| // Derived from Inferno utils/5c/txt.c |
| // http://code.google.com/p/inferno-os/source/browse/utils/5c/txt.c |
| // |
| // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. |
| // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) |
| // Portions Copyright © 1997-1999 Vita Nuova Limited |
| // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) |
| // Portions Copyright © 2004,2006 Bruce Ellis |
| // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) |
| // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others |
| // Portions Copyright © 2009 The Go Authors. All rights reserved. |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| // THE SOFTWARE. |
| |
| #include "gg.h" |
| |
| // TODO(kaib): Can make this bigger if we move |
| // the text segment up higher in 5l for all GOOS. |
| long unmappedzero = 4096; |
| |
| void |
| clearp(Prog *p) |
| { |
| p->as = AEND; |
| p->reg = NREG; |
| p->scond = C_SCOND_NONE; |
| p->from.type = D_NONE; |
| p->from.name = D_NONE; |
| p->from.reg = NREG; |
| p->to.type = D_NONE; |
| p->to.name = D_NONE; |
| p->to.reg = NREG; |
| p->loc = pcloc; |
| pcloc++; |
| } |
| |
| /* |
| * generate and return proc with p->as = as, |
| * linked into program. pc is next instruction. |
| */ |
| Prog* |
| prog(int as) |
| { |
| Prog *p; |
| |
| p = pc; |
| pc = mal(sizeof(*pc)); |
| |
| clearp(pc); |
| |
| if(lineno == 0) { |
| if(debug['K']) |
| warn("prog: line 0"); |
| } |
| |
| p->as = as; |
| p->lineno = lineno; |
| p->link = pc; |
| return p; |
| } |
| |
| /* |
| * generate a branch. |
| * t is ignored. |
| */ |
| Prog* |
| gbranch(int as, Type *t) |
| { |
| Prog *p; |
| |
| p = prog(as); |
| p->to.type = D_BRANCH; |
| p->to.branch = P; |
| return p; |
| } |
| |
| /* |
| * patch previous branch to jump to to. |
| */ |
| void |
| patch(Prog *p, Prog *to) |
| { |
| if(p->to.type != D_BRANCH) |
| fatal("patch: not a branch"); |
| p->to.branch = to; |
| p->to.offset = to->loc; |
| } |
| |
| /* |
| * start a new Prog list. |
| */ |
| Plist* |
| newplist(void) |
| { |
| Plist *pl; |
| |
| pl = mal(sizeof(*pl)); |
| if(plist == nil) |
| plist = pl; |
| else |
| plast->link = pl; |
| plast = pl; |
| |
| pc = mal(sizeof(*pc)); |
| clearp(pc); |
| pl->firstpc = pc; |
| |
| return pl; |
| } |
| |
| void |
| gused(Node *n) |
| { |
| gins(ANOP, n, N); // used |
| } |
| |
| Prog* |
| gjmp(Prog *to) |
| { |
| Prog *p; |
| |
| p = gbranch(AB, T); |
| if(to != P) |
| patch(p, to); |
| return p; |
| } |
| |
| void |
| ggloblnod(Node *nam, int32 width) |
| { |
| Prog *p; |
| |
| p = gins(AGLOBL, nam, N); |
| p->lineno = nam->lineno; |
| p->to.sym = S; |
| p->to.type = D_CONST; |
| p->to.offset = width; |
| } |
| |
| void |
| ggloblsym(Sym *s, int32 width, int dupok) |
| { |
| Prog *p; |
| |
| p = gins(AGLOBL, N, N); |
| p->from.type = D_OREG; |
| p->from.name = D_EXTERN; |
| p->from.sym = s; |
| p->to.type = D_CONST; |
| p->to.name = D_NONE; |
| p->to.offset = width; |
| if(dupok) |
| p->reg = DUPOK; |
| } |
| |
| int |
| isfat(Type *t) |
| { |
| if(t != T) |
| switch(t->etype) { |
| case TSTRUCT: |
| case TARRAY: |
| case TSTRING: |
| case TINTER: // maybe remove later |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * naddr of func generates code for address of func. |
| * if using opcode that can take address implicitly, |
| * call afunclit to fix up the argument. |
| * also fix up direct register references to be D_OREG. |
| */ |
| void |
| afunclit(Addr *a) |
| { |
| if(a->type == D_CONST && a->name == D_EXTERN || a->type == D_REG) { |
| a->type = D_OREG; |
| } |
| } |
| |
| static int resvd[] = |
| { |
| 9, // reserved for m |
| 10, // reserved for g |
| }; |
| |
| void |
| ginit(void) |
| { |
| int i; |
| |
| for(i=0; i<nelem(reg); i++) |
| reg[i] = 0; |
| for(i=0; i<nelem(resvd); i++) |
| reg[resvd[i]]++; |
| } |
| |
| void |
| gclean(void) |
| { |
| int i; |
| |
| for(i=0; i<nelem(resvd); i++) |
| reg[resvd[i]]--; |
| |
| for(i=0; i<nelem(reg); i++) |
| if(reg[i]) |
| yyerror("reg %R left allocated\n", i); |
| } |
| |
| int32 |
| anyregalloc(void) |
| { |
| int i, j; |
| |
| for(i=0; i<nelem(reg); i++) { |
| if(reg[i] == 0) |
| goto ok; |
| for(j=0; j<nelem(resvd); j++) |
| if(resvd[j] == i) |
| goto ok; |
| return 1; |
| ok:; |
| } |
| return 0; |
| } |
| |
| /* |
| * allocate register of type t, leave in n. |
| * if o != N, o is desired fixed register. |
| * caller must regfree(n). |
| */ |
| void |
| regalloc(Node *n, Type *t, Node *o) |
| { |
| int i, et, fixfree, floatfree; |
| |
| if(debug['r']) { |
| fixfree = 0; |
| for(i=REGALLOC_R0; i<=REGALLOC_RMAX; i++) |
| if(reg[i] == 0) |
| fixfree++; |
| floatfree = 0; |
| for(i=REGALLOC_F0; i<=REGALLOC_FMAX; i++) |
| if(reg[i] == 0) |
| floatfree++; |
| print("regalloc fix %d float %d\n", fixfree, floatfree); |
| } |
| |
| if(t == T) |
| fatal("regalloc: t nil"); |
| et = simtype[t->etype]; |
| if(is64(t)) |
| fatal("regalloc: 64 bit type %T"); |
| |
| switch(et) { |
| case TINT8: |
| case TUINT8: |
