|  | // Copyright 2010 The Go Authors. All rights reserved. | 
|  | // Use of this source code is governed by a BSD-style | 
|  | // license that can be found in the LICENSE file. | 
|  |  | 
|  | package runtime | 
|  |  | 
|  | // inf2one returns a signed 1 if f is an infinity and a signed 0 otherwise. | 
|  | // The sign of the result is the sign of f. | 
|  | func inf2one(f float64) float64 { | 
|  | g := 0.0 | 
|  | if isInf(f) { | 
|  | g = 1.0 | 
|  | } | 
|  | return copysign(g, f) | 
|  | } | 
|  |  | 
|  | func complex128div(n complex128, m complex128) complex128 { | 
|  | var e, f float64 // complex(e, f) = n/m | 
|  |  | 
|  | // Algorithm for robust complex division as described in | 
|  | // Robert L. Smith: Algorithm 116: Complex division. Commun. ACM 5(8): 435 (1962). | 
|  | if abs(real(m)) >= abs(imag(m)) { | 
|  | ratio := imag(m) / real(m) | 
|  | denom := real(m) + ratio*imag(m) | 
|  | e = (real(n) + imag(n)*ratio) / denom | 
|  | f = (imag(n) - real(n)*ratio) / denom | 
|  | } else { | 
|  | ratio := real(m) / imag(m) | 
|  | denom := imag(m) + ratio*real(m) | 
|  | e = (real(n)*ratio + imag(n)) / denom | 
|  | f = (imag(n)*ratio - real(n)) / denom | 
|  | } | 
|  |  | 
|  | if isNaN(e) && isNaN(f) { | 
|  | // Correct final result to infinities and zeros if applicable. | 
|  | // Matches C99: ISO/IEC 9899:1999 - G.5.1  Multiplicative operators. | 
|  |  | 
|  | a, b := real(n), imag(n) | 
|  | c, d := real(m), imag(m) | 
|  |  | 
|  | switch { | 
|  | case m == 0 && (!isNaN(a) || !isNaN(b)): | 
|  | e = copysign(inf, c) * a | 
|  | f = copysign(inf, c) * b | 
|  |  | 
|  | case (isInf(a) || isInf(b)) && isFinite(c) && isFinite(d): | 
|  | a = inf2one(a) | 
|  | b = inf2one(b) | 
|  | e = inf * (a*c + b*d) | 
|  | f = inf * (b*c - a*d) | 
|  |  | 
|  | case (isInf(c) || isInf(d)) && isFinite(a) && isFinite(b): | 
|  | c = inf2one(c) | 
|  | d = inf2one(d) | 
|  | e = 0 * (a*c + b*d) | 
|  | f = 0 * (b*c - a*d) | 
|  | } | 
|  | } | 
|  |  | 
|  | return complex(e, f) | 
|  | } |