| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package reflect |
| |
| import ( |
| "math" |
| "runtime" |
| "unsafe" |
| ) |
| |
| const ptrSize = uintptr(unsafe.Sizeof((*byte)(nil))) |
| const cannotSet = "cannot set value obtained from unexported struct field" |
| |
| type addr unsafe.Pointer |
| |
| // TODO: This will have to go away when |
| // the new gc goes in. |
| func memmove(adst, asrc addr, n uintptr) { |
| dst := uintptr(adst) |
| src := uintptr(asrc) |
| switch { |
| case src < dst && src+n > dst: |
| // byte copy backward |
| // careful: i is unsigned |
| for i := n; i > 0; { |
| i-- |
| *(*byte)(addr(dst + i)) = *(*byte)(addr(src + i)) |
| } |
| case (n|src|dst)&(ptrSize-1) != 0: |
| // byte copy forward |
| for i := uintptr(0); i < n; i++ { |
| *(*byte)(addr(dst + i)) = *(*byte)(addr(src + i)) |
| } |
| default: |
| // word copy forward |
| for i := uintptr(0); i < n; i += ptrSize { |
| *(*uintptr)(addr(dst + i)) = *(*uintptr)(addr(src + i)) |
| } |
| } |
| } |
| |
| // Value is the common interface to reflection values. |
| // The implementations of Value (e.g., ArrayValue, StructValue) |
| // have additional type-specific methods. |
| type Value interface { |
| // Type returns the value's type. |
| Type() Type |
| |
| // Interface returns the value as an interface{}. |
| Interface() interface{} |
| |
| // CanSet returns true if the value can be changed. |
| // Values obtained by the use of non-exported struct fields |
| // can be used in Get but not Set. |
| // If CanSet returns false, calling the type-specific Set will panic. |
| CanSet() bool |
| |
| // SetValue assigns v to the value; v must have the same type as the value. |
| SetValue(v Value) |
| |
| // CanAddr returns true if the value's address can be obtained with Addr. |
| // Such values are called addressable. A value is addressable if it is |
| // an element of a slice, an element of an addressable array, |
| // a field of an addressable struct, the result of dereferencing a pointer, |
| // or the result of a call to NewValue, MakeChan, MakeMap, or MakeZero. |
| // If CanAddr returns false, calling Addr will panic. |
| CanAddr() bool |
| |
| // Addr returns the address of the value. |
| // If the value is not addressable, Addr panics. |
| // Addr is typically used to obtain a pointer to a struct field or slice element |
| // in order to call a method that requires a pointer receiver. |
| Addr() *PtrValue |
| |
| // UnsafeAddr returns a pointer to the underlying data. |
| // It is for advanced clients that also import the "unsafe" package. |
| UnsafeAddr() uintptr |
| |
| // Method returns a FuncValue corresponding to the value's i'th method. |
| // The arguments to a Call on the returned FuncValue |
| // should not include a receiver; the FuncValue will use |
| // the value as the receiver. |
| Method(i int) *FuncValue |
| |
| getAddr() addr |
| } |
| |
| // flags for value |
| const ( |
| canSet uint32 = 1 << iota // can set value (write to *v.addr) |
| canAddr // can take address of value |
| canStore // can store through value (write to **v.addr) |
| ) |
| |
| // value is the common implementation of most values. |
| // It is embedded in other, public struct types, but always |
| // with a unique tag like "uint" or "float" so that the client cannot |
| // convert from, say, *UintValue to *FloatValue. |
| type value struct { |
| typ Type |
| addr addr |
| flag uint32 |
| } |
| |
| func (v *value) Type() Type { return v.typ } |
| |
| func (v *value) Addr() *PtrValue { |
| if !v.CanAddr() { |
| panic("reflect: cannot take address of value") |
| } |
| a := v.addr |
| flag := canSet |
| if v.CanSet() { |
| flag |= canStore |
| } |
| // We could safely set canAddr here too - |
| // the caller would get the address of a - |
| // but it doesn't match the Go model. |
| // The language doesn't let you say &&v. |
| return newValue(PtrTo(v.typ), addr(&a), flag).(*PtrValue) |
| } |
| |
| func (v *value) UnsafeAddr() uintptr { return uintptr(v.addr) } |
| |
| func (v *value) getAddr() addr { return v.addr } |
| |
| func (v *value) Interface() interface{} { |
| if typ, ok := v.typ.(*InterfaceType); ok { |
| // There are two different representations of interface values, |
| // one if the interface type has methods and one if it doesn't. |
| // These two representations require different expressions |
| // to extract correctly. |
| if typ.NumMethod() == 0 { |
| // Extract as interface value without methods. |
| return *(*interface{})(v.addr) |
| } |
| // Extract from v.addr as interface value with methods. |
| return *(*interface { |
| m() |
| })(v.addr) |
| } |
| return unsafe.Unreflect(v.typ, unsafe.Pointer(v.addr)) |
| } |
| |
| func (v *value) CanSet() bool { return v.flag&canSet != 0 } |