| case TINT16: |
| case TUINT16: |
| case TINT32: |
| case TUINT32: |
| case TPTR32: |
| case TBOOL: |
| if(o != N && o->op == OREGISTER) { |
| i = o->val.u.reg; |
| if(i >= REGALLOC_R0 && i <= REGALLOC_RMAX) |
| goto out; |
| } |
| for(i=REGALLOC_R0; i<=REGALLOC_RMAX; i++) |
| if(reg[i] == 0) |
| goto out; |
| |
| yyerror("out of fixed registers"); |
| goto err; |
| |
| case TFLOAT32: |
| case TFLOAT64: |
| if(o != N && o->op == OREGISTER) { |
| i = o->val.u.reg; |
| if(i >= REGALLOC_F0 && i <= REGALLOC_FMAX) |
| goto out; |
| } |
| for(i=REGALLOC_F0; i<=REGALLOC_FMAX; i++) |
| if(reg[i] == 0) |
| goto out; |
| yyerror("out of floating point registers"); |
| goto err; |
| |
| case TCOMPLEX64: |
| case TCOMPLEX128: |
| tempname(n, t); |
| return; |
| } |
| yyerror("regalloc: unknown type %T", t); |
| |
| err: |
| nodreg(n, t, 0); |
| return; |
| |
| out: |
| reg[i]++; |
| nodreg(n, t, i); |
| } |
| |
| void |
| regfree(Node *n) |
| { |
| int i, fixfree, floatfree; |
| |
| if(debug['r']) { |
| fixfree = 0; |
| for(i=REGALLOC_R0; i<=REGALLOC_RMAX; i++) |
| if(reg[i] == 0) |
| fixfree++; |
| floatfree = 0; |
| for(i=REGALLOC_F0; i<=REGALLOC_FMAX; i++) |
| if(reg[i] == 0) |
| floatfree++; |
| print("regalloc fix %d float %d\n", fixfree, floatfree); |
| } |
| |
| if(n->op == ONAME && iscomplex[n->type->etype]) |
| return; |
| if(n->op != OREGISTER && n->op != OINDREG) |
| fatal("regfree: not a register"); |
| i = n->val.u.reg; |
| if(i < 0 || i >= sizeof(reg)) |
| fatal("regfree: reg out of range"); |
| if(reg[i] <= 0) |
| fatal("regfree: reg not allocated"); |
| reg[i]--; |
| } |
| |
| /* |
| * initialize n to be register r of type t. |
| */ |
| void |
| nodreg(Node *n, Type *t, int r) |
| { |
| if(t == T) |
| fatal("nodreg: t nil"); |
| |
| memset(n, 0, sizeof(*n)); |
| n->op = OREGISTER; |
| n->addable = 1; |
| ullmancalc(n); |
| n->val.u.reg = r; |
| n->type = t; |
| } |
| |
| /* |
| * initialize n to be indirect of register r; n is type t. |
| */ |
| void |
| nodindreg(Node *n, Type *t, int r) |
| { |
| nodreg(n, t, r); |
| n->op = OINDREG; |
| } |
| |
| Node* |
| nodarg(Type *t, int fp) |
| { |
| Node *n; |
| Type *first; |
| Iter savet; |
| |
| // entire argument struct, not just one arg |
| if(t->etype == TSTRUCT && t->funarg) { |
| n = nod(ONAME, N, N); |
| n->sym = lookup(".args"); |
| n->type = t; |
| first = structfirst(&savet, &t); |
| if(first == nil) |
| fatal("nodarg: bad struct"); |
| if(first->width == BADWIDTH) |
| fatal("nodarg: offset not computed for %T", t); |
| n->xoffset = first->width; |
| n->addable = 1; |
| goto fp; |
| } |
| |
| if(t->etype != TFIELD) |
| fatal("nodarg: not field %T", t); |
| |
| n = nod(ONAME, N, N); |
| n->type = t->type; |
| n->sym = t->sym; |
| if(t->width == BADWIDTH) |
| fatal("nodarg: offset not computed for %T", t); |
| n->xoffset = t->width; |
| n->addable = 1; |
| |
| fp: |
| switch(fp) { |
| default: |
| fatal("nodarg %T %d", t, fp); |
| |
| case 0: // output arg for calling another function |
| n->op = OINDREG; |
| n->val.u.reg = REGSP; |
| n->xoffset += 4; |
| break; |
| |
| case 1: // input arg to current function |
| n->class = PPARAM; |
| break; |
| } |
| return n; |
| } |
| |
| /* |
| * return constant i node. |
| * overwritten by next call, but useful in calls to gins. |
| */ |
| Node* |
| ncon(uint32 i) |
| { |
| static Node n; |
| |
| if(n.type == T) |
| nodconst(&n, types[TUINT32], 0); |
| mpmovecfix(n.val.u.xval, i); |
| return &n; |
| } |
| |
| /* |
| * Is this node a memory operand? |
| */ |
| int |
| ismem(Node *n) |
| { |
| switch(n->op) { |
| case OINDREG: |
| case ONAME: |
| case OPARAM: |
| return 1; |
| } |
| return 0; |
| } |
| |
| Node sclean[10]; |
| int nsclean; |
| |
| /* |
| * n is a 64-bit value. fill in lo and hi to refer to its 32-bit halves. |
| */ |
| void |
| split64(Node *n, Node *lo, Node *hi) |
| { |
| Node n1; |
| int64 i; |
| |
| if(!is64(n->type)) |
| fatal("split64 %T", n->type); |
| |
| sclean[nsclean].op = OEMPTY; |
| if(nsclean >= nelem(sclean)) |
| fatal("split64 clean"); |
| nsclean++; |
| switch(n->op) { |
| default: |
| if(!dotaddable(n, &n1)) { |
| igen(n, &n1, N); |
| sclean[nsclean-1] = n1; |
| } |
| n = &n1; |
| goto common; |
| case ONAME: |
| if(n->class == PPARAMREF) { |
| cgen(n->heapaddr, &n1); |
| sclean[nsclean-1] = n1; |
| // fall through. |
| n = &n1; |
| } |
| goto common; |
| case OINDREG: |
| common: |
| *lo = *n; |
| *hi = *n; |
| lo->type = types[TUINT32]; |
| if(n->type->etype == TINT64) |
| hi->type = types[TINT32]; |
| else |
| hi->type = types[TUINT32]; |
| hi->xoffset += 4; |
| break; |
| |
| case OLITERAL: |
| convconst(&n1, n->type, &n->val); |
| i = mpgetfix(n1.val.u.xval); |
| nodconst(lo, types[TUINT32], (uint32)i); |
| i >>= 32; |
| if(n->type->etype == TINT64) |
| nodconst(hi, types[TINT32], (int32)i); |
| else |
| nodconst(hi, types[TUINT32], (uint32)i); |
| break; |
| } |
| } |
| |
| void |
| splitclean(void) |
| { |
| if(nsclean <= 0) |
| fatal("splitclean"); |
