| // run | 
 |  | 
 | // Copyright 2009 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | // Test concurrency primitives: power series. | 
 |  | 
 | // Power series package | 
 | // A power series is a channel, along which flow rational | 
 | // coefficients.  A denominator of zero signifies the end. | 
 | // Original code in Newsqueak by Doug McIlroy. | 
 | // See Squinting at Power Series by Doug McIlroy, | 
 | //   http://www.cs.bell-labs.com/who/rsc/thread/squint.pdf | 
 |  | 
 | package main | 
 |  | 
 | import "os" | 
 |  | 
 | type rat struct { | 
 | 	num, den int64 // numerator, denominator | 
 | } | 
 |  | 
 | func (u rat) pr() { | 
 | 	if u.den == 1 { | 
 | 		print(u.num) | 
 | 	} else { | 
 | 		print(u.num, "/", u.den) | 
 | 	} | 
 | 	print(" ") | 
 | } | 
 |  | 
 | func (u rat) eq(c rat) bool { | 
 | 	return u.num == c.num && u.den == c.den | 
 | } | 
 |  | 
 | type dch struct { | 
 | 	req chan int | 
 | 	dat chan rat | 
 | 	nam int | 
 | } | 
 |  | 
 | type dch2 [2]*dch | 
 |  | 
 | var chnames string | 
 | var chnameserial int | 
 | var seqno int | 
 |  | 
 | func mkdch() *dch { | 
 | 	c := chnameserial % len(chnames) | 
 | 	chnameserial++ | 
 | 	d := new(dch) | 
 | 	d.req = make(chan int) | 
 | 	d.dat = make(chan rat) | 
 | 	d.nam = c | 
 | 	return d | 
 | } | 
 |  | 
 | func mkdch2() *dch2 { | 
 | 	d2 := new(dch2) | 
 | 	d2[0] = mkdch() | 
 | 	d2[1] = mkdch() | 
 | 	return d2 | 
 | } | 
 |  | 
 | // split reads a single demand channel and replicates its | 
 | // output onto two, which may be read at different rates. | 
 | // A process is created at first demand for a rat and dies | 
 | // after the rat has been sent to both outputs. | 
 |  | 
 | // When multiple generations of split exist, the newest | 
 | // will service requests on one channel, which is | 
 | // always renamed to be out[0]; the oldest will service | 
 | // requests on the other channel, out[1].  All generations but the | 
 | // newest hold queued data that has already been sent to | 
 | // out[0].  When data has finally been sent to out[1], | 
 | // a signal on the release-wait channel tells the next newer | 
 | // generation to begin servicing out[1]. | 
 |  | 
 | func dosplit(in *dch, out *dch2, wait chan int) { | 
 | 	both := false // do not service both channels | 
 |  | 
 | 	select { | 
 | 	case <-out[0].req: | 
 |  | 
 | 	case <-wait: | 
 | 		both = true | 
 | 		select { | 
 | 		case <-out[0].req: | 
 |  | 
 | 		case <-out[1].req: | 
 | 			out[0], out[1] = out[1], out[0] | 
 | 		} | 
 | 	} | 
 |  | 
 | 	seqno++ | 
 | 	in.req <- seqno | 
 | 	release := make(chan int) | 
 | 	go dosplit(in, out, release) | 
 | 	dat := <-in.dat | 
 | 	out[0].dat <- dat | 
 | 	if !both { | 
 | 		<-wait | 
 | 	} | 
 | 	<-out[1].req | 
 | 	out[1].dat <- dat | 
 | 	release <- 0 | 
 | } | 
 |  | 
 | func split(in *dch, out *dch2) { | 
 | 	release := make(chan int) | 