| |
| func (v *value) CanAddr() bool { return v.flag&canAddr != 0 } |
| |
| |
| /* |
| * basic types |
| */ |
| |
| // BoolValue represents a bool value. |
| type BoolValue struct { |
| value "bool" |
| } |
| |
| // Get returns the underlying bool value. |
| func (v *BoolValue) Get() bool { return *(*bool)(v.addr) } |
| |
| // Set sets v to the value x. |
| func (v *BoolValue) Set(x bool) { |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| *(*bool)(v.addr) = x |
| } |
| |
| // Set sets v to the value x. |
| func (v *BoolValue) SetValue(x Value) { v.Set(x.(*BoolValue).Get()) } |
| |
| // FloatValue represents a float value. |
| type FloatValue struct { |
| value "float" |
| } |
| |
| // Get returns the underlying int value. |
| func (v *FloatValue) Get() float64 { |
| switch v.typ.Kind() { |
| case Float32: |
| return float64(*(*float32)(v.addr)) |
| case Float64: |
| return *(*float64)(v.addr) |
| } |
| panic("reflect: invalid float kind") |
| } |
| |
| // Set sets v to the value x. |
| func (v *FloatValue) Set(x float64) { |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| switch v.typ.Kind() { |
| default: |
| panic("reflect: invalid float kind") |
| case Float32: |
| *(*float32)(v.addr) = float32(x) |
| case Float64: |
| *(*float64)(v.addr) = x |
| } |
| } |
| |
| // Overflow returns true if x cannot be represented by the type of v. |
| func (v *FloatValue) Overflow(x float64) bool { |
| if v.typ.Size() == 8 { |
| return false |
| } |
| if x < 0 { |
| x = -x |
| } |
| return math.MaxFloat32 < x && x <= math.MaxFloat64 |
| } |
| |
| // Set sets v to the value x. |
| func (v *FloatValue) SetValue(x Value) { v.Set(x.(*FloatValue).Get()) } |
| |
| // ComplexValue represents a complex value. |
| type ComplexValue struct { |
| value "complex" |
| } |
| |
| // Get returns the underlying complex value. |
| func (v *ComplexValue) Get() complex128 { |
| switch v.typ.Kind() { |
| case Complex64: |
| return complex128(*(*complex64)(v.addr)) |
| case Complex128: |
| return *(*complex128)(v.addr) |
| } |
| panic("reflect: invalid complex kind") |
| } |
| |
| // Set sets v to the value x. |
| func (v *ComplexValue) Set(x complex128) { |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| switch v.typ.Kind() { |
| default: |
| panic("reflect: invalid complex kind") |
| case Complex64: |
| *(*complex64)(v.addr) = complex64(x) |
| case Complex128: |
| *(*complex128)(v.addr) = x |
| } |
| } |
| |
| // Set sets v to the value x. |
| func (v *ComplexValue) SetValue(x Value) { v.Set(x.(*ComplexValue).Get()) } |
| |
| // IntValue represents an int value. |
| type IntValue struct { |
| value "int" |
| } |
| |
| // Get returns the underlying int value. |
| func (v *IntValue) Get() int64 { |
| switch v.typ.Kind() { |
| case Int: |
| return int64(*(*int)(v.addr)) |
| case Int8: |
| return int64(*(*int8)(v.addr)) |
| case Int16: |
| return int64(*(*int16)(v.addr)) |
| case Int32: |
| return int64(*(*int32)(v.addr)) |
| case Int64: |
| return *(*int64)(v.addr) |
| } |
| panic("reflect: invalid int kind") |
| } |
| |
| // Set sets v to the value x. |
| func (v *IntValue) Set(x int64) { |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| switch v.typ.Kind() { |
| default: |
| panic("reflect: invalid int kind") |
| case Int: |
| *(*int)(v.addr) = int(x) |
| case Int8: |
| *(*int8)(v.addr) = int8(x) |
| case Int16: |
| *(*int16)(v.addr) = int16(x) |
| case Int32: |
| *(*int32)(v.addr) = int32(x) |
| case Int64: |
| *(*int64)(v.addr) = x |
| } |
| } |
| |
| // Set sets v to the value x. |
| func (v *IntValue) SetValue(x Value) { v.Set(x.(*IntValue).Get()) } |
| |
| // Overflow returns true if x cannot be represented by the type of v. |
| func (v *IntValue) Overflow(x int64) bool { |
| bitSize := uint(v.typ.Bits()) |
| trunc := (x << (64 - bitSize)) >> (64 - bitSize) |
| return x != trunc |
| } |
| |
| // StringHeader is the runtime representation of a string. |
| type StringHeader struct { |
| Data uintptr |
| Len int |
| } |
| |
| // StringValue represents a string value. |
| type StringValue struct { |
| value "string" |
| } |
| |
| // Get returns the underlying string value. |
| func (v *StringValue) Get() string { return *(*string)(v.addr) } |
| |
| // Set sets v to the value x. |
| func (v *StringValue) Set(x string) { |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| *(*string)(v.addr) = x |
| } |
| |
| // Set sets v to the value x. |
| func (v *StringValue) SetValue(x Value) { v.Set(x.(*StringValue).Get()) } |
| |
| // UintValue represents a uint value. |
| type UintValue struct { |
| value "uint" |
| } |
| |
| // Get returns the underlying uuint value. |
| func (v *UintValue) Get() uint64 { |
| switch v.typ.Kind() { |
