| // Copyright 2023 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| //go:build !goexperiment.allocheaders |
| |
| // Garbage collector: type and heap bitmaps. |
| // |
| // Stack, data, and bss bitmaps |
| // |
| // Stack frames and global variables in the data and bss sections are |
| // described by bitmaps with 1 bit per pointer-sized word. A "1" bit |
| // means the word is a live pointer to be visited by the GC (referred to |
| // as "pointer"). A "0" bit means the word should be ignored by GC |
| // (referred to as "scalar", though it could be a dead pointer value). |
| // |
| // Heap bitmap |
| // |
| // The heap bitmap comprises 1 bit for each pointer-sized word in the heap, |
| // recording whether a pointer is stored in that word or not. This bitmap |
| // is stored in the heapArena metadata backing each heap arena. |
| // That is, if ha is the heapArena for the arena starting at "start", |
| // then ha.bitmap[0] holds the 64 bits for the 64 words "start" |
| // through start+63*ptrSize, ha.bitmap[1] holds the entries for |
| // start+64*ptrSize through start+127*ptrSize, and so on. |
| // Bits correspond to words in little-endian order. ha.bitmap[0]&1 represents |
| // the word at "start", ha.bitmap[0]>>1&1 represents the word at start+8, etc. |
| // (For 32-bit platforms, s/64/32/.) |
| // |
| // We also keep a noMorePtrs bitmap which allows us to stop scanning |
| // the heap bitmap early in certain situations. If ha.noMorePtrs[i]>>j&1 |
| // is 1, then the object containing the last word described by ha.bitmap[8*i+j] |
| // has no more pointers beyond those described by ha.bitmap[8*i+j]. |
| // If ha.noMorePtrs[i]>>j&1 is set, the entries in ha.bitmap[8*i+j+1] and |
| // beyond must all be zero until the start of the next object. |
| // |
| // The bitmap for noscan spans is set to all zero at span allocation time. |
| // |
| // The bitmap for unallocated objects in scannable spans is not maintained |
| // (can be junk). |
| |
| package runtime |
| |
| import ( |
| "internal/abi" |
| "internal/goarch" |
| "runtime/internal/sys" |
| "unsafe" |
| ) |
| |
| const ( |
| // For compatibility with the allocheaders GOEXPERIMENT. |
| mallocHeaderSize = 0 |
| minSizeForMallocHeader = ^uintptr(0) |
| ) |
| |
| // For compatibility with the allocheaders GOEXPERIMENT. |
| // |
| //go:nosplit |
| func heapBitsInSpan(_ uintptr) bool { |
| return false |
| } |
| |
| // heapArenaPtrScalar contains the per-heapArena pointer/scalar metadata for the GC. |
| type heapArenaPtrScalar struct { |
| // bitmap stores the pointer/scalar bitmap for the words in |
| // this arena. See mbitmap.go for a description. |
| // This array uses 1 bit per word of heap, or 1.6% of the heap size (for 64-bit). |
| bitmap [heapArenaBitmapWords]uintptr |
| |
| // If the ith bit of noMorePtrs is true, then there are no more |
| // pointers for the object containing the word described by the |
| // high bit of bitmap[i]. |
| // In that case, bitmap[i+1], ... must be zero until the start |
| // of the next object. |
| // We never operate on these entries using bit-parallel techniques, |
| // so it is ok if they are small. Also, they can't be bigger than |
| // uint16 because at that size a single noMorePtrs entry |
| // represents 8K of memory, the minimum size of a span. Any larger |
| // and we'd have to worry about concurrent updates. |
| // This array uses 1 bit per word of bitmap, or .024% of the heap size (for 64-bit). |
| noMorePtrs [heapArenaBitmapWords / 8]uint8 |
| } |
| |
| // heapBits provides access to the bitmap bits for a single heap word. |
| // The methods on heapBits take value receivers so that the compiler |