 | 	go dosplit(in, out, release) | 
 | 	release <- 0 | 
 | } | 
 |  | 
 | func put(dat rat, out *dch) { | 
 | 	<-out.req | 
 | 	out.dat <- dat | 
 | } | 
 |  | 
 | func get(in *dch) rat { | 
 | 	seqno++ | 
 | 	in.req <- seqno | 
 | 	return <-in.dat | 
 | } | 
 |  | 
 | // Get one rat from each of n demand channels | 
 |  | 
 | func getn(in []*dch) []rat { | 
 | 	n := len(in) | 
 | 	if n != 2 { | 
 | 		panic("bad n in getn") | 
 | 	} | 
 | 	req := new([2]chan int) | 
 | 	dat := new([2]chan rat) | 
 | 	out := make([]rat, 2) | 
 | 	var i int | 
 | 	var it rat | 
 | 	for i = 0; i < n; i++ { | 
 | 		req[i] = in[i].req | 
 | 		dat[i] = nil | 
 | 	} | 
 | 	for n = 2 * n; n > 0; n-- { | 
 | 		seqno++ | 
 |  | 
 | 		select { | 
 | 		case req[0] <- seqno: | 
 | 			dat[0] = in[0].dat | 
 | 			req[0] = nil | 
 | 		case req[1] <- seqno: | 
 | 			dat[1] = in[1].dat | 
 | 			req[1] = nil | 
 | 		case it = <-dat[0]: | 
 | 			out[0] = it | 
 | 			dat[0] = nil | 
 | 		case it = <-dat[1]: | 
 | 			out[1] = it | 
 | 			dat[1] = nil | 
 | 		} | 
 | 	} | 
 | 	return out | 
 | } | 
 |  | 
 | // Get one rat from each of 2 demand channels | 
 |  | 
 | func get2(in0 *dch, in1 *dch) []rat { | 
 | 	return getn([]*dch{in0, in1}) | 
 | } | 
 |  | 
 | func copy(in *dch, out *dch) { | 
 | 	for { | 
 | 		<-out.req | 
 | 		out.dat <- get(in) | 
 | 	} | 
 | } | 
 |  | 
 | func repeat(dat rat, out *dch) { | 
 | 	for { | 
 | 		put(dat, out) | 
 | 	} | 
 | } | 
 |  | 
 | type PS *dch    // power series | 
 | type PS2 *[2]PS // pair of power series | 
 |  | 
 | var Ones PS | 
 | var Twos PS | 
 |  | 
 | func mkPS() *dch { | 
 | 	return mkdch() | 
 | } | 
 |  | 
 | func mkPS2() *dch2 { | 
 | 	return mkdch2() | 
 | } | 
 |  | 
 | // Conventions | 
 | // Upper-case for power series. | 
 | // Lower-case for rationals. | 
 | // Input variables: U,V,... | 
 | // Output variables: ...,Y,Z | 
 |  | 
 | // Integer gcd; needed for rational arithmetic | 
 |  | 
 | func gcd(u, v int64) int64 { | 
 | 	if u < 0 { | 
 | 		return gcd(-u, v) | 
 | 	} | 
 | 	if u == 0 { | 
 | 		return v | 
 | 	} | 
 | 	return gcd(v%u, u) | 
 | } | 
 |  | 
 | // Make a rational from two ints and from one int | 
 |  | 
 | func i2tor(u, v int64) rat { | 
 | 	g := gcd(u, v) | 
 | 	var r rat | 
 | 	if v > 0 { | 
 | 		r.num = u / g | 
 | 		r.den = v / g | 
 | 	} else { | 
 | 		r.num = -u / g | 
 | 		r.den = -v / g | 
 | 	} | 
 | 	return r | 
 | } | 
 |  | 
 | func itor(u int64) rat { | 
 | 	return i2tor(u, 1) | 
 | } | 
 |  | 
 | var zero rat | 
 | var one rat | 
 |  | 
 | // End mark and end test | 
 |  | 
 | var finis rat | 
 |  | 
 | func end(u rat) int64 { | 
 | 	if u.den == 0 { | 
 | 		return 1 | 
 | 	} | 
 | 	return 0 | 
 | } | 
 |  | 
 | // Operations on rationals | 
 |  | 
 | func add(u, v rat) rat { | 
 | 	g := gcd(u.den, v.den) | 
 | 	return i2tor(u.num*(v.den/g)+v.num*(u.den/g), u.den*(v.den/g)) | 