| case Uint: |
| return uint64(*(*uint)(v.addr)) |
| case Uint8: |
| return uint64(*(*uint8)(v.addr)) |
| case Uint16: |
| return uint64(*(*uint16)(v.addr)) |
| case Uint32: |
| return uint64(*(*uint32)(v.addr)) |
| case Uint64: |
| return *(*uint64)(v.addr) |
| case Uintptr: |
| return uint64(*(*uintptr)(v.addr)) |
| } |
| panic("reflect: invalid uint kind") |
| } |
| |
| // Set sets v to the value x. |
| func (v *UintValue) Set(x uint64) { |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| switch v.typ.Kind() { |
| default: |
| panic("reflect: invalid uint kind") |
| case Uint: |
| *(*uint)(v.addr) = uint(x) |
| case Uint8: |
| *(*uint8)(v.addr) = uint8(x) |
| case Uint16: |
| *(*uint16)(v.addr) = uint16(x) |
| case Uint32: |
| *(*uint32)(v.addr) = uint32(x) |
| case Uint64: |
| *(*uint64)(v.addr) = x |
| case Uintptr: |
| *(*uintptr)(v.addr) = uintptr(x) |
| } |
| } |
| |
| // Overflow returns true if x cannot be represented by the type of v. |
| func (v *UintValue) Overflow(x uint64) bool { |
| bitSize := uint(v.typ.Bits()) |
| trunc := (x << (64 - bitSize)) >> (64 - bitSize) |
| return x != trunc |
| } |
| |
| // Set sets v to the value x. |
| func (v *UintValue) SetValue(x Value) { v.Set(x.(*UintValue).Get()) } |
| |
| // UnsafePointerValue represents an unsafe.Pointer value. |
| type UnsafePointerValue struct { |
| value "unsafe.Pointer" |
| } |
| |
| // Get returns the underlying uintptr value. |
| // Get returns uintptr, not unsafe.Pointer, so that |
| // programs that do not import "unsafe" cannot |
| // obtain a value of unsafe.Pointer type from "reflect". |
| func (v *UnsafePointerValue) Get() uintptr { return uintptr(*(*unsafe.Pointer)(v.addr)) } |
| |
| // Set sets v to the value x. |
| func (v *UnsafePointerValue) Set(x unsafe.Pointer) { |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| *(*unsafe.Pointer)(v.addr) = x |
| } |
| |
| // Set sets v to the value x. |
| func (v *UnsafePointerValue) SetValue(x Value) { |
| v.Set(unsafe.Pointer(x.(*UnsafePointerValue).Get())) |
| } |
| |
| func typesMustMatch(t1, t2 Type) { |
| if t1 != t2 { |
| panic("type mismatch: " + t1.String() + " != " + t2.String()) |
| } |
| } |
| |
| /* |
| * array |
| */ |
| |
| // ArrayOrSliceValue is the common interface |
| // implemented by both ArrayValue and SliceValue. |
| type ArrayOrSliceValue interface { |
| Value |
| Len() int |
| Cap() int |
| Elem(i int) Value |
| addr() addr |
| } |
| |
| // grow grows the slice s so that it can hold extra more values, allocating |
| // more capacity if needed. It also returns the old and new slice lengths. |
| func grow(s *SliceValue, extra int) (*SliceValue, int, int) { |
| i0 := s.Len() |
| i1 := i0 + extra |
| if i1 < i0 { |
| panic("append: slice overflow") |
| } |
| m := s.Cap() |
| if i1 <= m { |
| return s.Slice(0, i1), i0, i1 |
| } |
| if m == 0 { |
| m = extra |
| } else { |
| for m < i1 { |
| if i0 < 1024 { |
| m += m |
| } else { |
| m += m / 4 |
| } |
| } |
| } |
| t := MakeSlice(s.Type().(*SliceType), i1, m) |
| Copy(t, s) |
| return t, i0, i1 |
| } |
| |
| // Append appends the values x to a slice s and returns the resulting slice. |
| // Each x must have the same type as s' element type. |
| func Append(s *SliceValue, x ...Value) *SliceValue { |
| s, i0, i1 := grow(s, len(x)) |
| for i, j := i0, 0; i < i1; i, j = i+1, j+1 { |
| s.Elem(i).SetValue(x[j]) |
| } |
| return s |
| } |
| |
| // AppendSlice appends a slice t to a slice s and returns the resulting slice. |
| // The slices s and t must have the same element type. |
| func AppendSlice(s, t *SliceValue) *SliceValue { |
| s, i0, i1 := grow(s, t.Len()) |
| Copy(s.Slice(i0, i1), t) |
| return s |
| } |
| |
| // Copy copies the contents of src into dst until either |
| // dst has been filled or src has been exhausted. |
| // It returns the number of elements copied. |
| // The arrays dst and src must have the same element type. |
| func Copy(dst, src ArrayOrSliceValue) int { |
| // TODO: This will have to move into the runtime |
| // once the real gc goes in. |
| de := dst.Type().(ArrayOrSliceType).Elem() |
| se := src.Type().(ArrayOrSliceType).Elem() |
| typesMustMatch(de, se) |
| n := dst.Len() |
| if xn := src.Len(); n > xn { |
| n = xn |
| } |
| memmove(dst.addr(), src.addr(), uintptr(n)*de.Size()) |
| return n |
| } |
| |
| // An ArrayValue represents an array. |
| type ArrayValue struct { |
| value "array" |
| } |
| |
| // Len returns the length of the array. |
| func (v *ArrayValue) Len() int { return v.typ.(*ArrayType).Len() } |
| |
| // Cap returns the capacity of the array (equal to Len()). |
| func (v *ArrayValue) Cap() int { return v.typ.(*ArrayType).Len() } |
| |
| // addr returns the base address of the data in the array. |