| // can more easily inline calls to those methods and registerize the |
| // struct fields independently. |
| type heapBits struct { |
| // heapBits will report on pointers in the range [addr,addr+size). |
| // The low bit of mask contains the pointerness of the word at addr |
| // (assuming valid>0). |
| addr, size uintptr |
| |
| // The next few pointer bits representing words starting at addr. |
| // Those bits already returned by next() are zeroed. |
| mask uintptr |
| // Number of bits in mask that are valid. mask is always less than 1<<valid. |
| valid uintptr |
| } |
| |
| // heapBitsForAddr returns the heapBits for the address addr. |
| // The caller must ensure [addr,addr+size) is in an allocated span. |
| // In particular, be careful not to point past the end of an object. |
| // |
| // nosplit because it is used during write barriers and must not be preempted. |
| // |
| //go:nosplit |
| func heapBitsForAddr(addr, size uintptr) heapBits { |
| // Find arena |
| ai := arenaIndex(addr) |
| ha := mheap_.arenas[ai.l1()][ai.l2()] |
| |
| // Word index in arena. |
| word := addr / goarch.PtrSize % heapArenaWords |
| |
| // Word index and bit offset in bitmap array. |
| idx := word / ptrBits |
| off := word % ptrBits |
| |
| // Grab relevant bits of bitmap. |
| mask := ha.bitmap[idx] >> off |
| valid := ptrBits - off |
| |
| // Process depending on where the object ends. |
| nptr := size / goarch.PtrSize |
| if nptr < valid { |
| // Bits for this object end before the end of this bitmap word. |
| // Squash bits for the following objects. |
| mask &= 1<<(nptr&(ptrBits-1)) - 1 |
| valid = nptr |
| } else if nptr == valid { |
| // Bits for this object end at exactly the end of this bitmap word. |
| // All good. |
| } else { |
| // Bits for this object extend into the next bitmap word. See if there |
| // may be any pointers recorded there. |
| if uintptr(ha.noMorePtrs[idx/8])>>(idx%8)&1 != 0 { |
| // No more pointers in this object after this bitmap word. |
| // Update size so we know not to look there. |
| size = valid * goarch.PtrSize |
| } |
| } |
| |
| return heapBits{addr: addr, size: size, mask: mask, valid: valid} |
| } |
| |
| // Returns the (absolute) address of the next known pointer and |
| // a heapBits iterator representing any remaining pointers. |
| // If there are no more pointers, returns address 0. |
| // Note that next does not modify h. The caller must record the result. |
| // |
| // nosplit because it is used during write barriers and must not be preempted. |
| // |
| //go:nosplit |
| func (h heapBits) next() (heapBits, uintptr) { |
| for { |
| if h.mask != 0 { |
| var i int |
| if goarch.PtrSize == 8 { |
| i = sys.TrailingZeros64(uint64(h.mask)) |
| } else { |
| i = sys.TrailingZeros32(uint32(h.mask)) |
| } |
| h.mask ^= uintptr(1) << (i & (ptrBits - 1)) |
| return h, h.addr + uintptr(i)*goarch.PtrSize |
| } |
| |
| // Skip words that we've already processed. |
| h.addr += h.valid * goarch.PtrSize |
| h.size -= h.valid * goarch.PtrSize |
| if h.size == 0 { |
| return h, 0 // no more pointers |
| } |
| |
| // Grab more bits and try again. |
| h = heapBitsForAddr(h.addr, h.size) |
| } |
| } |
| |
| // nextFast is like next, but can return 0 even when there are more pointers |
| // to be found. Callers should call next if nextFast returns 0 as its second |
| // return value. |
| // |
| // if addr, h = h.nextFast(); addr == 0 { |
| // if addr, h = h.next(); addr == 0 { |
| // ... no more pointers ... |
| // } |
| // } |
| // ... process pointer at addr ... |
| // |
| // nextFast is designed to be inlineable. |
| // |