 | } | 
 |  | 
 | func mul(u, v rat) rat { | 
 | 	g1 := gcd(u.num, v.den) | 
 | 	g2 := gcd(u.den, v.num) | 
 | 	var r rat | 
 | 	r.num = (u.num / g1) * (v.num / g2) | 
 | 	r.den = (u.den / g2) * (v.den / g1) | 
 | 	return r | 
 | } | 
 |  | 
 | func neg(u rat) rat { | 
 | 	return i2tor(-u.num, u.den) | 
 | } | 
 |  | 
 | func sub(u, v rat) rat { | 
 | 	return add(u, neg(v)) | 
 | } | 
 |  | 
 | func inv(u rat) rat { // invert a rat | 
 | 	if u.num == 0 { | 
 | 		panic("zero divide in inv") | 
 | 	} | 
 | 	return i2tor(u.den, u.num) | 
 | } | 
 |  | 
 | // print eval in floating point of PS at x=c to n terms | 
 | func evaln(c rat, U PS, n int) { | 
 | 	xn := float64(1) | 
 | 	x := float64(c.num) / float64(c.den) | 
 | 	val := float64(0) | 
 | 	for i := 0; i < n; i++ { | 
 | 		u := get(U) | 
 | 		if end(u) != 0 { | 
 | 			break | 
 | 		} | 
 | 		val = val + x*float64(u.num)/float64(u.den) | 
 | 		xn = xn * x | 
 | 	} | 
 | 	print(val, "\n") | 
 | } | 
 |  | 
 | // Print n terms of a power series | 
 | func printn(U PS, n int) { | 
 | 	done := false | 
 | 	for ; !done && n > 0; n-- { | 
 | 		u := get(U) | 
 | 		if end(u) != 0 { | 
 | 			done = true | 
 | 		} else { | 
 | 			u.pr() | 
 | 		} | 
 | 	} | 
 | 	print(("\n")) | 
 | } | 
 |  | 
 | // Evaluate n terms of power series U at x=c | 
 | func eval(c rat, U PS, n int) rat { | 
 | 	if n == 0 { | 
 | 		return zero | 
 | 	} | 
 | 	y := get(U) | 
 | 	if end(y) != 0 { | 
 | 		return zero | 
 | 	} | 
 | 	return add(y, mul(c, eval(c, U, n-1))) | 
 | } | 
 |  | 
 | // Power-series constructors return channels on which power | 
 | // series flow.  They start an encapsulated generator that | 
 | // puts the terms of the series on the channel. | 
 |  | 
 | // Make a pair of power series identical to a given power series | 
 |  | 
 | func Split(U PS) *dch2 { | 
 | 	UU := mkdch2() | 
 | 	go split(U, UU) | 
 | 	return UU | 
 | } | 
 |  | 
 | // Add two power series | 
 | func Add(U, V PS) PS { | 
 | 	Z := mkPS() | 
 | 	go func() { | 
 | 		var uv []rat | 
 | 		for { | 
 | 			<-Z.req | 
 | 			uv = get2(U, V) | 
 | 			switch end(uv[0]) + 2*end(uv[1]) { | 
 | 			case 0: | 
 | 				Z.dat <- add(uv[0], uv[1]) | 
 | 			case 1: | 
 | 				Z.dat <- uv[1] | 
 | 				copy(V, Z) | 
 | 			case 2: | 
 | 				Z.dat <- uv[0] | 
 | 				copy(U, Z) | 
 | 			case 3: | 
 | 				Z.dat <- finis | 
 | 			} | 
 | 		} | 
 | 	}() | 
 | 	return Z | 
 | } | 
 |  | 
 | // Multiply a power series by a constant | 
 | func Cmul(c rat, U PS) PS { | 
 | 	Z := mkPS() | 
 | 	go func() { | 
 | 		done := false | 
 | 		for !done { | 
 | 			<-Z.req | 
 | 			u := get(U) | 
 | 			if end(u) != 0 { | 
 | 				done = true | 
 | 			} else { | 
 | 				Z.dat <- mul(c, u) | 
 | 			} | 
 | 		} | 
 | 		Z.dat <- finis | 
 | 	}() | 
 | 	return Z | 
 | } | 
 |  | 
 | // Subtract | 
 |  | 
 | func Sub(U, V PS) PS { | 
 | 	return Add(U, Cmul(neg(one), V)) | 