| func (v *ArrayValue) addr() addr { return v.value.addr } |
| |
| // Set assigns x to v. |
| // The new value x must have the same type as v. |
| func (v *ArrayValue) Set(x *ArrayValue) { |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| typesMustMatch(v.typ, x.typ) |
| Copy(v, x) |
| } |
| |
| // Set sets v to the value x. |
| func (v *ArrayValue) SetValue(x Value) { v.Set(x.(*ArrayValue)) } |
| |
| // Elem returns the i'th element of v. |
| func (v *ArrayValue) Elem(i int) Value { |
| typ := v.typ.(*ArrayType).Elem() |
| n := v.Len() |
| if i < 0 || i >= n { |
| panic("array index out of bounds") |
| } |
| p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size()) |
| return newValue(typ, p, v.flag) |
| } |
| |
| /* |
| * slice |
| */ |
| |
| // runtime representation of slice |
| type SliceHeader struct { |
| Data uintptr |
| Len int |
| Cap int |
| } |
| |
| // A SliceValue represents a slice. |
| type SliceValue struct { |
| value "slice" |
| } |
| |
| func (v *SliceValue) slice() *SliceHeader { return (*SliceHeader)(v.value.addr) } |
| |
| // IsNil returns whether v is a nil slice. |
| func (v *SliceValue) IsNil() bool { return v.slice().Data == 0 } |
| |
| // Len returns the length of the slice. |
| func (v *SliceValue) Len() int { return int(v.slice().Len) } |
| |
| // Cap returns the capacity of the slice. |
| func (v *SliceValue) Cap() int { return int(v.slice().Cap) } |
| |
| // addr returns the base address of the data in the slice. |
| func (v *SliceValue) addr() addr { return addr(v.slice().Data) } |
| |
| // SetLen changes the length of v. |
| // The new length n must be between 0 and the capacity, inclusive. |
| func (v *SliceValue) SetLen(n int) { |
| s := v.slice() |
| if n < 0 || n > int(s.Cap) { |
| panic("reflect: slice length out of range in SetLen") |
| } |
| s.Len = n |
| } |
| |
| // Set assigns x to v. |
| // The new value x must have the same type as v. |
| func (v *SliceValue) Set(x *SliceValue) { |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| typesMustMatch(v.typ, x.typ) |
| *v.slice() = *x.slice() |
| } |
| |
| // Set sets v to the value x. |
| func (v *SliceValue) SetValue(x Value) { v.Set(x.(*SliceValue)) } |
| |
| // Get returns the uintptr address of the v.Cap()'th element. This gives |
| // the same result for all slices of the same array. |
| // It is mainly useful for printing. |
| func (v *SliceValue) Get() uintptr { |
| typ := v.typ.(*SliceType) |
| return uintptr(v.addr()) + uintptr(v.Cap())*typ.Elem().Size() |
| } |
| |
| // Slice returns a sub-slice of the slice v. |
| func (v *SliceValue) Slice(beg, end int) *SliceValue { |
| cap := v.Cap() |
| if beg < 0 || end < beg || end > cap { |
| panic("slice index out of bounds") |
| } |
| typ := v.typ.(*SliceType) |
| s := new(SliceHeader) |
| s.Data = uintptr(v.addr()) + uintptr(beg)*typ.Elem().Size() |
| s.Len = end - beg |
| s.Cap = cap - beg |
| |
| // Like the result of Addr, we treat Slice as an |
| // unaddressable temporary, so don't set canAddr. |
| flag := canSet |
| if v.flag&canStore != 0 { |
| flag |= canStore |
| } |
| return newValue(typ, addr(s), flag).(*SliceValue) |
| } |
| |
| // Elem returns the i'th element of v. |
| func (v *SliceValue) Elem(i int) Value { |
| typ := v.typ.(*SliceType).Elem() |
| n := v.Len() |
| if i < 0 || i >= n { |
| panic("reflect: slice index out of range") |
| } |
| p := addr(uintptr(v.addr()) + uintptr(i)*typ.Size()) |
| flag := canAddr |
| if v.flag&canStore != 0 { |
| flag |= canSet | canStore |
| } |
| return newValue(typ, p, flag) |
| } |
| |
| // MakeSlice creates a new zero-initialized slice value |
| // for the specified slice type, length, and capacity. |
| func MakeSlice(typ *SliceType, len, cap int) *SliceValue { |
| s := &SliceHeader{ |
| Data: uintptr(unsafe.NewArray(typ.Elem(), cap)), |
| Len: len, |
| Cap: cap, |
| } |
| return newValue(typ, addr(s), canAddr|canSet|canStore).(*SliceValue) |
| } |
| |
| /* |
| * chan |
| */ |
| |
| // A ChanValue represents a chan. |
| type ChanValue struct { |
| value "chan" |
| } |
| |
| // IsNil returns whether v is a nil channel. |
| func (v *ChanValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } |
| |
| // Set assigns x to v. |
| // The new value x must have the same type as v. |
| func (v *ChanValue) Set(x *ChanValue) { |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| typesMustMatch(v.typ, x.typ) |
| *(*uintptr)(v.addr) = *(*uintptr)(x.addr) |
| } |
| |
| // Set sets v to the value x. |
| func (v *ChanValue) SetValue(x Value) { v.Set(x.(*ChanValue)) } |
| |
| // Get returns the uintptr value of v. |
| // It is mainly useful for printing. |
| func (v *ChanValue) Get() uintptr { return *(*uintptr)(v.addr) } |
| |
| // implemented in ../pkg/runtime/reflect.cgo |
