockPlain)
bFalse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bTrue)
b.AddEdgeTo(bFalse)
b.Likely = ssa.BranchLikely // most loong64 machines support the amswapdb.b
// We have the intrinsic - use it directly.
s.startBlock(bTrue)
s.vars[n] = s.newValue3(op, types.NewTuple(types.Types[types.TUINT8], types.TypeMem), args[0], args[1], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, s.vars[n])
s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[types.TUINT8], s.vars[n])
s.endBlock().AddEdgeTo(bEnd)
// Call the pure Go version.
s.startBlock(bFalse)
s.vars[n] = s.callResult(n, callNormal) // types.Types[TUINT8]
s.endBlock().AddEdgeTo(bEnd)
// Merge results.
s.startBlock(bEnd)
return s.variable(n, types.Types[types.TUINT8])
}
}
addF("internal/runtime/atomic", "Xchg8",
makeAtomicXchg8GuardedIntrinsicLoong64(ssa.OpAtomicExchange8Variant),
sys.Loong64)
addF("internal/runtime/atomic", "Xadd",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue3(ssa.OpAtomicAdd32, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], args[1], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT32], v)
},
sys.AMD64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "Xadd64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue3(ssa.OpAtomicAdd64, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], args[1], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TUINT64], v)
},
sys.AMD64, sys.Loong64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "Xadd",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAdd32, ssa.OpAtomicAdd32Variant, types.TUINT32, atomicEmitterARM64),
sys.ARM64)
addF("internal/runtime/atomic", "Xadd64",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAdd64, ssa.OpAtomicAdd64Variant, types.TUINT64, atomicEmitterARM64),
sys.ARM64)
addF("internal/runtime/atomic", "Cas",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v)
},
sys.AMD64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "Cas64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue4(ssa.OpAtomicCompareAndSwap64, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v)
},
sys.AMD64, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "CasRel",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
return s.newValue1(ssa.OpSelect0, types.Types[types.TBOOL], v)
},
sys.PPC64)
atomicCasEmitterARM64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind, needReturn bool) {
v := s.newValue4(op, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
if needReturn {
s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[typ], v)
}
}
addF("internal/runtime/atomic", "Cas",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicCompareAndSwap32, ssa.OpAtomicCompareAndSwap32Variant, types.TBOOL, atomicCasEmitterARM64),
sys.ARM64)
addF("internal/runtime/atomic", "Cas64",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicCompareAndSwap64, ssa.OpAtomicCompareAndSwap64Variant, types.TBOOL, atomicCasEmitterARM64),
sys.ARM64)
atomicCasEmitterLoong64 := func(s *state, n *ir.CallExpr, args []*ssa.Value, op ssa.Op, typ types.Kind, needReturn bool) {
v := s.newValue4(op, types.NewTuple(types.Types[types.TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem())
s.vars[memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v)
if needReturn {
s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[typ], v)
}
}
makeAtomicCasGuardedIntrinsicLoong64 := func(op0, op1 ssa.Op, emit atomicOpEmitter) intrinsicBuilder {
return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
// Target Atomic feature is identified by dynamic detection
addr := s.entryNewValue1A(ssa.OpAddr, types.Types[types.TBOOL].PtrTo(), ir.Syms.Loong64HasLAMCAS, s.sb)
v := s.load(types.Types[types.TBOOL], addr)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(v)
bTrue := s.f.NewBlock(ssa.BlockPlain)
bFalse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bTrue)
b.AddEdgeTo(bFalse)
b.Likely = ssa.BranchLikely
// We have atomic instructions - use it directly.
s.startBlock(bTrue)
emit(s, n, args, op1, types.TBOOL, true)
s.endBlock().AddEdgeTo(bEnd)
// Use original instruction sequence.
s.startBlock(bFalse)
emit(s, n, args, op0, types.TBOOL, true)
s.endBlock().AddEdgeTo(bEnd)
// Merge results.
s.startBlock(bEnd)
return s.variable(n, types.Types[types.TBOOL])
}
}
addF("internal/runtime/atomic", "Cas",
makeAtomicCasGuardedIntrinsicLoong64(ssa.OpAtomicCompareAndSwap32, ssa.OpAtomicCompareAndSwap32Variant, atomicCasEmitterLoong64),
sys.Loong64)
addF("internal/runtime/atomic", "Cas64",
makeAtomicCasGuardedIntrinsicLoong64(ssa.OpAtomicCompareAndSwap64, ssa.OpAtomicCompareAndSwap64Variant, atomicCasEmitterLoong64),
sys.Loong64)
// Old-style atomic logical operation API (all supported archs except arm64).
addF("internal/runtime/atomic", "And8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicAnd8, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "And",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicAnd32, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "Or8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicOr8, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("internal/runtime/atomic", "Or",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
s.vars[memVar] = s.newValue3(ssa.OpAtomicOr32, types.TypeMem, args[0], args[1], s.mem())
return nil
},
sys.AMD64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X)
// arm64 always uses the new-style atomic logical operations, for both the
// old and new style API.