 | } | 
 |  | 
 | // Multiply a power series by the monomial x^n | 
 |  | 
 | func Monmul(U PS, n int) PS { | 
 | 	Z := mkPS() | 
 | 	go func() { | 
 | 		for ; n > 0; n-- { | 
 | 			put(zero, Z) | 
 | 		} | 
 | 		copy(U, Z) | 
 | 	}() | 
 | 	return Z | 
 | } | 
 |  | 
 | // Multiply by x | 
 |  | 
 | func Xmul(U PS) PS { | 
 | 	return Monmul(U, 1) | 
 | } | 
 |  | 
 | func Rep(c rat) PS { | 
 | 	Z := mkPS() | 
 | 	go repeat(c, Z) | 
 | 	return Z | 
 | } | 
 |  | 
 | // Monomial c*x^n | 
 |  | 
 | func Mon(c rat, n int) PS { | 
 | 	Z := mkPS() | 
 | 	go func() { | 
 | 		if c.num != 0 { | 
 | 			for ; n > 0; n = n - 1 { | 
 | 				put(zero, Z) | 
 | 			} | 
 | 			put(c, Z) | 
 | 		} | 
 | 		put(finis, Z) | 
 | 	}() | 
 | 	return Z | 
 | } | 
 |  | 
 | func Shift(c rat, U PS) PS { | 
 | 	Z := mkPS() | 
 | 	go func() { | 
 | 		put(c, Z) | 
 | 		copy(U, Z) | 
 | 	}() | 
 | 	return Z | 
 | } | 
 |  | 
 | // simple pole at 1: 1/(1-x) = 1 1 1 1 1 ... | 
 |  | 
 | // Convert array of coefficients, constant term first | 
 | // to a (finite) power series | 
 |  | 
 | /* | 
 | func Poly(a []rat) PS { | 
 | 	Z:=mkPS() | 
 | 	begin func(a []rat, Z PS) { | 
 | 		j:=0 | 
 | 		done:=0 | 
 | 		for j=len(a); !done&&j>0; j=j-1) | 
 | 			if(a[j-1].num!=0) done=1 | 
 | 		i:=0 | 
 | 		for(; i<j; i=i+1) put(a[i],Z) | 
 | 		put(finis,Z) | 
 | 	}() | 
 | 	return Z | 
 | } | 
 | */ | 
 |  | 
 | // Multiply. The algorithm is | 
 | //	let U = u + x*UU | 
 | //	let V = v + x*VV | 
 | //	then UV = u*v + x*(u*VV+v*UU) + x*x*UU*VV | 
 |  | 
 | func Mul(U, V PS) PS { | 
 | 	Z := mkPS() | 
 | 	go func() { | 
 | 		<-Z.req | 
 | 		uv := get2(U, V) | 
 | 		if end(uv[0]) != 0 || end(uv[1]) != 0 { | 
 | 			Z.dat <- finis | 
 | 		} else { | 
 | 			Z.dat <- mul(uv[0], uv[1]) | 
 | 			UU := Split(U) | 
 | 			VV := Split(V) | 
 | 			W := Add(Cmul(uv[0], VV[0]), Cmul(uv[1], UU[0])) | 
 | 			<-Z.req | 
 | 			Z.dat <- get(W) | 
 | 			copy(Add(W, Mul(UU[1], VV[1])), Z) | 
 | 		} | 
 | 	}() | 
 | 	return Z | 
 | } | 
 |  | 
 | // Differentiate | 
 |  | 
 | func Diff(U PS) PS { | 
 | 	Z := mkPS() | 
 | 	go func() { | 
 | 		<-Z.req | 
 | 		u := get(U) | 
 | 		if end(u) == 0 { | 
 | 			done := false | 
 | 			for i := 1; !done; i++ { | 
 | 				u = get(U) | 
 | 				if end(u) != 0 { | 
 | 					done = true | 
 | 				} else { | 
 | 					Z.dat <- mul(itor(int64(i)), u) | 
 | 					<-Z.req | 
 | 				} | 
 | 			} | 
 | 		} | 
 | 		Z.dat <- finis | 
 | 	}() | 
 | 	return Z | 
 | } | 
 |  | 
 | // Integrate, with const of integration | 
 | func Integ(c rat, U PS) PS { | 
 | 	Z := mkPS() | 
 | 	go func() { | 
 | 		put(c, Z) | 
 | 		done := false | 
 | 		for i := 1; !done; i++ { | 
 | 			<-Z.req | 
 | 			u := get(U) | 
 | 			if end(u) != 0 { | 
 | 				done = true | 
 | 			} | 
 | 			Z.dat <- mul(i2tor(1, int64(i)), u) | 
 | 		} | 
 | 		Z.dat <- finis | 
 | 	}() | 
 | 	return Z | 
 | } | 
 |  | 