| func makechan(typ *runtime.ChanType, size uint32) (ch *byte) |
| func chansend(ch, val *byte, selected *bool) |
| func chanrecv(ch, val *byte, selected *bool, ok *bool) |
| func chanclose(ch *byte) |
| func chanlen(ch *byte) int32 |
| func chancap(ch *byte) int32 |
| |
| // Close closes the channel. |
| func (v *ChanValue) Close() { |
| ch := *(**byte)(v.addr) |
| chanclose(ch) |
| } |
| |
| func (v *ChanValue) Len() int { |
| ch := *(**byte)(v.addr) |
| return int(chanlen(ch)) |
| } |
| |
| func (v *ChanValue) Cap() int { |
| ch := *(**byte)(v.addr) |
| return int(chancap(ch)) |
| } |
| |
| // internal send; non-blocking if selected != nil |
| func (v *ChanValue) send(x Value, selected *bool) { |
| t := v.Type().(*ChanType) |
| if t.Dir()&SendDir == 0 { |
| panic("send on recv-only channel") |
| } |
| typesMustMatch(t.Elem(), x.Type()) |
| ch := *(**byte)(v.addr) |
| chansend(ch, (*byte)(x.getAddr()), selected) |
| } |
| |
| // internal recv; non-blocking if selected != nil |
| func (v *ChanValue) recv(selected *bool) (Value, bool) { |
| t := v.Type().(*ChanType) |
| if t.Dir()&RecvDir == 0 { |
| panic("recv on send-only channel") |
| } |
| ch := *(**byte)(v.addr) |
| x := MakeZero(t.Elem()) |
| var ok bool |
| chanrecv(ch, (*byte)(x.getAddr()), selected, &ok) |
| return x, ok |
| } |
| |
| // Send sends x on the channel v. |
| func (v *ChanValue) Send(x Value) { v.send(x, nil) } |
| |
| // Recv receives and returns a value from the channel v. |
| // The receive blocks until a value is ready. |
| // The boolean value ok is true if the value x corresponds to a send |
| // on the channel, false if it is a zero value received because the channel is closed. |
| func (v *ChanValue) Recv() (x Value, ok bool) { |
| return v.recv(nil) |
| } |
| |
| // TrySend attempts to sends x on the channel v but will not block. |
| // It returns true if the value was sent, false otherwise. |
| func (v *ChanValue) TrySend(x Value) bool { |
| var selected bool |
| v.send(x, &selected) |
| return selected |
| } |
| |
| // TryRecv attempts to receive a value from the channel v but will not block. |
| // If the receive cannot finish without blocking, TryRecv instead returns x == nil. |
| // If the receive can finish without blocking, TryRecv returns x != nil. |
| // The boolean value ok is true if the value x corresponds to a send |
| // on the channel, false if it is a zero value received because the channel is closed. |
| func (v *ChanValue) TryRecv() (x Value, ok bool) { |
| var selected bool |
| x, ok = v.recv(&selected) |
| if !selected { |
| return nil, false |
| } |
| return x, ok |
| } |
| |
| // MakeChan creates a new channel with the specified type and buffer size. |
| func MakeChan(typ *ChanType, buffer int) *ChanValue { |
| if buffer < 0 { |
| panic("MakeChan: negative buffer size") |
| } |
| if typ.Dir() != BothDir { |
| panic("MakeChan: unidirectional channel type") |
| } |
| v := MakeZero(typ).(*ChanValue) |
| *(**byte)(v.addr) = makechan((*runtime.ChanType)(unsafe.Pointer(typ)), uint32(buffer)) |
| return v |
| } |
| |
| /* |
| * func |
| */ |
| |
| // A FuncValue represents a function value. |
| type FuncValue struct { |
| value "func" |
| first *value |
| isInterface bool |
| } |
| |
| // IsNil returns whether v is a nil function. |
| func (v *FuncValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } |
| |
| // Get returns the uintptr value of v. |
| // It is mainly useful for printing. |
| func (v *FuncValue) Get() uintptr { return *(*uintptr)(v.addr) } |
| |
| // Set assigns x to v. |
| // The new value x must have the same type as v. |
| func (v *FuncValue) Set(x *FuncValue) { |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| typesMustMatch(v.typ, x.typ) |
| *(*uintptr)(v.addr) = *(*uintptr)(x.addr) |
| } |
| |
| // Set sets v to the value x. |
| func (v *FuncValue) SetValue(x Value) { v.Set(x.(*FuncValue)) } |
| |
| // Method returns a FuncValue corresponding to v's i'th method. |
| // The arguments to a Call on the returned FuncValue |
| // should not include a receiver; the FuncValue will use v |
| // as the receiver. |
| func (v *value) Method(i int) *FuncValue { |
| t := v.Type().uncommon() |
| if t == nil || i < 0 || i >= len(t.methods) { |
| return nil |
| } |
| p := &t.methods[i] |
| fn := p.tfn |
| fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), 0}, first: v, isInterface: false} |
| return fv |
| } |
| |
| // implemented in ../pkg/runtime/*/asm.s |
| func call(fn, arg *byte, n uint32) |
| |
| type tiny struct { |
| b byte |
| } |
| |
| // Interface returns the fv as an interface value. |
| // If fv is a method obtained by invoking Value.Method |
| // (as opposed to Type.Method), Interface cannot return an |