addF("internal/runtime/atomic", "And8",
makeAtomicGuardedIntrinsicARM64old(ssa.OpAtomicAnd8value, ssa.OpAtomicAnd8valueVariant, types.TUINT8, atomicEmitterARM64),
sys.ARM64)
addF("internal/runtime/atomic", "Or8",
makeAtomicGuardedIntrinsicARM64old(ssa.OpAtomicOr8value, ssa.OpAtomicOr8valueVariant, types.TUINT8, atomicEmitterARM64),
sys.ARM64)
addF("internal/runtime/atomic", "And64",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAnd64value, ssa.OpAtomicAnd64valueVariant, types.TUINT64, atomicEmitterARM64),
sys.ARM64)
addF("internal/runtime/atomic", "And32",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicAnd32value, ssa.OpAtomicAnd32valueVariant, types.TUINT32, atomicEmitterARM64),
sys.ARM64)
addF("internal/runtime/atomic", "And",
makeAtomicGuardedIntrinsicARM64old(ssa.OpAtomicAnd32value, ssa.OpAtomicAnd32valueVariant, types.TUINT32, atomicEmitterARM64),
sys.ARM64)
addF("internal/runtime/atomic", "Or64",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicOr64value, ssa.OpAtomicOr64valueVariant, types.TUINT64, atomicEmitterARM64),
sys.ARM64)
addF("internal/runtime/atomic", "Or32",
makeAtomicGuardedIntrinsicARM64(ssa.OpAtomicOr32value, ssa.OpAtomicOr32valueVariant, types.TUINT32, atomicEmitterARM64),
sys.ARM64)
addF("internal/runtime/atomic", "Or",
makeAtomicGuardedIntrinsicARM64old(ssa.OpAtomicOr32value, ssa.OpAtomicOr32valueVariant, types.TUINT32, atomicEmitterARM64),
sys.ARM64)
// New-style atomic logical operations, which return the old memory value.
addF("internal/runtime/atomic", "And64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue3(ssa.OpAtomicAnd64value, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], args[1], s.mem())
p0, p1 := s.split(v)
s.vars[memVar] = p1
return p0
},
sys.AMD64, sys.Loong64)
addF("internal/runtime/atomic", "And32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue3(ssa.OpAtomicAnd32value, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], args[1], s.mem())
p0, p1 := s.split(v)
s.vars[memVar] = p1
return p0
},
sys.AMD64, sys.Loong64)
addF("internal/runtime/atomic", "Or64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue3(ssa.OpAtomicOr64value, types.NewTuple(types.Types[types.TUINT64], types.TypeMem), args[0], args[1], s.mem())
p0, p1 := s.split(v)
s.vars[memVar] = p1
return p0
},
sys.AMD64, sys.Loong64)
addF("internal/runtime/atomic", "Or32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
v := s.newValue3(ssa.OpAtomicOr32value, types.NewTuple(types.Types[types.TUINT32], types.TypeMem), args[0], args[1], s.mem())
p0, p1 := s.split(v)
s.vars[memVar] = p1
return p0
},
sys.AMD64, sys.Loong64)
// Aliases for atomic load operations
alias("internal/runtime/atomic", "Loadint32", "internal/runtime/atomic", "Load", all...)
alias("internal/runtime/atomic", "Loadint64", "internal/runtime/atomic", "Load64", all...)
alias("internal/runtime/atomic", "Loaduintptr", "internal/runtime/atomic", "Load", p4...)
alias("internal/runtime/atomic", "Loaduintptr", "internal/runtime/atomic", "Load64", p8...)
alias("internal/runtime/atomic", "Loaduint", "internal/runtime/atomic", "Load", p4...)
alias("internal/runtime/atomic", "Loaduint", "internal/runtime/atomic", "Load64", p8...)
alias("internal/runtime/atomic", "LoadAcq", "internal/runtime/atomic", "Load", lwatomics...)
alias("internal/runtime/atomic", "LoadAcq64", "internal/runtime/atomic", "Load64", lwatomics...)
alias("internal/runtime/atomic", "LoadAcquintptr", "internal/runtime/atomic", "LoadAcq", p4...)
alias("sync", "runtime_LoadAcquintptr", "internal/runtime/atomic", "LoadAcq", p4...) // linknamed
alias("internal/runtime/atomic", "LoadAcquintptr", "internal/runtime/atomic", "LoadAcq64", p8...)
alias("sync", "runtime_LoadAcquintptr", "internal/runtime/atomic", "LoadAcq64", p8...) // linknamed
// Aliases for atomic store operations
alias("internal/runtime/atomic", "Storeint32", "internal/runtime/atomic", "Store", all...)
alias("internal/runtime/atomic", "Storeint64", "internal/runtime/atomic", "Store64", all...)
alias("internal/runtime/atomic", "Storeuintptr", "internal/runtime/atomic", "Store", p4...)
alias("internal/runtime/atomic", "Storeuintptr", "internal/runtime/atomic", "Store64", p8...)
alias("internal/runtime/atomic", "StoreRel", "internal/runtime/atomic", "Store", lwatomics...)
alias("internal/runtime/atomic", "StoreRel64", "internal/runtime/atomic", "Store64", lwatomics...)
alias("internal/runtime/atomic", "StoreReluintptr", "internal/runtime/atomic", "StoreRel", p4...)
alias("sync", "runtime_StoreReluintptr", "internal/runtime/atomic", "StoreRel", p4...) // linknamed
alias("internal/runtime/atomic", "StoreReluintptr", "internal/runtime/atomic", "StoreRel64", p8...)
alias("sync", "runtime_StoreReluintptr", "internal/runtime/atomic", "StoreRel64", p8...) // linknamed
// Aliases for atomic swap operations
alias("internal/runtime/atomic", "Xchgint32", "internal/runtime/atomic", "Xchg", all...)
alias("internal/runtime/atomic", "Xchgint64", "internal/runtime/atomic", "Xchg64", all...)
alias("internal/runtime/atomic", "Xchguintptr", "internal/runtime/atomic", "Xchg", p4...)
alias("internal/runtime/atomic", "Xchguintptr", "internal/runtime/atomic", "Xchg64", p8...)
// Aliases for atomic add operations
alias("internal/runtime/atomic", "Xaddint32", "internal/runtime/atomic", "Xadd", all...)
alias("internal/runtime/atomic", "Xaddint64", "internal/runtime/atomic", "Xadd64", all...)
alias("internal/runtime/atomic", "Xadduintptr", "internal/runtime/atomic", "Xadd", p4...)
alias("internal/runtime/atomic", "Xadduintptr", "internal/runtime/atomic", "Xadd64", p8...)