| nsclean--; |
| if(sclean[nsclean].op != OEMPTY) |
| regfree(&sclean[nsclean]); |
| } |
| |
| #define CASE(a,b) (((a)<<16)|((b)<<0)) |
| |
| void |
| gmove(Node *f, Node *t) |
| { |
| int a, ft, tt, fa, ta; |
| Type *cvt; |
| Node r1, r2, flo, fhi, tlo, thi, con; |
| Prog *p1; |
| |
| if(debug['M']) |
| print("gmove %N -> %N\n", f, t); |
| |
| ft = simsimtype(f->type); |
| tt = simsimtype(t->type); |
| cvt = t->type; |
| |
| if(iscomplex[ft] || iscomplex[tt]) { |
| complexmove(f, t); |
| return; |
| } |
| |
| // cannot have two memory operands; |
| // except 64-bit, which always copies via registers anyway. |
| if(!is64(f->type) && !is64(t->type) && ismem(f) && ismem(t)) |
| goto hard; |
| |
| // convert constant to desired type |
| if(f->op == OLITERAL) { |
| switch(tt) { |
| default: |
| convconst(&con, t->type, &f->val); |
| break; |
| |
| case TINT16: |
| case TINT8: |
| convconst(&con, types[TINT32], &f->val); |
| regalloc(&r1, con.type, t); |
| gins(AMOVW, &con, &r1); |
| gmove(&r1, t); |
| regfree(&r1); |
| return; |
| |
| case TUINT16: |
| case TUINT8: |
| convconst(&con, types[TUINT32], &f->val); |
| regalloc(&r1, con.type, t); |
| gins(AMOVW, &con, &r1); |
| gmove(&r1, t); |
| regfree(&r1); |
| return; |
| } |
| |
| f = &con; |
| ft = simsimtype(con.type); |
| |
| // constants can't move directly to memory |
| if(ismem(t) && !is64(t->type)) goto hard; |
| } |
| |
| // value -> value copy, only one memory operand. |
| // figure out the instruction to use. |
| // break out of switch for one-instruction gins. |
| // goto rdst for "destination must be register". |
| // goto hard for "convert to cvt type first". |
| // otherwise handle and return. |
| |
| switch(CASE(ft, tt)) { |
| default: |
| goto fatal; |
| |
| /* |
| * integer copy and truncate |
| */ |
| case CASE(TINT8, TINT8): // same size |
| case CASE(TUINT8, TINT8): |
| case CASE(TINT16, TINT8): // truncate |
| case CASE(TUINT16, TINT8): |
| case CASE(TINT32, TINT8): |
| case CASE(TUINT32, TINT8): |
| a = AMOVB; |
| break; |
| |
| case CASE(TINT8, TUINT8): |
| case CASE(TUINT8, TUINT8): |
| case CASE(TINT16, TUINT8): |
| case CASE(TUINT16, TUINT8): |
| case CASE(TINT32, TUINT8): |
| case CASE(TUINT32, TUINT8): |
| a = AMOVBU; |
| break; |
| |
| case CASE(TINT64, TINT8): // truncate low word |
| case CASE(TUINT64, TINT8): |
| a = AMOVB; |
| goto trunc64; |
| |
| case CASE(TINT64, TUINT8): |
| case CASE(TUINT64, TUINT8): |
| a = AMOVBU; |
| goto trunc64; |
| |
| case CASE(TINT16, TINT16): // same size |
| case CASE(TUINT16, TINT16): |
| case CASE(TINT32, TINT16): // truncate |
| case CASE(TUINT32, TINT16): |
| a = AMOVH; |
| break; |
| |
| case CASE(TINT16, TUINT16): |
| case CASE(TUINT16, TUINT16): |
| case CASE(TINT32, TUINT16): |
| case CASE(TUINT32, TUINT16): |
| a = AMOVHU; |
| break; |
| |
| case CASE(TINT64, TINT16): // truncate low word |
| case CASE(TUINT64, TINT16): |
| a = AMOVH; |
| goto trunc64; |
| |
| case CASE(TINT64, TUINT16): |
| case CASE(TUINT64, TUINT16): |
| a = AMOVHU; |
| goto trunc64; |
| |
| case CASE(TINT32, TINT32): // same size |
| case CASE(TINT32, TUINT32): |
| case CASE(TUINT32, TINT32): |
| case CASE(TUINT32, TUINT32): |
| a = AMOVW; |
| break; |
| |
| case CASE(TINT64, TINT32): // truncate |
| case CASE(TUINT64, TINT32): |
| case CASE(TINT64, TUINT32): |
| case CASE(TUINT64, TUINT32): |
| split64(f, &flo, &fhi); |
| regalloc(&r1, t->type, N); |
| gins(AMOVW, &flo, &r1); |
| gins(AMOVW, &r1, t); |
| regfree(&r1); |
| splitclean(); |
| return; |
| |
| case CASE(TINT64, TINT64): // same size |
| case CASE(TINT64, TUINT64): |
| case CASE(TUINT64, TINT64): |
| case CASE(TUINT64, TUINT64): |
| split64(f, &flo, &fhi); |
| split64(t, &tlo, &thi); |
| regalloc(&r1, flo.type, N); |
| regalloc(&r2, fhi.type, N); |
| gins(AMOVW, &flo, &r1); |
| gins(AMOVW, &fhi, &r2); |
| gins(AMOVW, &r1, &tlo); |
| gins(AMOVW, &r2, &thi); |
| regfree(&r1); |
| regfree(&r2); |
| splitclean(); |
| splitclean(); |
| return; |
| |
| /* |
| * integer up-conversions |
| */ |
| case CASE(TINT8, TINT16): // sign extend int8 |
| case CASE(TINT8, TUINT16): |
| case CASE(TINT8, TINT32): |
| case CASE(TINT8, TUINT32): |
| a = AMOVB; |
| goto rdst; |
| case CASE(TINT8, TINT64): // convert via int32 |
| case CASE(TINT8, TUINT64): |
| cvt = types[TINT32]; |
| goto hard; |
| |
| case CASE(TUINT8, TINT16): // zero extend uint8 |
| case CASE(TUINT8, TUINT16): |
| case CASE(TUINT8, TINT32): |
| case CASE(TUINT8, TUINT32): |
| a = AMOVBU; |
| goto rdst; |
| case CASE(TUINT8, TINT64): // convert via uint32 |
| case CASE(TUINT8, TUINT64): |
| cvt = types[TUINT32]; |
| goto hard; |
| |
| case CASE(TINT16, TINT32): // sign extend int16 |
| case CASE(TINT16, TUINT32): |
| a = AMOVH; |
| goto rdst; |
| case CASE(TINT16, TINT64): // convert via int32 |
| case CASE(TINT16, TUINT64): |
| cvt = types[TINT32]; |
| goto hard; |
| |
| case CASE(TUINT16, TINT32): // zero extend uint16 |
| case CASE(TUINT16, TUINT32): |
| a = AMOVHU; |
| goto rdst; |