 | // Binomial theorem (1+x)^c | 
 |  | 
 | func Binom(c rat) PS { | 
 | 	Z := mkPS() | 
 | 	go func() { | 
 | 		n := 1 | 
 | 		t := itor(1) | 
 | 		for c.num != 0 { | 
 | 			put(t, Z) | 
 | 			t = mul(mul(t, c), i2tor(1, int64(n))) | 
 | 			c = sub(c, one) | 
 | 			n++ | 
 | 		} | 
 | 		put(finis, Z) | 
 | 	}() | 
 | 	return Z | 
 | } | 
 |  | 
 | // Reciprocal of a power series | 
 | //	let U = u + x*UU | 
 | //	let Z = z + x*ZZ | 
 | //	(u+x*UU)*(z+x*ZZ) = 1 | 
 | //	z = 1/u | 
 | //	u*ZZ + z*UU +x*UU*ZZ = 0 | 
 | //	ZZ = -UU*(z+x*ZZ)/u | 
 |  | 
 | func Recip(U PS) PS { | 
 | 	Z := mkPS() | 
 | 	go func() { | 
 | 		ZZ := mkPS2() | 
 | 		<-Z.req | 
 | 		z := inv(get(U)) | 
 | 		Z.dat <- z | 
 | 		split(Mul(Cmul(neg(z), U), Shift(z, ZZ[0])), ZZ) | 
 | 		copy(ZZ[1], Z) | 
 | 	}() | 
 | 	return Z | 
 | } | 
 |  | 
 | // Exponential of a power series with constant term 0 | 
 | // (nonzero constant term would make nonrational coefficients) | 
 | // bug: the constant term is simply ignored | 
 | //	Z = exp(U) | 
 | //	DZ = Z*DU | 
 | //	integrate to get Z | 
 |  | 
 | func Exp(U PS) PS { | 
 | 	ZZ := mkPS2() | 
 | 	split(Integ(one, Mul(ZZ[0], Diff(U))), ZZ) | 
 | 	return ZZ[1] | 
 | } | 
 |  | 
 | // Substitute V for x in U, where the leading term of V is zero | 
 | //	let U = u + x*UU | 
 | //	let V = v + x*VV | 
 | //	then S(U,V) = u + VV*S(V,UU) | 
 | // bug: a nonzero constant term is ignored | 
 |  | 
 | func Subst(U, V PS) PS { | 
 | 	Z := mkPS() | 
 | 	go func() { | 
 | 		VV := Split(V) | 
 | 		<-Z.req | 
 | 		u := get(U) | 
 | 		Z.dat <- u | 
 | 		if end(u) == 0 { | 
 | 			if end(get(VV[0])) != 0 { | 
 | 				put(finis, Z) | 
 | 			} else { | 
 | 				copy(Mul(VV[0], Subst(U, VV[1])), Z) | 
 | 			} | 
 | 		} | 
 | 	}() | 
 | 	return Z | 
 | } | 
 |  | 
 | // Monomial Substition: U(c x^n) | 
 | // Each Ui is multiplied by c^i and followed by n-1 zeros | 
 |  | 
 | func MonSubst(U PS, c0 rat, n int) PS { | 
 | 	Z := mkPS() | 
 | 	go func() { | 
 | 		c := one | 
 | 		for { | 
 | 			<-Z.req | 
 | 			u := get(U) | 
 | 			Z.dat <- mul(u, c) | 
 | 			c = mul(c, c0) | 
 | 			if end(u) != 0 { | 
 | 				Z.dat <- finis | 
 | 				break | 
 | 			} | 
 | 			for i := 1; i < n; i++ { | 
 | 				<-Z.req | 
 | 				Z.dat <- zero | 
 | 			} | 
 | 		} | 
 | 	}() | 
 | 	return Z | 
 | } | 
 |  | 
 | func Init() { | 
 | 	chnameserial = -1 | 
 | 	seqno = 0 | 
 | 	chnames = "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz" | 
 | 	zero = itor(0) | 
 | 	one = itor(1) | 
 | 	finis = i2tor(1, 0) | 
 | 	Ones = Rep(one) | 
 | 	Twos = Rep(itor(2)) | 
 | } | 
 |  | 
 | func check(U PS, c rat, count int, str string) { | 
 | 	for i := 0; i < count; i++ { | 
 | 		r := get(U) | 
 | 		if !r.eq(c) { | 
 | 			print("got: ") | 
 | 			r.pr() | 
 | 			print("should get ") | 
 | 			c.pr() | 
 | 			print("\n") | 
 | 			panic(str) | 
 | 		} | 
 | 	} | 
 | } | 
 |  | 