// Aliases for atomic CAS operations
alias("internal/runtime/atomic", "Casint32", "internal/runtime/atomic", "Cas", all...)
alias("internal/runtime/atomic", "Casint64", "internal/runtime/atomic", "Cas64", all...)
alias("internal/runtime/atomic", "Casuintptr", "internal/runtime/atomic", "Cas", p4...)
alias("internal/runtime/atomic", "Casuintptr", "internal/runtime/atomic", "Cas64", p8...)
alias("internal/runtime/atomic", "Casp1", "internal/runtime/atomic", "Cas", p4...)
alias("internal/runtime/atomic", "Casp1", "internal/runtime/atomic", "Cas64", p8...)
alias("internal/runtime/atomic", "CasRel", "internal/runtime/atomic", "Cas", lwatomics...)
// Aliases for atomic And/Or operations
alias("internal/runtime/atomic", "Anduintptr", "internal/runtime/atomic", "And64", sys.ArchARM64, sys.ArchLoong64)
alias("internal/runtime/atomic", "Oruintptr", "internal/runtime/atomic", "Or64", sys.ArchARM64, sys.ArchLoong64)
/******** math ********/
addF("math", "sqrt",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpSqrt, types.Types[types.TFLOAT64], args[0])
},
sys.I386, sys.AMD64, sys.ARM, sys.ARM64, sys.Loong64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm)
addF("math", "Trunc",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpTrunc, types.Types[types.TFLOAT64], args[0])
},
sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm)
addF("math", "Ceil",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpCeil, types.Types[types.TFLOAT64], args[0])
},
sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm)
addF("math", "Floor",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpFloor, types.Types[types.TFLOAT64], args[0])
},
sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm)
addF("math", "Round",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpRound, types.Types[types.TFLOAT64], args[0])
},
sys.ARM64, sys.PPC64, sys.S390X)
addF("math", "RoundToEven",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpRoundToEven, types.Types[types.TFLOAT64], args[0])
},
sys.ARM64, sys.S390X, sys.Wasm)
addF("math", "Abs",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpAbs, types.Types[types.TFLOAT64], args[0])
},
sys.ARM64, sys.ARM, sys.Loong64, sys.PPC64, sys.RISCV64, sys.Wasm, sys.MIPS, sys.MIPS64)
addF("math", "Copysign",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue2(ssa.OpCopysign, types.Types[types.TFLOAT64], args[0], args[1])
},
sys.Loong64, sys.PPC64, sys.RISCV64, sys.Wasm)
addF("math", "FMA",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2])
},
sys.ARM64, sys.Loong64, sys.PPC64, sys.RISCV64, sys.S390X)
addF("math", "FMA",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if !s.config.UseFMA {
s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
return s.variable(n, types.Types[types.TFLOAT64])
}
if cfg.goamd64 >= 3 {
return s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2])
}
v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasFMA)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(v)
bTrue := s.f.NewBlock(ssa.BlockPlain)
bFalse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bTrue)
b.AddEdgeTo(bFalse)
b.Likely = ssa.BranchLikely // >= haswell cpus are common
// We have the intrinsic - use it directly.
s.startBlock(bTrue)
s.vars[n] = s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2])
s.endBlock().AddEdgeTo(bEnd)
// Call the pure Go version.
s.startBlock(bFalse)
s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
s.endBlock().AddEdgeTo(bEnd)
// Merge results.
s.startBlock(bEnd)
return s.variable(n, types.Types[types.TFLOAT64])
},
sys.AMD64)
addF("math", "FMA",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if !s.config.UseFMA {
s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
return s.variable(n, types.Types[types.TFLOAT64])
}
addr := s.entryNewValue1A(ssa.OpAddr, types.Types[types.TBOOL].PtrTo(), ir.Syms.ARMHasVFPv4, s.sb)
v := s.load(types.Types[types.TBOOL], addr)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(v)
bTrue := s.f.NewBlock(ssa.BlockPlain)
bFalse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bTrue)
b.AddEdgeTo(bFalse)
b.Likely = ssa.BranchLikely
// We have the intrinsic - use it directly.
s.startBlock(bTrue)
s.vars[n] = s.newValue3(ssa.OpFMA, types.Types[types.TFLOAT64], args[0], args[1], args[2])
s.endBlock().AddEdgeTo(bEnd)
// Call the pure Go version.
s.startBlock(bFalse)
s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
s.endBlock().AddEdgeTo(bEnd)
// Merge results.
s.startBlock(bEnd)
return s.variable(n, types.Types[types.TFLOAT64])
},
sys.ARM)
makeRoundAMD64 := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if cfg.goamd64 >= 2 {
return s.newValue1(op, types.Types[types.TFLOAT64], args[0])
}
v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasSSE41)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(v)
bTrue := s.f.NewBlock(ssa.BlockPlain)
bFalse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bTrue)
b.AddEdgeTo(bFalse)
b.Likely = ssa.BranchLikely // most machines have sse4.1 nowadays
// We have the intrinsic - use it directly.
s.startBlock(bTrue)
s.vars[n] = s.newValue1(op, types.Types[types.TFLOAT64], args[0])
s.endBlock().AddEdgeTo(bEnd)
// Call the pure Go version.
s.startBlock(bFalse)
s.vars[n] = s.callResult(n, callNormal) // types.Types[TFLOAT64]
s.endBlock().AddEdgeTo(bEnd)
// Merge results.