| //go:nosplit |
| func (h heapBits) nextFast() (heapBits, uintptr) { |
| // TESTQ/JEQ |
| if h.mask == 0 { |
| return h, 0 |
| } |
| // BSFQ |
| var i int |
| if goarch.PtrSize == 8 { |
| i = sys.TrailingZeros64(uint64(h.mask)) |
| } else { |
| i = sys.TrailingZeros32(uint32(h.mask)) |
| } |
| // BTCQ |
| h.mask ^= uintptr(1) << (i & (ptrBits - 1)) |
| // LEAQ (XX)(XX*8) |
| return h, h.addr + uintptr(i)*goarch.PtrSize |
| } |
| |
| // bulkBarrierPreWrite executes a write barrier |
| // for every pointer slot in the memory range [src, src+size), |
| // using pointer/scalar information from [dst, dst+size). |
| // This executes the write barriers necessary before a memmove. |
| // src, dst, and size must be pointer-aligned. |
| // The range [dst, dst+size) must lie within a single object. |
| // It does not perform the actual writes. |
| // |
| // As a special case, src == 0 indicates that this is being used for a |
| // memclr. bulkBarrierPreWrite will pass 0 for the src of each write |
| // barrier. |
| // |
| // Callers should call bulkBarrierPreWrite immediately before |
| // calling memmove(dst, src, size). This function is marked nosplit |
| // to avoid being preempted; the GC must not stop the goroutine |
| // between the memmove and the execution of the barriers. |
| // The caller is also responsible for cgo pointer checks if this |
| // may be writing Go pointers into non-Go memory. |
| // |
| // The pointer bitmap is not maintained for allocations containing |
| // no pointers at all; any caller of bulkBarrierPreWrite must first |
| // make sure the underlying allocation contains pointers, usually |
| // by checking typ.PtrBytes. |
| // |
| // The type of the space can be provided purely as an optimization, |
| // however it is not used with GOEXPERIMENT=noallocheaders. |
| // |
| // Callers must perform cgo checks if goexperiment.CgoCheck2. |
| // |
| //go:nosplit |
| func bulkBarrierPreWrite(dst, src, size uintptr, _ *abi.Type) { |
| if (dst|src|size)&(goarch.PtrSize-1) != 0 { |
| throw("bulkBarrierPreWrite: unaligned arguments") |
| } |
| if !writeBarrier.enabled { |
| return |
| } |
| if s := spanOf(dst); s == nil { |
| // If dst is a global, use the data or BSS bitmaps to |
| // execute write barriers. |
| for _, datap := range activeModules() { |
| if datap.data <= dst && dst < datap.edata { |
| bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata) |
| return |
| } |
| } |
| for _, datap := range activeModules() { |
| if datap.bss <= dst && dst < datap.ebss { |
| bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata) |
| return |
| } |
| } |
| return |
| } else if s.state.get() != mSpanInUse || dst < s.base() || s.limit <= dst { |
| // dst was heap memory at some point, but isn't now. |
| // It can't be a global. It must be either our stack, |
| // or in the case of direct channel sends, it could be |
| // another stack. Either way, no need for barriers. |
| // This will also catch if dst is in a freed span, |
| // though that should never have. |
| return |
| } |
| |
| buf := &getg().m.p.ptr().wbBuf |
| h := heapBitsForAddr(dst, size) |
| if src == 0 { |
| for { |
| var addr uintptr |
| if h, addr = h.next(); addr == 0 { |
| break |
| } |
| dstx := (*uintptr)(unsafe.Pointer(addr)) |
| p := buf.get1() |
| p[0] = *dstx |
| } |
| } else { |
| for { |
| var addr uintptr |
| if h, addr = h.next(); addr == 0 { |
| break |
| } |
| dstx := (*uintptr)(unsafe.Pointer(addr)) |
| srcx := (*uintptr)(unsafe.Pointer(src + (addr - dst))) |
| p := buf.get2() |
| p[0] = *dstx |
| p[1] = *srcx |
| } |
| } |
| } |
| |
| // bulkBarrierPreWriteSrcOnly is like bulkBarrierPreWrite but |