| case CASE(TUINT16, TINT64): // convert via uint32 |
| case CASE(TUINT16, TUINT64): |
| cvt = types[TUINT32]; |
| goto hard; |
| |
| case CASE(TINT32, TINT64): // sign extend int32 |
| case CASE(TINT32, TUINT64): |
| split64(t, &tlo, &thi); |
| regalloc(&r1, tlo.type, N); |
| regalloc(&r2, thi.type, N); |
| gmove(f, &r1); |
| p1 = gins(AMOVW, &r1, &r2); |
| p1->from.type = D_SHIFT; |
| p1->from.offset = 2 << 5 | 31 << 7 | r1.val.u.reg; // r1->31 |
| p1->from.reg = NREG; |
| //print("gmove: %P\n", p1); |
| gins(AMOVW, &r1, &tlo); |
| gins(AMOVW, &r2, &thi); |
| regfree(&r1); |
| regfree(&r2); |
| splitclean(); |
| return; |
| |
| case CASE(TUINT32, TINT64): // zero extend uint32 |
| case CASE(TUINT32, TUINT64): |
| split64(t, &tlo, &thi); |
| gmove(f, &tlo); |
| regalloc(&r1, thi.type, N); |
| gins(AMOVW, ncon(0), &r1); |
| gins(AMOVW, &r1, &thi); |
| regfree(&r1); |
| splitclean(); |
| return; |
| |
| /* |
| * float to integer |
| */ |
| case CASE(TFLOAT32, TINT8): |
| case CASE(TFLOAT32, TUINT8): |
| case CASE(TFLOAT32, TINT16): |
| case CASE(TFLOAT32, TUINT16): |
| case CASE(TFLOAT32, TINT32): |
| case CASE(TFLOAT32, TUINT32): |
| // case CASE(TFLOAT32, TUINT64): |
| |
| case CASE(TFLOAT64, TINT8): |
| case CASE(TFLOAT64, TUINT8): |
| case CASE(TFLOAT64, TINT16): |
| case CASE(TFLOAT64, TUINT16): |
| case CASE(TFLOAT64, TINT32): |
| case CASE(TFLOAT64, TUINT32): |
| // case CASE(TFLOAT64, TUINT64): |
| fa = AMOVF; |
| a = AMOVFW; |
| if(ft == TFLOAT64) { |
| fa = AMOVD; |
| a = AMOVDW; |
| } |
| ta = AMOVW; |
| switch(tt) { |
| case TINT8: |
| ta = AMOVB; |
| break; |
| case TUINT8: |
| ta = AMOVBU; |
| break; |
| case TINT16: |
| ta = AMOVH; |
| break; |
| case TUINT16: |
| ta = AMOVHU; |
| break; |
| } |
| |
| regalloc(&r1, types[ft], f); |
| regalloc(&r2, types[tt], t); |
| gins(fa, f, &r1); // load to fpu |
| p1 = gins(a, &r1, &r1); // convert to w |
| switch(tt) { |
| case TUINT8: |
| case TUINT16: |
| case TUINT32: |
| p1->scond |= C_UBIT; |
| } |
| gins(AMOVW, &r1, &r2); // copy to cpu |
| gins(ta, &r2, t); // store |
| regfree(&r1); |
| regfree(&r2); |
| return; |
| |
| /* |
| * integer to float |
| */ |
| case CASE(TINT8, TFLOAT32): |
| case CASE(TUINT8, TFLOAT32): |
| case CASE(TINT16, TFLOAT32): |
| case CASE(TUINT16, TFLOAT32): |
| case CASE(TINT32, TFLOAT32): |
| case CASE(TUINT32, TFLOAT32): |
| case CASE(TINT8, TFLOAT64): |
| case CASE(TUINT8, TFLOAT64): |
| case CASE(TINT16, TFLOAT64): |
| case CASE(TUINT16, TFLOAT64): |
| case CASE(TINT32, TFLOAT64): |
| case CASE(TUINT32, TFLOAT64): |
| fa = AMOVW; |
| switch(ft) { |
| case TINT8: |
| fa = AMOVB; |
| break; |
| case TUINT8: |
| fa = AMOVBU; |
| break; |
| case TINT16: |
| fa = AMOVH; |
| break; |
| case TUINT16: |
| fa = AMOVHU; |
| break; |
| } |
| a = AMOVWF; |
| ta = AMOVF; |
| if(tt == TFLOAT64) { |
| a = AMOVWD; |
| ta = AMOVD; |
| } |
| regalloc(&r1, types[ft], f); |
| regalloc(&r2, types[tt], t); |
| gins(fa, f, &r1); // load to cpu |
| gins(AMOVW, &r1, &r2); // copy to fpu |
| p1 = gins(a, &r2, &r2); // convert |
| switch(ft) { |
| case TUINT8: |
| case TUINT16: |
| case TUINT32: |
| p1->scond |= C_UBIT; |
| } |
| gins(ta, &r2, t); // store |
| regfree(&r1); |
| regfree(&r2); |
| return; |
| |
| case CASE(TUINT64, TFLOAT32): |
| case CASE(TUINT64, TFLOAT64): |
| fatal("gmove UINT64, TFLOAT not implemented"); |
| return; |
| |
| |
| /* |
| * float to float |
| */ |
| case CASE(TFLOAT32, TFLOAT32): |
| a = AMOVF; |
| break; |
| |
| case CASE(TFLOAT64, TFLOAT64): |
| a = AMOVD; |
| break; |
| |
| case CASE(TFLOAT32, TFLOAT64): |
| regalloc(&r1, types[TFLOAT64], t); |
| gins(AMOVF, f, &r1); |
| gins(AMOVFD, &r1, &r1); |
| gins(AMOVD, &r1, t); |
| regfree(&r1); |
| return; |
| |
| case CASE(TFLOAT64, TFLOAT32): |
| regalloc(&r1, types[TFLOAT64], t); |
| gins(AMOVD, f, &r1); |
| gins(AMOVDF, &r1, &r1); |
| gins(AMOVF, &r1, t); |
| regfree(&r1); |
| return; |
| } |
| |
| gins(a, f, t); |
| return; |
| |
| rdst: |
| // TODO(kaib): we almost always require a register dest anyway, this can probably be |
| // removed. |
| // requires register destination |
| regalloc(&r1, t->type, t); |
| gins(a, f, &r1); |
| gmove(&r1, t); |
| regfree(&r1); |
| return; |
| |
| hard: |
| // requires register intermediate |
| regalloc(&r1, cvt, t); |
| gmove(f, &r1); |
| gmove(&r1, t); |
| regfree(&r1); |
| return; |
| |
| trunc64: |
| // truncate 64 bit integer |
| split64(f, &flo, &fhi); |
| regalloc(&r1, t->type, N); |
| gins(a, &flo, &r1); |
| gins(a, &r1, t); |
| regfree(&r1); |
| splitclean(); |
| return; |
| |
| fatal: |
| // should not happen |
| fatal("gmove %N -> %N", f, t); |
| } |
| |
| int |
| samaddr(Node *f, Node *t) |
| { |
| |
| if(f->op != t->op) |
| return 0; |
| |
| switch(f->op) { |
| case OREGISTER: |
| if(f->val.u.reg != t->val.u.reg) |
| break; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * generate one instruction: |
| * as f, t |
| */ |
| Prog* |
| gins(int as, Node *f, Node *t) |
| { |
| // Node nod; |
| // int32 v; |