s.startBlock(bEnd)
return s.variable(n, types.Types[types.TFLOAT64])
}
}
addF("math", "RoundToEven",
makeRoundAMD64(ssa.OpRoundToEven),
sys.AMD64)
addF("math", "Floor",
makeRoundAMD64(ssa.OpFloor),
sys.AMD64)
addF("math", "Ceil",
makeRoundAMD64(ssa.OpCeil),
sys.AMD64)
addF("math", "Trunc",
makeRoundAMD64(ssa.OpTrunc),
sys.AMD64)
/******** math/bits ********/
addF("math/bits", "TrailingZeros64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], args[0])
},
sys.AMD64, sys.ARM64, sys.ARM, sys.Loong64, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
addF("math/bits", "TrailingZeros64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
lo := s.newValue1(ssa.OpInt64Lo, types.Types[types.TUINT32], args[0])
hi := s.newValue1(ssa.OpInt64Hi, types.Types[types.TUINT32], args[0])
return s.newValue2(ssa.OpCtz64On32, types.Types[types.TINT], lo, hi)
},
sys.I386)
addF("math/bits", "TrailingZeros32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], args[0])
},
sys.AMD64, sys.I386, sys.ARM64, sys.ARM, sys.Loong64, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
addF("math/bits", "TrailingZeros16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
x := s.newValue1(ssa.OpZeroExt16to32, types.Types[types.TUINT32], args[0])
c := s.constInt32(types.Types[types.TUINT32], 1<<16)
y := s.newValue2(ssa.OpOr32, types.Types[types.TUINT32], x, c)
return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], y)
},
sys.MIPS)
addF("math/bits", "TrailingZeros16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpCtz16, types.Types[types.TINT], args[0])
},
sys.AMD64, sys.I386, sys.ARM, sys.ARM64, sys.Wasm)
addF("math/bits", "TrailingZeros16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
x := s.newValue1(ssa.OpZeroExt16to64, types.Types[types.TUINT64], args[0])
c := s.constInt64(types.Types[types.TUINT64], 1<<16)
y := s.newValue2(ssa.OpOr64, types.Types[types.TUINT64], x, c)
return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], y)
},
sys.Loong64, sys.S390X, sys.PPC64)
addF("math/bits", "TrailingZeros8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
x := s.newValue1(ssa.OpZeroExt8to32, types.Types[types.TUINT32], args[0])
c := s.constInt32(types.Types[types.TUINT32], 1<<8)
y := s.newValue2(ssa.OpOr32, types.Types[types.TUINT32], x, c)
return s.newValue1(ssa.OpCtz32, types.Types[types.TINT], y)
},
sys.MIPS)
addF("math/bits", "TrailingZeros8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpCtz8, types.Types[types.TINT], args[0])
},
sys.AMD64, sys.I386, sys.ARM, sys.ARM64, sys.Wasm)
addF("math/bits", "TrailingZeros8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
x := s.newValue1(ssa.OpZeroExt8to64, types.Types[types.TUINT64], args[0])
c := s.constInt64(types.Types[types.TUINT64], 1<<8)
y := s.newValue2(ssa.OpOr64, types.Types[types.TUINT64], x, c)
return s.newValue1(ssa.OpCtz64, types.Types[types.TINT], y)
},
sys.Loong64, sys.S390X)
alias("math/bits", "ReverseBytes64", "internal/runtime/sys", "Bswap64", all...)
alias("math/bits", "ReverseBytes32", "internal/runtime/sys", "Bswap32", all...)
addF("math/bits", "ReverseBytes16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBswap16, types.Types[types.TUINT16], args[0])
},
sys.Loong64)
// ReverseBytes inlines correctly, no need to intrinsify it.
// Nothing special is needed for targets where ReverseBytes16 lowers to a rotate
// On Power10, 16-bit rotate is not available so use BRH instruction
if cfg.goppc64 >= 10 {
addF("math/bits", "ReverseBytes16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBswap16, types.Types[types.TUINT], args[0])
},
sys.PPC64)
}
addF("math/bits", "Len64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], args[0])
},
sys.AMD64, sys.ARM64, sys.ARM, sys.Loong64, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
addF("math/bits", "Len32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0])
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.PPC64)
addF("math/bits", "Len32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if s.config.PtrSize == 4 {
return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0])
}
x := s.newValue1(ssa.OpZeroExt32to64, types.Types[types.TUINT64], args[0])
return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x)
},
sys.ARM, sys.S390X, sys.MIPS, sys.Wasm)
addF("math/bits", "Len16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if s.config.PtrSize == 4 {
x := s.newValue1(ssa.OpZeroExt16to32, types.Types[types.TUINT32], args[0])
return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], x)
}
x := s.newValue1(ssa.OpZeroExt16to64, types.Types[types.TUINT64], args[0])
return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x)
},
sys.ARM64, sys.ARM, sys.Loong64, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
addF("math/bits", "Len16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitLen16, types.Types[types.TINT], args[0])
},
sys.AMD64)
addF("math/bits", "Len8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if s.config.PtrSize == 4 {
x := s.newValue1(ssa.OpZeroExt8to32, types.Types[types.TUINT32], args[0])
return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], x)
}
x := s.newValue1(ssa.OpZeroExt8to64, types.Types[types.TUINT64], args[0])
return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], x)
},
sys.ARM64, sys.ARM, sys.Loong64, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
addF("math/bits", "Len8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitLen8, types.Types[types.TINT], args[0])
},
sys.AMD64)
addF("math/bits", "Len",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if s.config.PtrSize == 4 {
return s.newValue1(ssa.OpBitLen32, types.Types[types.TINT], args[0])
}
return s.newValue1(ssa.OpBitLen64, types.Types[types.TINT], args[0])
},
sys.AMD64, sys.ARM64, sys.ARM, sys.Loong64, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm)
// LeadingZeros is handled because it trivially calls Len.