| // interface value, so it panics. |
| func (fv *FuncValue) Interface() interface{} { |
| if fv.first != nil { |
| panic("FuncValue: cannot create interface value for method with bound receiver") |
| } |
| return fv.value.Interface() |
| } |
| |
| // Call calls the function fv with input parameters in. |
| // It returns the function's output parameters as Values. |
| func (fv *FuncValue) Call(in []Value) []Value { |
| t := fv.Type().(*FuncType) |
| nin := len(in) |
| if fv.first != nil && !fv.isInterface { |
| nin++ |
| } |
| if nin != t.NumIn() { |
| panic("FuncValue: wrong argument count") |
| } |
| nout := t.NumOut() |
| |
| // Compute arg size & allocate. |
| // This computation is 6g/8g-dependent |
| // and probably wrong for gccgo, but so |
| // is most of this function. |
| size := uintptr(0) |
| if fv.isInterface { |
| // extra word for interface value |
| size += ptrSize |
| } |
| for i := 0; i < nin; i++ { |
| tv := t.In(i) |
| a := uintptr(tv.Align()) |
| size = (size + a - 1) &^ (a - 1) |
| size += tv.Size() |
| } |
| size = (size + ptrSize - 1) &^ (ptrSize - 1) |
| for i := 0; i < nout; i++ { |
| tv := t.Out(i) |
| a := uintptr(tv.Align()) |
| size = (size + a - 1) &^ (a - 1) |
| size += tv.Size() |
| } |
| |
| // size must be > 0 in order for &args[0] to be valid. |
| // the argument copying is going to round it up to |
| // a multiple of ptrSize anyway, so make it ptrSize to begin with. |
| if size < ptrSize { |
| size = ptrSize |
| } |
| |
| // round to pointer size |
| size = (size + ptrSize - 1) &^ (ptrSize - 1) |
| |
| // Copy into args. |
| // |
| // TODO(rsc): revisit when reference counting happens. |
| // The values are holding up the in references for us, |
| // but something must be done for the out references. |
| // For now make everything look like a pointer by pretending |
| // to allocate a []*int. |
| args := make([]*int, size/ptrSize) |
| ptr := uintptr(unsafe.Pointer(&args[0])) |
| off := uintptr(0) |
| delta := 0 |
| if v := fv.first; v != nil { |
| // Hard-wired first argument. |
| if fv.isInterface { |
| // v is a single uninterpreted word |
| memmove(addr(ptr), v.getAddr(), ptrSize) |
| off = ptrSize |
| } else { |
| // v is a real value |
| tv := v.Type() |
| typesMustMatch(t.In(0), tv) |
| n := tv.Size() |
| memmove(addr(ptr), v.getAddr(), n) |
| off = n |
| delta = 1 |
| } |
| } |
| for i, v := range in { |
| tv := v.Type() |
| typesMustMatch(t.In(i+delta), tv) |
| a := uintptr(tv.Align()) |
| off = (off + a - 1) &^ (a - 1) |
| n := tv.Size() |
| memmove(addr(ptr+off), v.getAddr(), n) |
| off += n |
| } |
| off = (off + ptrSize - 1) &^ (ptrSize - 1) |
| |
| // Call |
| call(*(**byte)(fv.addr), (*byte)(addr(ptr)), uint32(size)) |
| |
| // Copy return values out of args. |
| // |
| // TODO(rsc): revisit like above. |
| ret := make([]Value, nout) |
| for i := 0; i < nout; i++ { |
| tv := t.Out(i) |
| a := uintptr(tv.Align()) |
| off = (off + a - 1) &^ (a - 1) |
| v := MakeZero(tv) |
| n := tv.Size() |
| memmove(v.getAddr(), addr(ptr+off), n) |
| ret[i] = v |
| off += n |
| } |
| |
| return ret |
| } |
| |
| /* |
| * interface |
| */ |
| |
| // An InterfaceValue represents an interface value. |
| type InterfaceValue struct { |
| value "interface" |
| } |
| |
| // IsNil returns whether v is a nil interface value. |
| func (v *InterfaceValue) IsNil() bool { return v.Interface() == nil } |
| |
| // No single uinptr Get because v.Interface() is available. |
| |
| // Get returns the two words that represent an interface in the runtime. |
| // Those words are useful only when playing unsafe games. |
| func (v *InterfaceValue) Get() [2]uintptr { |
| return *(*[2]uintptr)(v.addr) |
| } |
| |
| // Elem returns the concrete value stored in the interface value v. |
| func (v *InterfaceValue) Elem() Value { return NewValue(v.Interface()) } |
| |
| // ../runtime/reflect.cgo |
| func setiface(typ *InterfaceType, x *interface{}, addr addr) |
| |
| // Set assigns x to v. |
| func (v *InterfaceValue) Set(x Value) { |
| var i interface{} |
| if x != nil { |
| i = x.Interface() |
| } |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| // Two different representations; see comment in Get. |
| // Empty interface is easy. |
| t := v.typ.(*InterfaceType) |
| if t.NumMethod() == 0 { |
| *(*interface{})(v.addr) = i |
| return |
| } |
| |
| // Non-empty interface requires a runtime check. |
| setiface(t, &i, v.addr) |
| } |
| |
| // Set sets v to the value x. |
| func (v *InterfaceValue) SetValue(x Value) { v.Set(x) } |
| |
| // Method returns a FuncValue corresponding to v's i'th method. |
| // The arguments to a Call on the returned FuncValue |
| // should not include a receiver; the FuncValue will use v |
| // as the receiver. |