| Prog *p; |
| Addr af, at; |
| |
| if(f != N && f->op == OINDEX) { |
| fatal("gins OINDEX not implemented"); |
| // regalloc(&nod, ®node, Z); |
| // v = constnode.vconst; |
| // cgen(f->right, &nod); |
| // constnode.vconst = v; |
| // idx.reg = nod.reg; |
| // regfree(&nod); |
| } |
| if(t != N && t->op == OINDEX) { |
| fatal("gins OINDEX not implemented"); |
| // regalloc(&nod, ®node, Z); |
| // v = constnode.vconst; |
| // cgen(t->right, &nod); |
| // constnode.vconst = v; |
| // idx.reg = nod.reg; |
| // regfree(&nod); |
| } |
| |
| memset(&af, 0, sizeof af); |
| memset(&at, 0, sizeof at); |
| if(f != N) |
| naddr(f, &af, 1); |
| if(t != N) |
| naddr(t, &at, 1); p = prog(as); |
| if(f != N) |
| p->from = af; |
| if(t != N) |
| p->to = at; |
| if(debug['g']) |
| print("%P\n", p); |
| return p; |
| } |
| |
| /* |
| * insert n into reg slot of p |
| */ |
| void |
| raddr(Node *n, Prog *p) |
| { |
| Addr a; |
| |
| naddr(n, &a, 1); |
| if(a.type != D_REG && a.type != D_FREG) { |
| if(n) |
| fatal("bad in raddr: %O", n->op); |
| else |
| fatal("bad in raddr: <null>"); |
| p->reg = NREG; |
| } else |
| p->reg = a.reg; |
| } |
| |
| /* generate a comparison |
| TODO(kaib): one of the args can actually be a small constant. relax the constraint and fix call sites. |
| */ |
| Prog* |
| gcmp(int as, Node *lhs, Node *rhs) |
| { |
| Prog *p; |
| |
| if(lhs->op != OREGISTER || rhs->op != OREGISTER) |
| fatal("bad operands to gcmp: %O %O", lhs->op, rhs->op); |
| |
| p = gins(as, rhs, N); |
| raddr(lhs, p); |
| return p; |
| } |
| |
| /* generate a constant shift |
| * arm encodes a shift by 32 as 0, thus asking for 0 shift is illegal. |
| */ |
| Prog* |
| gshift(int as, Node *lhs, int32 stype, int32 sval, Node *rhs) |
| { |
| Prog *p; |
| |
| if(sval <= 0 || sval > 32) |
| fatal("bad shift value: %d", sval); |
| |
| sval = sval&0x1f; |
| |
| p = gins(as, N, rhs); |
| p->from.type = D_SHIFT; |
| p->from.offset = stype | sval<<7 | lhs->val.u.reg; |
| return p; |
| } |
| |
| /* generate a register shift |
| */ |
| Prog * |
| gregshift(int as, Node *lhs, int32 stype, Node *reg, Node *rhs) |
| { |
| Prog *p; |
| p = gins(as, N, rhs); |
| p->from.type = D_SHIFT; |
| p->from.offset = stype | reg->val.u.reg << 8 | 1<<4 | lhs->val.u.reg; |
| return p; |
| } |
| |
| static void |
| checkoffset(Addr *a, int canemitcode) |
| { |
| Prog *p; |
| Node n1; |
| |
| if(a->offset < unmappedzero) |
| return; |
| if(!canemitcode) |
| fatal("checkoffset %#x, cannot emit code", a->offset); |
| |
| // cannot rely on unmapped nil page at 0 to catch |
| // reference with large offset. instead, emit explicit |
| // test of 0(reg). |
| regalloc(&n1, types[TUINTPTR], N); |
| p = gins(AMOVW, N, &n1); |
| p->from = *a; |
| p->from.offset = 0; |
| regfree(&n1); |
| } |
| |
| /* |
| * generate code to compute n; |
| * make a refer to result. |
| */ |
| void |
| naddr(Node *n, Addr *a, int canemitcode) |
| { |
| a->type = D_NONE; |
| a->name = D_NONE; |
| a->reg = NREG; |
| if(n == N) |
| return; |
| |
| switch(n->op) { |
| default: |
| fatal("naddr: bad %O %D", n->op, a); |
| break; |
| |
| case OREGISTER: |
| if(n->val.u.reg <= REGALLOC_RMAX) { |
| a->type = D_REG; |
| a->reg = n->val.u.reg; |
| } else { |
| a->type = D_FREG; |
| a->reg = n->val.u.reg - REGALLOC_F0; |
| } |
| a->sym = S; |
| break; |
| |
| case OINDEX: |
| case OIND: |
| fatal("naddr: OINDEX"); |
| // naddr(n->left, a); |
| // if(a->type >= D_AX && a->type <= D_DI) |
| // a->type += D_INDIR; |
| // else |
| // if(a->type == D_CONST) |
| // a->type = D_NONE+D_INDIR; |
| // else |
| // if(a->type == D_ADDR) { |
| // a->type = a->index; |
| // a->index = D_NONE; |
| // } else |
| // goto bad; |
| // if(n->op == OINDEX) { |
| // a->index = idx.reg; |
| // a->scale = n->scale; |
| // } |
| // break; |
| |
| case OINDREG: |
| a->type = D_OREG; |
| a->reg = n->val.u.reg; |
| a->sym = n->sym; |
| a->offset = n->xoffset; |
| checkoffset(a, canemitcode); |
| break; |
| |
| case OPARAM: |
| // n->left is PHEAP ONAME for stack parameter. |
| // compute address of actual parameter on stack. |
| a->etype = simtype[n->left->type->etype]; |
| a->width = n->left->type->width; |
| a->offset = n->xoffset; |
| a->sym = n->left->sym; |
| a->type = D_OREG; |
| a->name = D_PARAM; |
| break; |
| |
| case ONAME: |
| a->etype = 0; |
| a->width = 0; |
| a->reg = NREG; |
| if(n->type != T) { |
| a->etype = simtype[n->type->etype]; |
| a->width = n->type->width; |
| } |
| a->pun = n->pun; |
| a->offset = n->xoffset; |
| a->sym = n->sym; |
| if(a->sym == S) |
| a->sym = lookup(".noname"); |
| if(n->method) { |
| if(n->type != T) |
| if(n->type->sym != S) |
| if(n->type->sym->pkg != nil) |
| a->sym = pkglookup(a->sym->name, n->type->sym->pkg); |
| } |
| |
| a->type = D_OREG; |
| switch(n->class) { |
| default: |
| fatal("naddr: ONAME class %S %d\n", n->sym, n->class); |
| case PEXTERN: |
| a->name = D_EXTERN; |
| break; |
| case PAUTO: |
| a->name = D_AUTO; |
| break; |
| case PPARAM: |