 | const N = 10 | 
 |  | 
 | func checka(U PS, a []rat, str string) { | 
 | 	for i := 0; i < N; i++ { | 
 | 		check(U, a[i], 1, str) | 
 | 	} | 
 | } | 
 |  | 
 | func main() { | 
 | 	Init() | 
 | 	if len(os.Args) > 1 { // print | 
 | 		print("Ones: ") | 
 | 		printn(Ones, 10) | 
 | 		print("Twos: ") | 
 | 		printn(Twos, 10) | 
 | 		print("Add: ") | 
 | 		printn(Add(Ones, Twos), 10) | 
 | 		print("Diff: ") | 
 | 		printn(Diff(Ones), 10) | 
 | 		print("Integ: ") | 
 | 		printn(Integ(zero, Ones), 10) | 
 | 		print("CMul: ") | 
 | 		printn(Cmul(neg(one), Ones), 10) | 
 | 		print("Sub: ") | 
 | 		printn(Sub(Ones, Twos), 10) | 
 | 		print("Mul: ") | 
 | 		printn(Mul(Ones, Ones), 10) | 
 | 		print("Exp: ") | 
 | 		printn(Exp(Ones), 15) | 
 | 		print("MonSubst: ") | 
 | 		printn(MonSubst(Ones, neg(one), 2), 10) | 
 | 		print("ATan: ") | 
 | 		printn(Integ(zero, MonSubst(Ones, neg(one), 2)), 10) | 
 | 	} else { // test | 
 | 		check(Ones, one, 5, "Ones") | 
 | 		check(Add(Ones, Ones), itor(2), 0, "Add Ones Ones") // 1 1 1 1 1 | 
 | 		check(Add(Ones, Twos), itor(3), 0, "Add Ones Twos") // 3 3 3 3 3 | 
 | 		a := make([]rat, N) | 
 | 		d := Diff(Ones) | 
 | 		for i := 0; i < N; i++ { | 
 | 			a[i] = itor(int64(i + 1)) | 
 | 		} | 
 | 		checka(d, a, "Diff") // 1 2 3 4 5 | 
 | 		in := Integ(zero, Ones) | 
 | 		a[0] = zero // integration constant | 
 | 		for i := 1; i < N; i++ { | 
 | 			a[i] = i2tor(1, int64(i)) | 
 | 		} | 
 | 		checka(in, a, "Integ")                               // 0 1 1/2 1/3 1/4 1/5 | 
 | 		check(Cmul(neg(one), Twos), itor(-2), 10, "CMul")    // -1 -1 -1 -1 -1 | 
 | 		check(Sub(Ones, Twos), itor(-1), 0, "Sub Ones Twos") // -1 -1 -1 -1 -1 | 
 | 		m := Mul(Ones, Ones) | 
 | 		for i := 0; i < N; i++ { | 
 | 			a[i] = itor(int64(i + 1)) | 
 | 		} | 
 | 		checka(m, a, "Mul") // 1 2 3 4 5 | 
 | 		e := Exp(Ones) | 
 | 		a[0] = itor(1) | 
 | 		a[1] = itor(1) | 
 | 		a[2] = i2tor(3, 2) | 
 | 		a[3] = i2tor(13, 6) | 
 | 		a[4] = i2tor(73, 24) | 
 | 		a[5] = i2tor(167, 40) | 
 | 		a[6] = i2tor(4051, 720) | 
 | 		a[7] = i2tor(37633, 5040) | 
 | 		a[8] = i2tor(43817, 4480) | 
 | 		a[9] = i2tor(4596553, 362880) | 
 | 		checka(e, a, "Exp") // 1 1 3/2 13/6 73/24 | 
 | 		at := Integ(zero, MonSubst(Ones, neg(one), 2)) | 
 | 		for c, i := 1, 0; i < N; i++ { | 
 | 			if i%2 == 0 { | 
 | 				a[i] = zero | 
 | 			} else { | 
 | 				a[i] = i2tor(int64(c), int64(i)) | 
 | 				c *= -1 | 
 | 			} | 
 | 		} | 
 | 		checka(at, a, "ATan") // 0 -1 0 -1/3 0 -1/5 | 
 | 		/* | 
 | 			t := Revert(Integ(zero, MonSubst(Ones, neg(one), 2))) | 
 | 			a[0] = zero | 
 | 			a[1] = itor(1) | 
 | 			a[2] = zero | 
 | 			a[3] = i2tor(1,3) | 
 | 			a[4] = zero | 
 | 			a[5] = i2tor(2,15) | 
 | 			a[6] = zero | 
 | 			a[7] = i2tor(17,315) | 
 | 			a[8] = zero | 
 | 			a[9] = i2tor(62,2835) | 
 | 			checka(t, a, "Tan")  // 0 1 0 1/3 0 2/15 | 
 | 		*/ | 
 | 	} | 
 | } |