addF("math/bits", "Reverse64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitRev64, types.Types[types.TINT], args[0])
},
sys.ARM64, sys.Loong64)
addF("math/bits", "Reverse32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitRev32, types.Types[types.TINT], args[0])
},
sys.ARM64, sys.Loong64)
addF("math/bits", "Reverse16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitRev16, types.Types[types.TINT], args[0])
},
sys.ARM64, sys.Loong64)
addF("math/bits", "Reverse8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitRev8, types.Types[types.TINT], args[0])
},
sys.ARM64, sys.Loong64)
addF("math/bits", "Reverse",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpBitRev64, types.Types[types.TINT], args[0])
},
sys.ARM64, sys.Loong64)
addF("math/bits", "RotateLeft8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue2(ssa.OpRotateLeft8, types.Types[types.TUINT8], args[0], args[1])
},
sys.AMD64, sys.RISCV64)
addF("math/bits", "RotateLeft16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue2(ssa.OpRotateLeft16, types.Types[types.TUINT16], args[0], args[1])
},
sys.AMD64, sys.RISCV64)
addF("math/bits", "RotateLeft32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue2(ssa.OpRotateLeft32, types.Types[types.TUINT32], args[0], args[1])
},
sys.AMD64, sys.ARM, sys.ARM64, sys.Loong64, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm)
addF("math/bits", "RotateLeft64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue2(ssa.OpRotateLeft64, types.Types[types.TUINT64], args[0], args[1])
},
sys.AMD64, sys.ARM64, sys.Loong64, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm)
alias("math/bits", "RotateLeft", "math/bits", "RotateLeft64", p8...)
makeOnesCountAMD64 := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
if cfg.goamd64 >= 2 {
return s.newValue1(op, types.Types[types.TINT], args[0])
}
v := s.entryNewValue0A(ssa.OpHasCPUFeature, types.Types[types.TBOOL], ir.Syms.X86HasPOPCNT)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(v)
bTrue := s.f.NewBlock(ssa.BlockPlain)
bFalse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bTrue)
b.AddEdgeTo(bFalse)
b.Likely = ssa.BranchLikely // most machines have popcnt nowadays
// We have the intrinsic - use it directly.
s.startBlock(bTrue)
s.vars[n] = s.newValue1(op, types.Types[types.TINT], args[0])
s.endBlock().AddEdgeTo(bEnd)
// Call the pure Go version.
s.startBlock(bFalse)
s.vars[n] = s.callResult(n, callNormal) // types.Types[TINT]
s.endBlock().AddEdgeTo(bEnd)
// Merge results.
s.startBlock(bEnd)
return s.variable(n, types.Types[types.TINT])
}
}
makeOnesCountLoong64 := func(op ssa.Op) func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
addr := s.entryNewValue1A(ssa.OpAddr, types.Types[types.TBOOL].PtrTo(), ir.Syms.Loong64HasLSX, s.sb)
v := s.load(types.Types[types.TBOOL], addr)
b := s.endBlock()
b.Kind = ssa.BlockIf
b.SetControl(v)
bTrue := s.f.NewBlock(ssa.BlockPlain)
bFalse := s.f.NewBlock(ssa.BlockPlain)
bEnd := s.f.NewBlock(ssa.BlockPlain)
b.AddEdgeTo(bTrue)
b.AddEdgeTo(bFalse)
b.Likely = ssa.BranchLikely // most loong64 machines support the LSX
// We have the intrinsic - use it directly.
s.startBlock(bTrue)
s.vars[n] = s.newValue1(op, types.Types[types.TINT], args[0])
s.endBlock().AddEdgeTo(bEnd)
// Call the pure Go version.
s.startBlock(bFalse)
s.vars[n] = s.callResult(n, callNormal) // types.Types[TINT]
s.endBlock().AddEdgeTo(bEnd)
// Merge results.
s.startBlock(bEnd)
return s.variable(n, types.Types[types.TINT])
}
}
addF("math/bits", "OnesCount64",
makeOnesCountAMD64(ssa.OpPopCount64),
sys.AMD64)
addF("math/bits", "OnesCount64",
makeOnesCountLoong64(ssa.OpPopCount64),
sys.Loong64)
addF("math/bits", "OnesCount64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpPopCount64, types.Types[types.TINT], args[0])
},
sys.PPC64, sys.ARM64, sys.S390X, sys.Wasm)
addF("math/bits", "OnesCount32",
makeOnesCountAMD64(ssa.OpPopCount32),
sys.AMD64)
addF("math/bits", "OnesCount32",
makeOnesCountLoong64(ssa.OpPopCount32),
sys.Loong64)
addF("math/bits", "OnesCount32",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpPopCount32, types.Types[types.TINT], args[0])
},
sys.PPC64, sys.ARM64, sys.S390X, sys.Wasm)
addF("math/bits", "OnesCount16",
makeOnesCountAMD64(ssa.OpPopCount16),
sys.AMD64)
addF("math/bits", "OnesCount16",
makeOnesCountLoong64(ssa.OpPopCount16),
sys.Loong64)
addF("math/bits", "OnesCount16",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpPopCount16, types.Types[types.TINT], args[0])
},
sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm)
addF("math/bits", "OnesCount8",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue1(ssa.OpPopCount8, types.Types[types.TINT], args[0])
},
sys.S390X, sys.PPC64, sys.Wasm)
addF("math/bits", "OnesCount",
makeOnesCountAMD64(ssa.OpPopCount64),
sys.AMD64)
addF("math/bits", "Mul64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1])
},
sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X, sys.MIPS64, sys.RISCV64, sys.Loong64)
alias("math/bits", "Mul", "math/bits", "Mul64", p8...)
alias("internal/runtime/math", "Mul64", "math/bits", "Mul64", p8...)
addF("math/bits", "Add64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue3(ssa.OpAdd64carry, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2])
},
sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X, sys.RISCV64, sys.Loong64, sys.MIPS64)
alias("math/bits", "Add", "math/bits", "Add64", p8...)
alias("internal/runtime/math", "Add64", "math/bits", "Add64", all...)
addF("math/bits", "Sub64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
return s.newValue3(ssa.OpSub64borrow, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2])
},
sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X, sys.RISCV64, sys.Loong64, sys.MIPS64)
alias("math/bits", "Sub", "math/bits", "Sub64", p8...)