| func (v *InterfaceValue) Method(i int) *FuncValue { |
| t := v.Type().(*InterfaceType) |
| if t == nil || i < 0 || i >= len(t.methods) { |
| return nil |
| } |
| p := &t.methods[i] |
| |
| // Interface is two words: itable, data. |
| tab := *(**runtime.Itable)(v.addr) |
| data := &value{Typeof((*byte)(nil)), addr(uintptr(v.addr) + ptrSize), 0} |
| |
| // Function pointer is at p.perm in the table. |
| fn := tab.Fn[i] |
| fv := &FuncValue{value: value{toType(*p.typ), addr(&fn), 0}, first: data, isInterface: true} |
| return fv |
| } |
| |
| /* |
| * map |
| */ |
| |
| // A MapValue represents a map value. |
| type MapValue struct { |
| value "map" |
| } |
| |
| // IsNil returns whether v is a nil map value. |
| func (v *MapValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } |
| |
| // Set assigns x to v. |
| // The new value x must have the same type as v. |
| func (v *MapValue) Set(x *MapValue) { |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| if x == nil { |
| *(**uintptr)(v.addr) = nil |
| return |
| } |
| typesMustMatch(v.typ, x.typ) |
| *(*uintptr)(v.addr) = *(*uintptr)(x.addr) |
| } |
| |
| // Set sets v to the value x. |
| func (v *MapValue) SetValue(x Value) { |
| if x == nil { |
| v.Set(nil) |
| return |
| } |
| v.Set(x.(*MapValue)) |
| } |
| |
| // Get returns the uintptr value of v. |
| // It is mainly useful for printing. |
| func (v *MapValue) Get() uintptr { return *(*uintptr)(v.addr) } |
| |
| // implemented in ../pkg/runtime/reflect.cgo |
| func mapaccess(m, key, val *byte) bool |
| func mapassign(m, key, val *byte) |
| func maplen(m *byte) int32 |
| func mapiterinit(m *byte) *byte |
| func mapiternext(it *byte) |
| func mapiterkey(it *byte, key *byte) bool |
| func makemap(t *runtime.MapType) *byte |
| |
| // Elem returns the value associated with key in the map v. |
| // It returns nil if key is not found in the map. |
| func (v *MapValue) Elem(key Value) Value { |
| t := v.Type().(*MapType) |
| typesMustMatch(t.Key(), key.Type()) |
| m := *(**byte)(v.addr) |
| if m == nil { |
| return nil |
| } |
| newval := MakeZero(t.Elem()) |
| if !mapaccess(m, (*byte)(key.getAddr()), (*byte)(newval.getAddr())) { |
| return nil |
| } |
| return newval |
| } |
| |
| // SetElem sets the value associated with key in the map v to val. |
| // If val is nil, Put deletes the key from map. |
| func (v *MapValue) SetElem(key, val Value) { |
| t := v.Type().(*MapType) |
| typesMustMatch(t.Key(), key.Type()) |
| var vaddr *byte |
| if val != nil { |
| typesMustMatch(t.Elem(), val.Type()) |
| vaddr = (*byte)(val.getAddr()) |
| } |
| m := *(**byte)(v.addr) |
| mapassign(m, (*byte)(key.getAddr()), vaddr) |
| } |
| |
| // Len returns the number of keys in the map v. |
| func (v *MapValue) Len() int { |
| m := *(**byte)(v.addr) |
| if m == nil { |
| return 0 |
| } |
| return int(maplen(m)) |
| } |
| |
| // Keys returns a slice containing all the keys present in the map, |
| // in unspecified order. |
| func (v *MapValue) Keys() []Value { |
| tk := v.Type().(*MapType).Key() |
| m := *(**byte)(v.addr) |
| mlen := int32(0) |
| if m != nil { |
| mlen = maplen(m) |
| } |
| it := mapiterinit(m) |
| a := make([]Value, mlen) |
| var i int |
| for i = 0; i < len(a); i++ { |
| k := MakeZero(tk) |
| if !mapiterkey(it, (*byte)(k.getAddr())) { |
| break |
| } |
| a[i] = k |
| mapiternext(it) |
| } |
| return a[0:i] |
| } |
| |
| // MakeMap creates a new map of the specified type. |
| func MakeMap(typ *MapType) *MapValue { |
| v := MakeZero(typ).(*MapValue) |
| *(**byte)(v.addr) = makemap((*runtime.MapType)(unsafe.Pointer(typ))) |
| return v |
| } |
| |
| /* |
| * ptr |
| */ |
| |
| // A PtrValue represents a pointer. |
| type PtrValue struct { |
| value "ptr" |
| } |
| |
| // IsNil returns whether v is a nil pointer. |
| func (v *PtrValue) IsNil() bool { return *(*uintptr)(v.addr) == 0 } |
| |
| // Get returns the uintptr value of v. |
| // It is mainly useful for printing. |
| func (v *PtrValue) Get() uintptr { return *(*uintptr)(v.addr) } |
| |
| // Set assigns x to v. |
| // The new value x must have the same type as v, and x.Elem().CanSet() must be true. |
| func (v *PtrValue) Set(x *PtrValue) { |
| if x == nil { |
| *(**uintptr)(v.addr) = nil |
| return |
| } |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| if x.flag&canStore == 0 { |
| panic("cannot copy pointer obtained from unexported struct field") |
| } |
| typesMustMatch(v.typ, x.typ) |
| // TODO: This will have to move into the runtime |
| // once the new gc goes in |
| *(*uintptr)(v.addr) = *(*uintptr)(x.addr) |
| } |
| |
| // Set sets v to the value x. |
| func (v *PtrValue) SetValue(x Value) { |
| if x == nil { |
| v.Set(nil) |
| return |
| } |
| v.Set(x.(*PtrValue)) |