| case PPARAMOUT: |
| a->name = D_PARAM; |
| break; |
| case PFUNC: |
| a->name = D_EXTERN; |
| a->type = D_CONST; |
| break; |
| } |
| break; |
| |
| case OLITERAL: |
| switch(n->val.ctype) { |
| default: |
| fatal("naddr: const %lT", n->type); |
| break; |
| case CTFLT: |
| a->type = D_FCONST; |
| a->dval = mpgetflt(n->val.u.fval); |
| break; |
| case CTINT: |
| a->sym = S; |
| a->type = D_CONST; |
| a->offset = mpgetfix(n->val.u.xval); |
| break; |
| case CTSTR: |
| datagostring(n->val.u.sval, a); |
| break; |
| case CTBOOL: |
| a->sym = S; |
| a->type = D_CONST; |
| a->offset = n->val.u.bval; |
| break; |
| case CTNIL: |
| a->sym = S; |
| a->type = D_CONST; |
| a->offset = 0; |
| break; |
| } |
| break; |
| |
| case OLEN: |
| // len of string or slice |
| naddr(n->left, a, canemitcode); |
| if(a->type == D_CONST && a->offset == 0) |
| break; // len(nil) |
| a->offset += Array_nel; |
| if(a->offset >= unmappedzero && a->offset-Array_nel < unmappedzero) |
| checkoffset(a, canemitcode); |
| break; |
| |
| case OCAP: |
| // cap of string or slice |
| naddr(n->left, a, canemitcode); |
| if(a->type == D_CONST && a->offset == 0) |
| break; // cap(nil) |
| a->offset += Array_cap; |
| if(a->offset >= unmappedzero && a->offset-Array_cap < unmappedzero) |
| checkoffset(a, canemitcode); |
| break; |
| |
| case OADDR: |
| naddr(n->left, a, canemitcode); |
| switch(a->type) { |
| case D_OREG: |
| a->type = D_CONST; |
| break; |
| |
| case D_REG: |
| case D_CONST: |
| break; |
| |
| default: |
| fatal("naddr: OADDR %d\n", a->type); |
| } |
| } |
| } |
| |
| /* |
| * return Axxx for Oxxx on type t. |
| */ |
| int |
| optoas(int op, Type *t) |
| { |
| int a; |
| |
| if(t == T) |
| fatal("optoas: t is nil"); |
| |
| a = AGOK; |
| switch(CASE(op, simtype[t->etype])) { |
| default: |
| fatal("optoas: no entry %O-%T etype %T simtype %T", op, t, types[t->etype], types[simtype[t->etype]]); |
| break; |
| |
| /* case CASE(OADDR, TPTR32): |
| a = ALEAL; |
| break; |
| |
| case CASE(OADDR, TPTR64): |
| a = ALEAQ; |
| break; |
| */ |
| // TODO(kaib): make sure the conditional branches work on all edge cases |
| case CASE(OEQ, TBOOL): |
| case CASE(OEQ, TINT8): |
| case CASE(OEQ, TUINT8): |
| case CASE(OEQ, TINT16): |
| case CASE(OEQ, TUINT16): |
| case CASE(OEQ, TINT32): |
| case CASE(OEQ, TUINT32): |
| case CASE(OEQ, TINT64): |
| case CASE(OEQ, TUINT64): |
| case CASE(OEQ, TPTR32): |
| case CASE(OEQ, TPTR64): |
| case CASE(OEQ, TFLOAT32): |
| case CASE(OEQ, TFLOAT64): |
| a = ABEQ; |
| break; |
| |
| case CASE(ONE, TBOOL): |
| case CASE(ONE, TINT8): |
| case CASE(ONE, TUINT8): |
| case CASE(ONE, TINT16): |
| case CASE(ONE, TUINT16): |
| case CASE(ONE, TINT32): |
| case CASE(ONE, TUINT32): |
| case CASE(ONE, TINT64): |
| case CASE(ONE, TUINT64): |
| case CASE(ONE, TPTR32): |
| case CASE(ONE, TPTR64): |
| case CASE(ONE, TFLOAT32): |
| case CASE(ONE, TFLOAT64): |
| a = ABNE; |
| break; |
| |
| case CASE(OLT, TINT8): |
| case CASE(OLT, TINT16): |
| case CASE(OLT, TINT32): |
| case CASE(OLT, TINT64): |
| case CASE(OLT, TFLOAT32): |
| case CASE(OLT, TFLOAT64): |
| a = ABLT; |
| break; |
| |
| case CASE(OLT, TUINT8): |
| case CASE(OLT, TUINT16): |
| case CASE(OLT, TUINT32): |
| case CASE(OLT, TUINT64): |
| a = ABLO; |
| break; |
| |
| case CASE(OLE, TINT8): |
| case CASE(OLE, TINT16): |
| case CASE(OLE, TINT32): |
| case CASE(OLE, TINT64): |
| case CASE(OLE, TFLOAT32): |
| case CASE(OLE, TFLOAT64): |
| a = ABLE; |
| break; |
| |
| case CASE(OLE, TUINT8): |
| case CASE(OLE, TUINT16): |
| case CASE(OLE, TUINT32): |
| case CASE(OLE, TUINT64): |
| a = ABLS; |
| break; |
| |
| case CASE(OGT, TINT8): |
| case CASE(OGT, TINT16): |
| case CASE(OGT, TINT32): |
| case CASE(OGT, TINT64): |
| case CASE(OGT, TFLOAT32): |
| case CASE(OGT, TFLOAT64): |
| a = ABGT; |
| break; |
| |
| case CASE(OGT, TUINT8): |
| case CASE(OGT, TUINT16): |
| case CASE(OGT, TUINT32): |
| case CASE(OGT, TUINT64): |
| a = ABHI; |
| break; |
| |
| case CASE(OGE, TINT8): |
| case CASE(OGE, TINT16): |
| case CASE(OGE, TINT32): |
| case CASE(OGE, TINT64): |
| case CASE(OGE, TFLOAT32): |
| case CASE(OGE, TFLOAT64): |
| a = ABGE; |
| break; |
| |
| case CASE(OGE, TUINT8): |
| case CASE(OGE, TUINT16): |
| case CASE(OGE, TUINT32): |
| case CASE(OGE, TUINT64): |
| a = ABHS; |
| break; |
| |
| case CASE(OCMP, TBOOL): |
| case CASE(OCMP, TINT8): |
| case CASE(OCMP, TUINT8): |
| case CASE(OCMP, TINT16): |
| case CASE(OCMP, TUINT16): |
| case CASE(OCMP, TINT32): |
| case CASE(OCMP, TUINT32): |
| case CASE(OCMP, TPTR32): |
| a = ACMP; |
| break; |
| |
| case CASE(OCMP, TFLOAT32): |
| a = ACMPF; |
| break; |
| |
| case CASE(OCMP, TFLOAT64): |
| a = ACMPD; |
| break; |
| |
| case CASE(OAS, TBOOL): |
| case CASE(OAS, TINT8): |
| a = AMOVB; |
| break; |
| |
| case CASE(OAS, TUINT8): |
| a = AMOVBU; |
| break; |
| |
| case CASE(OAS, TINT16): |
| a = AMOVH; |
| break; |
| |
| case CASE(OAS, TUINT16): |
| a = AMOVHU; |
| break; |
| |
| case CASE(OAS, TINT32): |
| case CASE(OAS, TUINT32): |