addF("math/bits", "Div64",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
// check for divide-by-zero/overflow and panic with appropriate message
cmpZero := s.newValue2(s.ssaOp(ir.ONE, types.Types[types.TUINT64]), types.Types[types.TBOOL], args[2], s.zeroVal(types.Types[types.TUINT64]))
s.check(cmpZero, ir.Syms.Panicdivide)
cmpOverflow := s.newValue2(s.ssaOp(ir.OLT, types.Types[types.TUINT64]), types.Types[types.TBOOL], args[0], args[2])
s.check(cmpOverflow, ir.Syms.Panicoverflow)
return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[types.TUINT64], types.Types[types.TUINT64]), args[0], args[1], args[2])
},
sys.AMD64)
alias("math/bits", "Div", "math/bits", "Div64", sys.ArchAMD64)
alias("internal/runtime/sys", "TrailingZeros8", "math/bits", "TrailingZeros8", all...)
alias("internal/runtime/sys", "TrailingZeros32", "math/bits", "TrailingZeros32", all...)
alias("internal/runtime/sys", "TrailingZeros64", "math/bits", "TrailingZeros64", all...)
alias("internal/runtime/sys", "Len8", "math/bits", "Len8", all...)
alias("internal/runtime/sys", "Len64", "math/bits", "Len64", all...)
alias("internal/runtime/sys", "OnesCount64", "math/bits", "OnesCount64", all...)
/******** sync/atomic ********/
// Note: these are disabled by flag_race in findIntrinsic below.
alias("sync/atomic", "LoadInt32", "internal/runtime/atomic", "Load", all...)
alias("sync/atomic", "LoadInt64", "internal/runtime/atomic", "Load64", all...)
alias("sync/atomic", "LoadPointer", "internal/runtime/atomic", "Loadp", all...)
alias("sync/atomic", "LoadUint32", "internal/runtime/atomic", "Load", all...)
alias("sync/atomic", "LoadUint64", "internal/runtime/atomic", "Load64", all...)
alias("sync/atomic", "LoadUintptr", "internal/runtime/atomic", "Load", p4...)
alias("sync/atomic", "LoadUintptr", "internal/runtime/atomic", "Load64", p8...)
alias("sync/atomic", "StoreInt32", "internal/runtime/atomic", "Store", all...)
alias("sync/atomic", "StoreInt64", "internal/runtime/atomic", "Store64", all...)
// Note: not StorePointer, that needs a write barrier. Same below for {CompareAnd}Swap.
alias("sync/atomic", "StoreUint32", "internal/runtime/atomic", "Store", all...)
alias("sync/atomic", "StoreUint64", "internal/runtime/atomic", "Store64", all...)
alias("sync/atomic", "StoreUintptr", "internal/runtime/atomic", "Store", p4...)
alias("sync/atomic", "StoreUintptr", "internal/runtime/atomic", "Store64", p8...)
alias("sync/atomic", "SwapInt32", "internal/runtime/atomic", "Xchg", all...)
alias("sync/atomic", "SwapInt64", "internal/runtime/atomic", "Xchg64", all...)
alias("sync/atomic", "SwapUint32", "internal/runtime/atomic", "Xchg", all...)
alias("sync/atomic", "SwapUint64", "internal/runtime/atomic", "Xchg64", all...)
alias("sync/atomic", "SwapUintptr", "internal/runtime/atomic", "Xchg", p4...)
alias("sync/atomic", "SwapUintptr", "internal/runtime/atomic", "Xchg64", p8...)
alias("sync/atomic", "CompareAndSwapInt32", "internal/runtime/atomic", "Cas", all...)
alias("sync/atomic", "CompareAndSwapInt64", "internal/runtime/atomic", "Cas64", all...)
alias("sync/atomic", "CompareAndSwapUint32", "internal/runtime/atomic", "Cas", all...)
alias("sync/atomic", "CompareAndSwapUint64", "internal/runtime/atomic", "Cas64", all...)
alias("sync/atomic", "CompareAndSwapUintptr", "internal/runtime/atomic", "Cas", p4...)
alias("sync/atomic", "CompareAndSwapUintptr", "internal/runtime/atomic", "Cas64", p8...)
alias("sync/atomic", "AddInt32", "internal/runtime/atomic", "Xadd", all...)
alias("sync/atomic", "AddInt64", "internal/runtime/atomic", "Xadd64", all...)
alias("sync/atomic", "AddUint32", "internal/runtime/atomic", "Xadd", all...)
alias("sync/atomic", "AddUint64", "internal/runtime/atomic", "Xadd64", all...)
alias("sync/atomic", "AddUintptr", "internal/runtime/atomic", "Xadd", p4...)
alias("sync/atomic", "AddUintptr", "internal/runtime/atomic", "Xadd64", p8...)
alias("sync/atomic", "AndInt32", "internal/runtime/atomic", "And32", sys.ArchARM64, sys.ArchAMD64, sys.ArchLoong64)
alias("sync/atomic", "AndUint32", "internal/runtime/atomic", "And32", sys.ArchARM64, sys.ArchAMD64, sys.ArchLoong64)
alias("sync/atomic", "AndInt64", "internal/runtime/atomic", "And64", sys.ArchARM64, sys.ArchAMD64, sys.ArchLoong64)
alias("sync/atomic", "AndUint64", "internal/runtime/atomic", "And64", sys.ArchARM64, sys.ArchAMD64, sys.ArchLoong64)
alias("sync/atomic", "AndUintptr", "internal/runtime/atomic", "And64", sys.ArchARM64, sys.ArchAMD64, sys.ArchLoong64)
alias("sync/atomic", "OrInt32", "internal/runtime/atomic", "Or32", sys.ArchARM64, sys.ArchAMD64, sys.ArchLoong64)
alias("sync/atomic", "OrUint32", "internal/runtime/atomic", "Or32", sys.ArchARM64, sys.ArchAMD64, sys.ArchLoong64)
alias("sync/atomic", "OrInt64", "internal/runtime/atomic", "Or64", sys.ArchARM64, sys.ArchAMD64, sys.ArchLoong64)
alias("sync/atomic", "OrUint64", "internal/runtime/atomic", "Or64", sys.ArchARM64, sys.ArchAMD64, sys.ArchLoong64)
alias("sync/atomic", "OrUintptr", "internal/runtime/atomic", "Or64", sys.ArchARM64, sys.ArchAMD64, sys.ArchLoong64)
/******** math/big ********/
alias("math/big", "mulWW", "math/bits", "Mul64", p8...)