| } |
| |
| // PointTo changes v to point to x. |
| // If x is a nil Value, PointTo sets v to nil. |
| func (v *PtrValue) PointTo(x Value) { |
| if x == nil { |
| *(**uintptr)(v.addr) = nil |
| return |
| } |
| if !x.CanSet() { |
| panic("cannot set x; cannot point to x") |
| } |
| typesMustMatch(v.typ.(*PtrType).Elem(), x.Type()) |
| // TODO: This will have to move into the runtime |
| // once the new gc goes in. |
| *(*uintptr)(v.addr) = x.UnsafeAddr() |
| } |
| |
| // Elem returns the value that v points to. |
| // If v is a nil pointer, Elem returns a nil Value. |
| func (v *PtrValue) Elem() Value { |
| if v.IsNil() { |
| return nil |
| } |
| flag := canAddr |
| if v.flag&canStore != 0 { |
| flag |= canSet | canStore |
| } |
| return newValue(v.typ.(*PtrType).Elem(), *(*addr)(v.addr), flag) |
| } |
| |
| // Indirect returns the value that v points to. |
| // If v is a nil pointer, Indirect returns a nil Value. |
| // If v is not a pointer, Indirect returns v. |
| func Indirect(v Value) Value { |
| if pv, ok := v.(*PtrValue); ok { |
| return pv.Elem() |
| } |
| return v |
| } |
| |
| /* |
| * struct |
| */ |
| |
| // A StructValue represents a struct value. |
| type StructValue struct { |
| value "struct" |
| } |
| |
| // Set assigns x to v. |
| // The new value x must have the same type as v. |
| func (v *StructValue) Set(x *StructValue) { |
| // TODO: This will have to move into the runtime |
| // once the gc goes in. |
| if !v.CanSet() { |
| panic(cannotSet) |
| } |
| typesMustMatch(v.typ, x.typ) |
| memmove(v.addr, x.addr, v.typ.Size()) |
| } |
| |
| // Set sets v to the value x. |
| func (v *StructValue) SetValue(x Value) { v.Set(x.(*StructValue)) } |
| |
| // Field returns the i'th field of the struct. |
| func (v *StructValue) Field(i int) Value { |
| t := v.typ.(*StructType) |
| if i < 0 || i >= t.NumField() { |
| return nil |
| } |
| f := t.Field(i) |
| flag := v.flag |
| if f.PkgPath != "" { |
| // unexported field |
| flag &^= canSet | canStore |
| } |
| return newValue(f.Type, addr(uintptr(v.addr)+f.Offset), flag) |
| } |
| |
| // FieldByIndex returns the nested field corresponding to index. |
| func (t *StructValue) FieldByIndex(index []int) (v Value) { |
| v = t |
| for i, x := range index { |
| if i > 0 { |
| if p, ok := v.(*PtrValue); ok { |
| v = p.Elem() |
| } |
| if s, ok := v.(*StructValue); ok { |
| t = s |
| } else { |
| v = nil |
| return |
| } |
| } |
| v = t.Field(x) |
| } |
| return |
| } |
| |
| // FieldByName returns the struct field with the given name. |
| // The result is nil if no field was found. |
| func (t *StructValue) FieldByName(name string) Value { |
| if f, ok := t.Type().(*StructType).FieldByName(name); ok { |
| return t.FieldByIndex(f.Index) |
| } |
| return nil |
| } |
| |
| // FieldByNameFunc returns the struct field with a name that satisfies the |
| // match function. |
| // The result is nil if no field was found. |
| func (t *StructValue) FieldByNameFunc(match func(string) bool) Value { |
| if f, ok := t.Type().(*StructType).FieldByNameFunc(match); ok { |
| return t.FieldByIndex(f.Index) |
| } |
| return nil |
| } |
| |
| // NumField returns the number of fields in the struct. |
| func (v *StructValue) NumField() int { return v.typ.(*StructType).NumField() } |
| |
| /* |
| * constructors |
| */ |
| |
| // NewValue returns a new Value initialized to the concrete value |
| // stored in the interface i. NewValue(nil) returns nil. |
| func NewValue(i interface{}) Value { |
| if i == nil { |
| return nil |
| } |
| t, a := unsafe.Reflect(i) |
| return newValue(toType(t), addr(a), canSet|canAddr|canStore) |
| } |
| |
| func newValue(typ Type, addr addr, flag uint32) Value { |
| v := value{typ, addr, flag} |
| switch typ.(type) { |
| case *ArrayType: |
| return &ArrayValue{v} |
| case *BoolType: |
| return &BoolValue{v} |
| case *ChanType: |
| return &ChanValue{v} |
| case *FloatType: |
| return &FloatValue{v} |
| case *FuncType: |
| return &FuncValue{value: v} |
| case *ComplexType: |
| return &ComplexValue{v} |
| case *IntType: |
| return &IntValue{v} |
| case *InterfaceType: |
| return &InterfaceValue{v} |
| case *MapType: |
| return &MapValue{v} |
| case *PtrType: |
| return &PtrValue{v} |
| case *SliceType: |
| return &SliceValue{v} |
| case *StringType: |
| return &StringValue{v} |
| case *StructType: |
| return &StructValue{v} |
| case *UintType: |
| return &UintValue{v} |
| case *UnsafePointerType: |
| return &UnsafePointerValue{v} |
| } |
| panic("newValue" + typ.String()) |
| } |
| |
| // MakeZero returns a zero Value for the specified Type. |
| func MakeZero(typ Type) Value { |
| if typ == nil { |
| return nil |
| } |
| return newValue(typ, addr(unsafe.New(typ)), canSet|canAddr|canStore) |
| } |