| case CASE(OAS, TPTR32): |
| a = AMOVW; |
| break; |
| |
| case CASE(OAS, TFLOAT32): |
| a = AMOVF; |
| break; |
| |
| case CASE(OAS, TFLOAT64): |
| a = AMOVD; |
| break; |
| |
| case CASE(OADD, TINT8): |
| case CASE(OADD, TUINT8): |
| case CASE(OADD, TINT16): |
| case CASE(OADD, TUINT16): |
| case CASE(OADD, TINT32): |
| case CASE(OADD, TUINT32): |
| case CASE(OADD, TPTR32): |
| a = AADD; |
| break; |
| |
| case CASE(OADD, TFLOAT32): |
| a = AADDF; |
| break; |
| |
| case CASE(OADD, TFLOAT64): |
| a = AADDD; |
| break; |
| |
| case CASE(OSUB, TINT8): |
| case CASE(OSUB, TUINT8): |
| case CASE(OSUB, TINT16): |
| case CASE(OSUB, TUINT16): |
| case CASE(OSUB, TINT32): |
| case CASE(OSUB, TUINT32): |
| case CASE(OSUB, TPTR32): |
| a = ASUB; |
| break; |
| |
| case CASE(OSUB, TFLOAT32): |
| a = ASUBF; |
| break; |
| |
| case CASE(OSUB, TFLOAT64): |
| a = ASUBD; |
| break; |
| |
| case CASE(OAND, TINT8): |
| case CASE(OAND, TUINT8): |
| case CASE(OAND, TINT16): |
| case CASE(OAND, TUINT16): |
| case CASE(OAND, TINT32): |
| case CASE(OAND, TUINT32): |
| case CASE(OAND, TPTR32): |
| a = AAND; |
| break; |
| |
| case CASE(OOR, TINT8): |
| case CASE(OOR, TUINT8): |
| case CASE(OOR, TINT16): |
| case CASE(OOR, TUINT16): |
| case CASE(OOR, TINT32): |
| case CASE(OOR, TUINT32): |
| case CASE(OOR, TPTR32): |
| a = AORR; |
| break; |
| |
| case CASE(OXOR, TINT8): |
| case CASE(OXOR, TUINT8): |
| case CASE(OXOR, TINT16): |
| case CASE(OXOR, TUINT16): |
| case CASE(OXOR, TINT32): |
| case CASE(OXOR, TUINT32): |
| case CASE(OXOR, TPTR32): |
| a = AEOR; |
| break; |
| |
| case CASE(OLSH, TINT8): |
| case CASE(OLSH, TUINT8): |
| case CASE(OLSH, TINT16): |
| case CASE(OLSH, TUINT16): |
| case CASE(OLSH, TINT32): |
| case CASE(OLSH, TUINT32): |
| case CASE(OLSH, TPTR32): |
| a = ASLL; |
| break; |
| |
| case CASE(ORSH, TUINT8): |
| case CASE(ORSH, TUINT16): |
| case CASE(ORSH, TUINT32): |
| case CASE(ORSH, TPTR32): |
| a = ASRL; |
| break; |
| |
| case CASE(ORSH, TINT8): |
| case CASE(ORSH, TINT16): |
| case CASE(ORSH, TINT32): |
| a = ASRA; |
| break; |
| |
| case CASE(OMUL, TUINT8): |
| case CASE(OMUL, TUINT16): |
| case CASE(OMUL, TUINT32): |
| case CASE(OMUL, TPTR32): |
| a = AMULU; |
| break; |
| |
| case CASE(OMUL, TINT8): |
| case CASE(OMUL, TINT16): |
| case CASE(OMUL, TINT32): |
| a = AMUL; |
| break; |
| |
| case CASE(OMUL, TFLOAT32): |
| a = AMULF; |
| break; |
| |
| case CASE(OMUL, TFLOAT64): |
| a = AMULD; |
| break; |
| |
| case CASE(ODIV, TUINT8): |
| case CASE(ODIV, TUINT16): |
| case CASE(ODIV, TUINT32): |
| case CASE(ODIV, TPTR32): |
| a = ADIVU; |
| break; |
| |
| case CASE(ODIV, TINT8): |
| case CASE(ODIV, TINT16): |
| case CASE(ODIV, TINT32): |
| a = ADIV; |
| break; |
| |
| case CASE(OMOD, TUINT8): |
| case CASE(OMOD, TUINT16): |
| case CASE(OMOD, TUINT32): |
| case CASE(OMOD, TPTR32): |
| a = AMODU; |
| break; |
| |
| case CASE(OMOD, TINT8): |
| case CASE(OMOD, TINT16): |
| case CASE(OMOD, TINT32): |
| a = AMOD; |
| break; |
| |
| // case CASE(OEXTEND, TINT16): |
| // a = ACWD; |
| // break; |
| |
| // case CASE(OEXTEND, TINT32): |
| // a = ACDQ; |
| // break; |
| |
| // case CASE(OEXTEND, TINT64): |
| // a = ACQO; |
| // break; |
| |
| case CASE(ODIV, TFLOAT32): |
| a = ADIVF; |
| break; |
| |
| case CASE(ODIV, TFLOAT64): |
| a = ADIVD; |
| break; |
| |
| } |
| return a; |
| } |
| |
| enum |
| { |
| ODynam = 1<<0, |
| OPtrto = 1<<1, |
| }; |
| |
| static Node clean[20]; |
| static int cleani = 0; |
| |
| void |
| sudoclean(void) |
| { |
| if(clean[cleani-1].op != OEMPTY) |
| regfree(&clean[cleani-1]); |
| if(clean[cleani-2].op != OEMPTY) |
| regfree(&clean[cleani-2]); |
| cleani -= 2; |
| } |
| |
| int |
| dotaddable(Node *n, Node *n1) |
| { |
| int o, oary[10]; |
| Node *nn; |
| |
| if(n->op != ODOT) |
| return 0; |
| |
| o = dotoffset(n, oary, &nn); |
| if(nn != N && nn->addable && o == 1 && oary[0] >= 0) { |
| *n1 = *nn; |
| n1->type = n->type; |
| n1->xoffset += oary[0]; |
| return 1; |
| } |
| return 0; |
| } |
| |
| /* |
| * generate code to compute address of n, |
| * a reference to a (perhaps nested) field inside |
| * an array or struct. |
| * return 0 on failure, 1 on success. |
| * on success, leaves usable address in a. |
| * |
| * caller is responsible for calling sudoclean |
| * after successful sudoaddable, |
| * to release the register used for a. |
| */ |
| int |
| sudoaddable(int as, Node *n, Addr *a, int *w) |
| { |
| int o, i; |
| int oary[10]; |
| int64 v; |
| Node n1, n2, n3, n4, *nn, *l, *r; |
| Node *reg, *reg1; |
| Prog *p1, *p2; |
| Type *t; |
| |
| if(n->type == T) |
| return 0; |
| |
| switch(n->op) { |
| case OLITERAL: |
| if(n->val.ctype != CTINT) |
| break; |
| v = mpgetfix(n->val.u.xval); |
| if(v >= 32000 || v <= -32000) |
| break; |
| goto lit; |
| |
| case ODOT: |
| case ODOTPTR: |
| cleani += 2; |
| reg = &clean[cleani-1]; |
| reg1 = &clean[cleani-2]; |
| reg->op = OEMPTY; |
| reg1->op = OEMPTY; |
| goto odot; |
| |
| case OINDEX: |