/******** internal/runtime/maps ********/
// Important: The intrinsic implementations below return a packed
// bitset, while the portable Go implementation uses an unpacked
// representation (one bit set in each byte).
//
// Thus we must replace most bitset methods with implementations that
// work with the packed representation.
//
// TODO(prattmic): The bitset implementations don't use SIMD, so they
// could be handled with build tags (though that would break
// -d=ssa/intrinsics/off=1).
// With a packed representation we no longer need to shift the result
// of TrailingZeros64.
alias("internal/runtime/maps", "bitsetFirst", "internal/runtime/sys", "TrailingZeros64", sys.ArchAMD64)
addF("internal/runtime/maps", "bitsetRemoveBelow",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
b := args[0]
i := args[1]
// Clear the lower i bits in b.
//
// out = b &^ ((1 << i) - 1)
one := s.constInt64(types.Types[types.TUINT64], 1)
mask := s.newValue2(ssa.OpLsh8x8, types.Types[types.TUINT64], one, i)
mask = s.newValue2(ssa.OpSub64, types.Types[types.TUINT64], mask, one)
mask = s.newValue1(ssa.OpCom64, types.Types[types.TUINT64], mask)
return s.newValue2(ssa.OpAnd64, types.Types[types.TUINT64], b, mask)
},
sys.AMD64)
addF("internal/runtime/maps", "bitsetLowestSet",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
b := args[0]
// Test the lowest bit in b.
//
// out = (b & 1) == 1
one := s.constInt64(types.Types[types.TUINT64], 1)
and := s.newValue2(ssa.OpAnd64, types.Types[types.TUINT64], b, one)
return s.newValue2(ssa.OpEq64, types.Types[types.TBOOL], and, one)
},
sys.AMD64)
addF("internal/runtime/maps", "bitsetShiftOutLowest",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
b := args[0]
// Right shift out the lowest bit in b.
//
// out = b >> 1
one := s.constInt64(types.Types[types.TUINT64], 1)
return s.newValue2(ssa.OpRsh64Ux64, types.Types[types.TUINT64], b, one)
},
sys.AMD64)
addF("internal/runtime/maps", "ctrlGroupMatchH2",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
g := args[0]
h := args[1]
// Explicit copies to fp registers. See
// https://go.dev/issue/70451.
gfp := s.newValue1(ssa.OpAMD64MOVQi2f, types.TypeInt128, g)
hfp := s.newValue1(ssa.OpAMD64MOVQi2f, types.TypeInt128, h)
// Broadcast h2 into each byte of a word.
var broadcast *ssa.Value
if buildcfg.GOAMD64 >= 4 {
// VPBROADCASTB saves 1 instruction vs PSHUFB
// because the input can come from a GP
// register, while PSHUFB requires moving into
// an FP register first.
//
// Nominally PSHUFB would require a second
// additional instruction to load the control
// mask into a FP register. But broadcast uses
// a control mask of 0, and the register ABI
// already defines X15 as a zero register.
broadcast = s.newValue1(ssa.OpAMD64VPBROADCASTB, types.TypeInt128, h) // use gp copy of h
} else if buildcfg.GOAMD64 >= 2 {
// PSHUFB performs a byte broadcast when given
// a control input of 0.
broadcast = s.newValue1(ssa.OpAMD64PSHUFBbroadcast, types.TypeInt128, hfp)
} else {
// No direct byte broadcast. First we must
// duplicate the lower byte and then do a
// 16-bit broadcast.
// "Unpack" h2 with itself. This duplicates the
// input, resulting in h2 in the lower two
// bytes.
unpack := s.newValue2(ssa.OpAMD64PUNPCKLBW, types.TypeInt128, hfp, hfp)
// Copy the lower 16-bits of unpack into every
// 16-bit slot in the lower 64-bits of the
// output register. Note that immediate 0
// selects the low word as the source for every
// destination slot.
broadcast = s.newValue1I(ssa.OpAMD64PSHUFLW, types.TypeInt128, 0, unpack)
// No need to broadcast into the upper 64-bits,
// as we don't use those.
}
// Compare each byte of the control word with h2. Each
// matching byte has every bit set.
eq := s.newValue2(ssa.OpAMD64PCMPEQB, types.TypeInt128, broadcast, gfp)
// Construct a "byte mask": each output bit is equal to
// the sign bit each input byte.
//
// This results in a packed output (bit N set means
// byte N matched).
//
// NOTE: See comment above on bitsetFirst.
out := s.newValue1(ssa.OpAMD64PMOVMSKB, types.Types[types.TUINT16], eq)
// g is only 64-bits so the upper 64-bits of the
// 128-bit register will be zero. If h2 is also zero,
// then we'll get matches on those bytes. Truncate the
// upper bits to ignore such matches.
ret := s.newValue1(ssa.OpZeroExt8to64, types.Types[types.TUINT64], out)
return ret
},
sys.AMD64)
addF("internal/runtime/maps", "ctrlGroupMatchEmpty",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
// An empty slot is 1000 0000
// A deleted slot is 1111 1110
// A full slot is 0??? ????
g := args[0]
// Explicit copy to fp register. See
// https://go.dev/issue/70451.
gfp := s.newValue1(ssa.OpAMD64MOVQi2f, types.TypeInt128, g)
if buildcfg.GOAMD64 >= 2 {
// "PSIGNB negates each data element of the
// destination operand (the first operand) if
// the signed integer value of the
// corresponding data element in the source
// operand (the second operand) is less than
// zero. If the signed integer value of a data
// element in the source operand is positive,
// the corresponding data element in the
// destination operand is unchanged. If a data
// element in the source operand is zero, the
// corresponding data element in the
// destination operand is set to zero" - Intel SDM
//
// If we pass the group control word as both
// arguments:
// - Full slots are unchanged.
