blob: 04b1ea50bad135ad3c17f02a484f4cbf7d51e0c6 [file] [log] [blame] [edit]
// Copyright 2024 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package liveness
// This file defines an "Intervals" helper type that stores a
// sorted sequence of disjoint ranges or intervals. An Intervals
// example: { [0,5) [9-12) [100,101) }, which corresponds to the
// numbers 0-4, 9-11, and 100. Once an Intervals object is created, it
// can be tested to see if it has any overlap with another Intervals
// object, or it can be merged with another Intervals object to form a
// union of the two.
//
// The intended use case for this helper is in describing object or
// variable lifetime ranges within a linearized program representation
// where each IR instruction has a slot or index. Example:
//
// b1:
// 0 VarDef abc
// 1 memset(abc,0)
// 2 VarDef xyz
// 3 memset(xyz,0)
// 4 abc.f1 = 2
// 5 xyz.f3 = 9
// 6 if q goto B4
// 7 B3: z = xyz.x
// 8 goto B5
// 9 B4: z = abc.x
// // fallthrough
// 10 B5: z++
//
// To describe the lifetime of the variables above we might use these
// intervals:
//
// "abc" [1,7), [9,10)
// "xyz" [3,8)
//
// Clients can construct an Intervals object from a given IR sequence
// using the "IntervalsBuilder" helper abstraction (one builder per
// candidate variable), by making a
// backwards sweep and invoking the Live/Kill methods to note the
// starts and end of a given lifetime. For the example above, we would
// expect to see this sequence of calls to Live/Kill:
//
// abc: Live(9), Kill(8), Live(6), Kill(0)
// xyz: Live(8), Kill(2)
import (
"fmt"
"os"
"slices"
"strings"
)
const debugtrace = false
// Interval hols the range [st,en).
type Interval struct {
st, en int
}
// Intervals is a sequence of sorted, disjoint intervals.
type Intervals []Interval
func (i Interval) String() string {
return fmt.Sprintf("[%d,%d)", i.st, i.en)
}
// TEMPORARY until bootstrap version catches up.
func imin(i, j int) int {
if i < j {
return i
}
return j
}
// TEMPORARY until bootstrap version catches up.
func imax(i, j int) int {
if i > j {
return i
}
return j
}
// Overlaps returns true if here is any overlap between i and i2.
func (i Interval) Overlaps(i2 Interval) bool {
return (imin(i.en, i2.en) - imax(i.st, i2.st)) > 0
}
// adjacent returns true if the start of one interval is equal to the
// end of another interval (e.g. they represent consecutive ranges).
func (i1 Interval) adjacent(i2 Interval) bool {
return i1.en == i2.st || i2.en == i1.st
}
// MergeInto merges interval i2 into i1. This version happens to
// require that the two intervals either overlap or are adjacent.
func (i1 *Interval) MergeInto(i2 Interval) error {
if !i1.Overlaps(i2) && !i1.adjacent(i2) {
return fmt.Errorf("merge method invoked on non-overlapping/non-adjacent")
}
i1.st = imin(i1.st, i2.st)
i1.en = imax(i1.en, i2.en)
return nil
}
// IntervalsBuilder is a helper for constructing intervals based on
// live dataflow sets for a series of BBs where we're making a
// backwards pass over each BB looking for uses and kills. The
// expected use case is:
//
// - invoke MakeIntervalsBuilder to create a new object "b"
// - series of calls to b.Live/b.Kill based on a backwards reverse layout
// order scan over instructions
// - invoke b.Finish() to produce final set
//
// See the Live method comment for an IR example.
type IntervalsBuilder struct {
s Intervals
// index of last instruction visited plus 1
lidx int
}
func (c *IntervalsBuilder) last() int {
return c.lidx - 1
}
func (c *IntervalsBuilder) setLast(x int) {
c.lidx = x + 1
}
func (c *IntervalsBuilder) Finish() (Intervals, error) {
// Reverse intervals list and check.
slices.Reverse(c.s)
if err := check(c.s); err != nil {
return Intervals{}, err
}
r := c.s
return r, nil
}
// Live method should be invoked on instruction at position p if instr
// contains an upwards-exposed use of a resource. See the example in
// the comment at the beginning of this file for an example.
func (c *IntervalsBuilder) Live(pos int) error {
if pos < 0 {
return fmt.Errorf("bad pos, negative")
}
if c.last() == -1 {
c.setLast(pos)
if debugtrace {
fmt.Fprintf(os.Stderr, "=-= begin lifetime at pos=%d\n", pos)
}
c.s = append(c.s, Interval{st: pos, en: pos + 1})
return nil
}
if pos >= c.last() {
return fmt.Errorf("pos not decreasing")
}
// extend lifetime across this pos
c.s[len(c.s)-1].st = pos
c.setLast(pos)
return nil
}
// Kill method should be invoked on instruction at position p if instr
// should be treated as having a kill (lifetime end) for the
// resource. See the example in the comment at the beginning of this
// file for an example. Note that if we see a kill at position K for a
// resource currently live since J, this will result in a lifetime
// segment of [K+1,J+1), the assumption being that the first live
// instruction will be the one after the kill position, not the kill
// position itself.