| if(n->left->type->etype == TSTRING) |
| return 0; |
| cleani += 2; |
| reg = &clean[cleani-1]; |
| reg1 = &clean[cleani-2]; |
| reg->op = OEMPTY; |
| reg1->op = OEMPTY; |
| goto oindex; |
| } |
| return 0; |
| |
| lit: |
| switch(as) { |
| default: |
| return 0; |
| case AADD: case ASUB: case AAND: case AORR: case AEOR: |
| case AMOVB: case AMOVBU: case AMOVH: case AMOVHU: |
| case AMOVW: |
| break; |
| } |
| |
| cleani += 2; |
| reg = &clean[cleani-1]; |
| reg1 = &clean[cleani-2]; |
| reg->op = OEMPTY; |
| reg1->op = OEMPTY; |
| naddr(n, a, 1); |
| goto yes; |
| |
| odot: |
| o = dotoffset(n, oary, &nn); |
| if(nn == N) |
| goto no; |
| |
| if(nn->addable && o == 1 && oary[0] >= 0) { |
| // directly addressable set of DOTs |
| n1 = *nn; |
| n1.type = n->type; |
| n1.xoffset += oary[0]; |
| naddr(&n1, a, 1); |
| goto yes; |
| } |
| |
| regalloc(reg, types[tptr], N); |
| n1 = *reg; |
| n1.op = OINDREG; |
| if(oary[0] >= 0) { |
| agen(nn, reg); |
| n1.xoffset = oary[0]; |
| } else { |
| cgen(nn, reg); |
| n1.xoffset = -(oary[0]+1); |
| } |
| |
| for(i=1; i<o; i++) { |
| if(oary[i] >= 0) |
| fatal("cant happen"); |
| gins(AMOVW, &n1, reg); |
| n1.xoffset = -(oary[i]+1); |
| } |
| |
| a->type = D_NONE; |
| a->name = D_NONE; |
| naddr(&n1, a, 1); |
| goto yes; |
| |
| oindex: |
| l = n->left; |
| r = n->right; |
| if(l->ullman >= UINF && r->ullman >= UINF) |
| goto no; |
| |
| // set o to type of array |
| o = 0; |
| if(isptr[l->type->etype]) { |
| o += OPtrto; |
| if(l->type->type->etype != TARRAY) |
| fatal("not ptr ary"); |
| if(l->type->type->bound < 0) |
| o += ODynam; |
| } else { |
| if(l->type->etype != TARRAY) |
| fatal("not ary"); |
| if(l->type->bound < 0) |
| o += ODynam; |
| } |
| |
| *w = n->type->width; |
| if(isconst(r, CTINT)) |
| goto oindex_const; |
| |
| switch(*w) { |
| default: |
| goto no; |
| case 1: |
| case 2: |
| case 4: |
| case 8: |
| break; |
| } |
| |
| // load the array (reg) |
| if(l->ullman > r->ullman) { |
| regalloc(reg, types[tptr], N); |
| if(o & OPtrto) |
| cgen(l, reg); |
| else |
| agen(l, reg); |
| } |
| |
| // load the index (reg1) |
| t = types[TUINT32]; |
| if(issigned[r->type->etype]) |
| t = types[TINT32]; |
| regalloc(reg1, t, N); |
| regalloc(&n3, types[TINT32], reg1); |
| p2 = cgenindex(r, &n3); |
| gmove(&n3, reg1); |
| regfree(&n3); |
| |
| // load the array (reg) |
| if(l->ullman <= r->ullman) { |
| regalloc(reg, types[tptr], N); |
| if(o & OPtrto) |
| cgen(l, reg); |
| else |
| agen(l, reg); |
| } |
| |
| // check bounds |
| if(!debug['B']) { |
| if(o & ODynam) { |
| n2 = *reg; |
| n2.op = OINDREG; |
| n2.type = types[tptr]; |
| n2.xoffset = Array_nel; |
| } else { |
| if(l->type->width >= unmappedzero && l->op == OIND) { |
| // cannot rely on page protections to |
| // catch array ptr == 0, so dereference. |
| n2 = *reg; |
| n2.op = OINDREG; |
| n2.type = types[TUINTPTR]; |
| n2.xoffset = 0; |
| regalloc(&n3, n2.type, N); |
| gins(AMOVW, &n2, &n3); |
| regfree(&n3); |
| } |
| nodconst(&n2, types[TUINT32], l->type->bound); |
| if(o & OPtrto) |
| nodconst(&n2, types[TUINT32], l->type->type->bound); |
| } |
| regalloc(&n3, n2.type, N); |
| cgen(&n2, &n3); |
| gcmp(optoas(OCMP, types[TUINT32]), reg1, &n3); |
| regfree(&n3); |
| p1 = gbranch(optoas(OLT, types[TUINT32]), T); |
| if(p2) |
| patch(p2, pc); |
| ginscall(panicindex, 0); |
| patch(p1, pc); |
| } |
| |
| if(o & ODynam) { |
| n2 = *reg; |
| n2.op = OINDREG; |
| n2.type = types[tptr]; |
| n2.xoffset = Array_array; |
| gmove(&n2, reg); |
| } |
| |
| switch(*w) { |
| case 1: |
| gins(AADD, reg1, reg); |
| break; |
| case 2: |
| gshift(AADD, reg1, SHIFT_LL, 1, reg); |
| break; |
| case 4: |
| gshift(AADD, reg1, SHIFT_LL, 2, reg); |
| break; |
| case 8: |
| gshift(AADD, reg1, SHIFT_LL, 3, reg); |
| break; |
| } |
| |
| naddr(reg1, a, 1); |
| a->type = D_OREG; |
| a->reg = reg->val.u.reg; |
| a->offset = 0; |
| |
| goto yes; |
| |
| oindex_const: |
| // index is constant |
| // can check statically and |
| // can multiply by width statically |
| |
| regalloc(reg, types[tptr], N); |
| if(o & OPtrto) |
| cgen(l, reg); |
| else |
| agen(l, reg); |
| |
| v = mpgetfix(r->val.u.xval); |
| if(o & ODynam) { |
| |
| if(!debug['B'] && !n->etype) { |
| n1 = *reg; |
| n1.op = OINDREG; |
| n1.type = types[tptr]; |
| n1.xoffset = Array_nel; |
| nodconst(&n2, types[TUINT32], v); |
| regalloc(&n3, types[TUINT32], N); |
| cgen(&n2, &n3); |
| regalloc(&n4, n1.type, N); |
| cgen(&n1, &n4); |
| gcmp(optoas(OCMP, types[TUINT32]), &n4, &n3); |
| regfree(&n4); |
| regfree(&n3); |
| p1 = gbranch(optoas(OGT, types[TUINT32]), T); |
| ginscall(panicindex, 0); |
| patch(p1, pc); |
| } |
| |
| n1 = *reg; |
| n1.op = OINDREG; |
| n1.type = types[tptr]; |
| n1.xoffset = Array_array; |
| gmove(&n1, reg); |
| } |
| |
| n2 = *reg; |
| n2.op = OINDREG; |
| n2.xoffset = v * (*w); |
| a->type = D_NONE; |
| a->name = D_NONE; |
| naddr(&n2, a, 1); |
| goto yes; |
| |
| yes: |
| return 1; |
| |
| no: |
| sudoclean(); |
| return 0; |
| } |