// - Deleted slots are negated, becoming
// 0000 0010.
// - Empty slots are negated, becoming
// 1000 0000 (unchanged!).
//
// The result is that only empty slots have the
// sign bit set. We then use PMOVMSKB to
// extract the sign bits.
sign := s.newValue2(ssa.OpAMD64PSIGNB, types.TypeInt128, gfp, gfp)
// Construct a "byte mask": each output bit is
// equal to the sign bit each input byte. The
// sign bit is only set for empty or deleted
// slots.
//
// This results in a packed output (bit N set
// means byte N matched).
//
// NOTE: See comment above on bitsetFirst.
ret := s.newValue1(ssa.OpAMD64PMOVMSKB, types.Types[types.TUINT16], sign)
// g is only 64-bits so the upper 64-bits of
// the 128-bit register will be zero. PSIGNB
// will keep all of these bytes zero, so no
// need to truncate.
return ret
}
// No PSIGNB, simply do byte equality with ctrlEmpty.
// Load ctrlEmpty into each byte of a control word.
var ctrlsEmpty uint64 = abi.SwissMapCtrlEmpty
e := s.constInt64(types.Types[types.TUINT64], int64(ctrlsEmpty))
// Explicit copy to fp register. See
// https://go.dev/issue/70451.
efp := s.newValue1(ssa.OpAMD64MOVQi2f, types.TypeInt128, e)
// Compare each byte of the control word with ctrlEmpty. Each
// matching byte has every bit set.
eq := s.newValue2(ssa.OpAMD64PCMPEQB, types.TypeInt128, efp, gfp)
// Construct a "byte mask": each output bit is equal to
// the sign bit each input byte.
//
// This results in a packed output (bit N set means
// byte N matched).
//
// NOTE: See comment above on bitsetFirst.
out := s.newValue1(ssa.OpAMD64PMOVMSKB, types.Types[types.TUINT16], eq)
// g is only 64-bits so the upper 64-bits of the
// 128-bit register will be zero. The upper 64-bits of
// efp are also zero, so we'll get matches on those
// bytes. Truncate the upper bits to ignore such
// matches.
return s.newValue1(ssa.OpZeroExt8to64, types.Types[types.TUINT64], out)
},
sys.AMD64)
addF("internal/runtime/maps", "ctrlGroupMatchEmptyOrDeleted",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
// An empty slot is 1000 0000
// A deleted slot is 1111 1110
// A full slot is 0??? ????
//
// A slot is empty or deleted iff bit 7 (sign bit) is
// set.
g := args[0]
// Explicit copy to fp register. See
// https://go.dev/issue/70451.
gfp := s.newValue1(ssa.OpAMD64MOVQi2f, types.TypeInt128, g)
// Construct a "byte mask": each output bit is equal to
// the sign bit each input byte. The sign bit is only
// set for empty or deleted slots.
//
// This results in a packed output (bit N set means
// byte N matched).
//
// NOTE: See comment above on bitsetFirst.
ret := s.newValue1(ssa.OpAMD64PMOVMSKB, types.Types[types.TUINT16], gfp)
// g is only 64-bits so the upper 64-bits of the
// 128-bit register will be zero. Zero will never match
// ctrlEmpty or ctrlDeleted, so no need to truncate.
return ret
},
sys.AMD64)
addF("internal/runtime/maps", "ctrlGroupMatchFull",
func(s *state, n *ir.CallExpr, args []*ssa.Value) *ssa.Value {
// An empty slot is 1000 0000
// A deleted slot is 1111 1110
// A full slot is 0??? ????
//
// A slot is full iff bit 7 (sign bit) is unset.
g := args[0]
// Explicit copy to fp register. See
// https://go.dev/issue/70451.
gfp := s.newValue1(ssa.OpAMD64MOVQi2f, types.TypeInt128, g)
// Construct a "byte mask": each output bit is equal to
// the sign bit each input byte. The sign bit is only
// set for empty or deleted slots.
//
// This results in a packed output (bit N set means
// byte N matched).
//
// NOTE: See comment above on bitsetFirst.
mask := s.newValue1(ssa.OpAMD64PMOVMSKB, types.Types[types.TUINT16], gfp)
// Invert the mask to set the bits for the full slots.
out := s.newValue1(ssa.OpCom16, types.Types[types.TUINT16], mask)
// g is only 64-bits so the upper 64-bits of the
// 128-bit register will be zero, with bit 7 unset.
// Truncate the upper bits to ignore these.
return s.newValue1(ssa.OpZeroExt8to64, types.Types[types.TUINT64], out)
},
sys.AMD64)
}
// findIntrinsic returns a function which builds the SSA equivalent of the
// function identified by the symbol sym. If sym is not an intrinsic call, returns nil.
func findIntrinsic(sym *types.Sym) intrinsicBuilder {
if sym == nil || sym.Pkg == nil {
return nil
}
pkg := sym.Pkg.Path
if sym.Pkg == ir.Pkgs.Runtime {
pkg = "runtime"
}
if base.Flag.Race && pkg == "sync/atomic" {
// The race detector needs to be able to intercept these calls.
// We can't intrinsify them.
return nil
}
// Skip intrinsifying math functions (which may contain hard-float
// instructions) when soft-float
if Arch.SoftFloat && pkg == "math" {
return nil
}
fn := sym.Name
if ssa.IntrinsicsDisable {
if pkg == "internal/runtime/sys" && (fn == "GetCallerPC" || fn == "GrtCallerSP" || fn == "GetClosurePtr") {
// These runtime functions don't have definitions, must be intrinsics.
} else {
return nil
}
}
return intrinsics.lookup(Arch.LinkArch.Arch, pkg, fn)
}
func IsIntrinsicCall(n *ir.CallExpr) bool {
if n == nil {
return false
}
name, ok := n.Fun.(*ir.Name)
if !ok {
return false
}
return findIntrinsic(name.Sym()) != nil
}