func (c *IntervalsBuilder) Kill(pos int) error {
if pos < 0 {
return fmt.Errorf("bad pos, negative")
}
if c.last() == -1 {
return nil
}
if pos >= c.last() {
return fmt.Errorf("pos not decreasing")
}
c.s[len(c.s)-1].st = pos + 1
// terminate lifetime
c.setLast(-1)
if debugtrace {
fmt.Fprintf(os.Stderr, "=-= term lifetime at pos=%d\n", pos)
}
return nil
}
// check examines the intervals in "is" to try to find internal
// inconsistencies or problems.
func check(is Intervals) error {
for i := 0; i < len(is); i++ {
st := is[i].st
en := is[i].en
if en <= st {
return fmt.Errorf("bad range elem %d:%d, en<=st", st, en)
}
if i == 0 {
continue
}
// check for badly ordered starts
pst := is[i-1].st
pen := is[i-1].en
if pst >= st {
return fmt.Errorf("range start not ordered %d:%d less than prev %d:%d", st, en,
pst, pen)
}
// check end of last range against start of this range
if pen > st {
return fmt.Errorf("bad range elem %d:%d overlaps prev %d:%d", st, en,
pst, pen)
}
}
return nil
}
func (is *Intervals) String() string {
var sb strings.Builder
for i := range *is {
if i != 0 {
sb.WriteString(" ")
}
sb.WriteString((*is)[i].String())
}
return sb.String()
}
// intWithIdx holds an interval i and an index pairIndex storing i's
// position (either 0 or 1) within some previously specified interval
// pair <I1,I2>; a pairIndex of -1 is used to signal "end of
// iteration". Used for Intervals operations, not expected to be
// exported.
type intWithIdx struct {
i Interval
pairIndex int
}
func (iwi intWithIdx) done() bool {
return iwi.pairIndex == -1
}
// pairVisitor provides a way to visit (iterate through) each interval
// within a pair of Intervals in order of increasing start time. Expected
// usage model:
//
// func example(i1, i2 Intervals) {
// var pairVisitor pv
// cur := pv.init(i1, i2);
// for !cur.done() {
// fmt.Printf("interval %s from i%d", cur.i.String(), cur.pairIndex+1)
// cur = pv.nxt()
// }
// }
//
// Used internally for Intervals operations, not expected to be exported.
type pairVisitor struct {
cur intWithIdx
i1pos int
i2pos int
i1, i2 Intervals
}
// init initializes a pairVisitor for the specified pair of intervals
// i1 and i2 and returns an intWithIdx object that points to the first
// interval by start position within i1/i2.
func (pv *pairVisitor) init(i1, i2 Intervals) intWithIdx {
pv.i1, pv.i2 = i1, i2
pv.cur = pv.sel()
return pv.cur
}
// nxt advances the pairVisitor to the next interval by starting
// position within the pair, returning an intWithIdx that describes
// the interval.
func (pv *pairVisitor) nxt() intWithIdx {
if pv.cur.pairIndex == 0 {
pv.i1pos++
} else {
pv.i2pos++
}
pv.cur = pv.sel()
return pv.cur
}
// sel is a helper function used by 'init' and 'nxt' above; it selects
// the earlier of the two intervals at the current positions within i1
// and i2, or a degenerate (pairIndex -1) intWithIdx if we have no
// more intervals to visit.
func (pv *pairVisitor) sel() intWithIdx {
var c1, c2 intWithIdx
if pv.i1pos >= len(pv.i1) {
c1.pairIndex = -1
} else {
c1 = intWithIdx{i: pv.i1[pv.i1pos], pairIndex: 0}
}
if pv.i2pos >= len(pv.i2) {
c2.pairIndex = -1
} else {
c2 = intWithIdx{i: pv.i2[pv.i2pos], pairIndex: 1}
}
if c1.pairIndex == -1 {
return c2
}
if c2.pairIndex == -1 {
return c1
}
if c1.i.st <= c2.i.st {
return c1
}
return c2
}
// Overlaps returns whether any of the component ranges in is overlaps
// with some range in is2.
func (is Intervals) Overlaps(is2 Intervals) bool {
// check for empty intervals
if len(is) == 0 || len(is2) == 0 {
return false
}
li := len(is)
li2 := len(is2)
// check for completely disjoint ranges
if is[li-1].en <= is2[0].st ||
is[0].st >= is2[li2-1].en {
return false
}
// walk the combined sets of intervals and check for piecewise
// overlap.
var pv pairVisitor
first := pv.init(is, is2)
for {
second := pv.nxt()
if second.done() {
break
}
if first.pairIndex == second.pairIndex {
first = second
continue
}
if first.i.Overlaps(second.i) {
return true
}
first = second
}
return false
}
// Merge combines the intervals from "is" and "is2" and returns
// a new Intervals object containing all combined ranges from the
// two inputs.
func (is Intervals) Merge(is2 Intervals) Intervals {
if len(is) == 0 {
return is2
} else if len(is2) == 0 {
return is
}
// walk the combined set of intervals and merge them together.
var ret Intervals
var pv pairVisitor
cur := pv.init(is, is2)
for {
second := pv.nxt()
if second.done() {
break
}
// Check for overlap between cur and second. If no overlap
// then add cur to result and move on.
if !cur.i.Overlaps(second.i) && !cur.i.adjacent(second.i) {
ret = append(ret, cur.i)
cur = second
continue
}
// cur overlaps with second; merge second into cur
cur.i.MergeInto(second.i)
}
ret = append(ret, cur.i)
return ret
}