| // does not execute write barriers for [dst, dst+size). |
| // |
| // In addition to the requirements of bulkBarrierPreWrite |
| // callers need to ensure [dst, dst+size) is zeroed. |
| // |
| // This is used for special cases where e.g. dst was just |
| // created and zeroed with malloc. |
| // |
| // The type of the space can be provided purely as an optimization, |
| // however it is not used with GOEXPERIMENT=noallocheaders. |
| // |
| //go:nosplit |
| func bulkBarrierPreWriteSrcOnly(dst, src, size uintptr, _ *abi.Type) { |
| if (dst|src|size)&(goarch.PtrSize-1) != 0 { |
| throw("bulkBarrierPreWrite: unaligned arguments") |
| } |
| if !writeBarrier.enabled { |
| return |
| } |
| buf := &getg().m.p.ptr().wbBuf |
| h := heapBitsForAddr(dst, size) |
| for { |
| var addr uintptr |
| if h, addr = h.next(); addr == 0 { |
| break |
| } |
| srcx := (*uintptr)(unsafe.Pointer(addr - dst + src)) |
| p := buf.get1() |
| p[0] = *srcx |
| } |
| } |
| |
| // initHeapBits initializes the heap bitmap for a span. |
| // If this is a span of single pointer allocations, it initializes all |
| // words to pointer. If force is true, clears all bits. |
| func (s *mspan) initHeapBits(forceClear bool) { |
| if forceClear || s.spanclass.noscan() { |
| // Set all the pointer bits to zero. We do this once |
| // when the span is allocated so we don't have to do it |
| // for each object allocation. |
| base := s.base() |
| size := s.npages * pageSize |
| h := writeHeapBitsForAddr(base) |
| h.flush(base, size) |
| return |
| } |
| isPtrs := goarch.PtrSize == 8 && s.elemsize == goarch.PtrSize |
| if !isPtrs { |
| return // nothing to do |
| } |
| h := writeHeapBitsForAddr(s.base()) |
| size := s.npages * pageSize |
| nptrs := size / goarch.PtrSize |
| for i := uintptr(0); i < nptrs; i += ptrBits { |
| h = h.write(^uintptr(0), ptrBits) |
| } |
| h.flush(s.base(), size) |
| } |
| |
| type writeHeapBits struct { |
| addr uintptr // address that the low bit of mask represents the pointer state of. |
| mask uintptr // some pointer bits starting at the address addr. |
| valid uintptr // number of bits in buf that are valid (including low) |
| low uintptr // number of low-order bits to not overwrite |
| } |
| |
| func writeHeapBitsForAddr(addr uintptr) (h writeHeapBits) { |
| // We start writing bits maybe in the middle of a heap bitmap word. |
| // Remember how many bits into the word we started, so we can be sure |
| // not to overwrite the previous bits. |
| h.low = addr / goarch.PtrSize % ptrBits |
| |
| // round down to heap word that starts the bitmap word. |
| h.addr = addr - h.low*goarch.PtrSize |
| |
| // We don't have any bits yet. |
| h.mask = 0 |
| h.valid = h.low |
| |
| return |
| } |
| |
| // write appends the pointerness of the next valid pointer slots |
| // using the low valid bits of bits. 1=pointer, 0=scalar. |
| func (h writeHeapBits) write(bits, valid uintptr) writeHeapBits { |
| if h.valid+valid <= ptrBits { |
| // Fast path - just accumulate the bits. |
| h.mask |= bits << h.valid |
| h.valid += valid |
| return h |
| } |
| // Too many bits to fit in this word. Write the current word |
| // out and move on to the next word. |
| |
| data := h.mask | bits<<h.valid // mask for this word |
| h.mask = bits >> (ptrBits - h.valid) // leftover for next word |
| h.valid += valid - ptrBits // have h.valid+valid bits, writing ptrBits of them |
| |
| // Flush mask to the memory bitmap. |
| // TODO: figure out how to cache arena lookup. |
| ai := arenaIndex(h.addr) |
| ha := mheap_.arenas[ai.l1()][ai.l2()] |
| idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords |
| m := uintptr(1)<<h.low - 1 |
| ha.bitmap[idx] = ha.bitmap[idx]&m | data |
| // Note: no synchronization required for this write because |
| // the allocator has exclusive access to the page, and the bitmap |
| // entries are all for a single page. Also, visibility of these |
| // writes is guaranteed by the publication barrier in mallocgc. |
| |
| // Clear noMorePtrs bit, since we're going to be writing bits |
| // into the following word. |
| ha.noMorePtrs[idx/8] &^= uint8(1) << (idx % 8) |
| // Note: same as above |
| |
| // Move to next word of bitmap. |
| h.addr += ptrBits * goarch.PtrSize |
| h.low = 0 |
| return h |
| } |
| |
| // Add padding of size bytes. |
| func (h writeHeapBits) pad(size uintptr) writeHeapBits { |
| if size == 0 { |
| return h |
| } |
| words := size / goarch.PtrSize |
| for words > ptrBits { |
| h = h.write(0, ptrBits) |
| words -= ptrBits |
| } |
| return h.write(0, words) |
| } |
| |
| // Flush the bits that have been written, and add zeros as needed |
| // to cover the full object [addr, addr+size). |
| func (h writeHeapBits) flush(addr, size uintptr) { |
| // zeros counts the number of bits needed to represent the object minus the |
| // number of bits we've already written. This is the number of 0 bits |
| // that need to be added. |
| zeros := (addr+size-h.addr)/goarch.PtrSize - h.valid |
| |
| // Add zero bits up to the bitmap word boundary |
| if zeros > 0 { |
| z := ptrBits - h.valid |
| if z > zeros { |
| z = zeros |
| } |
| h.valid += z |
| zeros -= z |
| } |
| |
| // Find word in bitmap that we're going to write. |
| ai := arenaIndex(h.addr) |
| ha := mheap_.arenas[ai.l1()][ai.l2()] |
| idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords |
| |
| // Write remaining bits. |
| if h.valid != h.low { |
| m := uintptr(1)<<h.low - 1 // don't clear existing bits below "low" |
| m |= ^(uintptr(1)<<h.valid - 1) // don't clear existing bits above "valid" |
| ha.bitmap[idx] = ha.bitmap[idx]&m | h.mask |
| } |
| if zeros == 0 { |
| return |
| } |
| |
| // Record in the noMorePtrs map that there won't be any more 1 bits, |
| // so readers can stop early. |
| ha.noMorePtrs[idx/8] |= uint8(1) << (idx % 8) |
| |
| // Advance to next bitmap word. |
| h.addr += ptrBits * goarch.PtrSize |
| |
| // Continue on writing zeros for the rest of the object. |
| // For standard use of the ptr bits this is not required, as |
| // the bits are read from the beginning of the object. Some uses, |
| // like noscan spans, oblets, bulk write barriers, and cgocheck, might |
| // start mid-object, so these writes are still required. |
| for { |
| // Write zero bits. |
| ai := arenaIndex(h.addr) |
| ha := mheap_.arenas[ai.l1()][ai.l2()] |
| idx := h.addr / (ptrBits * goarch.PtrSize) % heapArenaBitmapWords |
| if zeros < ptrBits { |
| ha.bitmap[idx] &^= uintptr(1)<<zeros - 1 |
| break |
| } else if zeros == ptrBits { |
| ha.bitmap[idx] = 0 |
| break |
| } else { |
| ha.bitmap[idx] = 0 |
| zeros -= ptrBits |
| } |
| ha.noMorePtrs[idx/8] |= uint8(1) << (idx % 8) |
| h.addr += ptrBits * goarch.PtrSize |
| } |
| } |
| |
| // heapBitsSetType records that the new allocation [x, x+size) |
| // holds in [x, x+dataSize) one or more values of type typ. |
| // (The number of values is given by dataSize / typ.Size.) |
| // If dataSize < size, the fragment [x+dataSize, x+size) is |
| // recorded as non-pointer data. |
| // It is known that the type has pointers somewhere; |
| // malloc does not call heapBitsSetType when there are no pointers, |
| // because all free objects are marked as noscan during |
| // heapBitsSweepSpan. |
| // |
| // There can only be one allocation from a given span active at a time, |
| // and the bitmap for a span always falls on word boundaries, |
| // so there are no write-write races for access to the heap bitmap. |
| // Hence, heapBitsSetType can access the bitmap without atomics. |
| // |
| // There can be read-write races between heapBitsSetType and things |
| // that read the heap bitmap like scanobject. However, since |
| // heapBitsSetType is only used for objects that have not yet been |
| // made reachable, readers will ignore bits being modified by this |
| // function. This does mean this function cannot transiently modify |
| // bits that belong to neighboring objects. Also, on weakly-ordered |
| // machines, callers must execute a store/store (publication) barrier |
| // between calling this function and making the object reachable. |
| func heapBitsSetType(x, size, dataSize uintptr, typ *_type) { |
| const doubleCheck = false // slow but helpful; enable to test modifications to this code |
| |
| if doubleCheck && dataSize%typ.Size_ != 0 { |
| throw("heapBitsSetType: dataSize not a multiple of typ.Size") |
| } |
| |
| if goarch.PtrSize == 8 && size == goarch.PtrSize { |
| // It's one word and it has pointers, it must be a pointer. |
| // Since all allocated one-word objects are pointers |
| // (non-pointers are aggregated into tinySize allocations), |
| // (*mspan).initHeapBits sets the pointer bits for us. |
| // Nothing to do here. |
| if doubleCheck { |
| h, addr := heapBitsForAddr(x, size).next() |
| if addr != x { |
| throw("heapBitsSetType: pointer bit missing") |
| } |
| _, addr = h.next() |
| if addr != 0 { |
| throw("heapBitsSetType: second pointer bit found") |
| } |
| } |
| return |
| } |
| |
| h := writeHeapBitsForAddr(x) |
| |
| // Handle GC program. |
| if typ.Kind_&kindGCProg != 0 { |
| // Expand the gc program into the storage we're going to use for the actual object. |
| obj := (*uint8)(unsafe.Pointer(x)) |
| n := runGCProg(addb(typ.GCData, 4), obj) |
| // Use the expanded program to set the heap bits. |
| for i := uintptr(0); true; i += typ.Size_ { |
| // Copy expanded program to heap bitmap. |
| p := obj |
| j := n |
| for j > 8 { |
| h = h.write(uintptr(*p), 8) |
| p = add1(p) |
| j -= 8 |
| } |
| h = h.write(uintptr(*p), j) |
| |
| if i+typ.Size_ == dataSize { |
| break // no padding after last element |
| } |
| |
| // Pad with zeros to the start of the next element. |
| h = h.pad(typ.Size_ - n*goarch.PtrSize) |
| } |
| |
| h.flush(x, size) |
| |
| // Erase the expanded GC program. |
| memclrNoHeapPointers(unsafe.Pointer(obj), (n+7)/8) |
| return |
| } |
| |
| // Note about sizes: |
| // |
| // typ.Size is the number of words in the object, |
| // and typ.PtrBytes is the number of words in the prefix |
| // of the object that contains pointers. That is, the final |
| // typ.Size - typ.PtrBytes words contain no pointers. |
| // This allows optimization of a common pattern where |
| // an object has a small header followed by a large scalar |
| // buffer. If we know the pointers are over, we don't have |
| // to scan the buffer's heap bitmap at all. |
| // The 1-bit ptrmasks are sized to contain only bits for |
| // the typ.PtrBytes prefix, zero padded out to a full byte |
| // of bitmap. If there is more room in the allocated object, |
| // that space is pointerless. The noMorePtrs bitmap will prevent |
| // scanning large pointerless tails of an object. |
| // |
| // Replicated copies are not as nice: if there is an array of |
| // objects with scalar tails, all but the last tail does have to |
| // be initialized, because there is no way to say "skip forward". |
| |
| ptrs := typ.PtrBytes / goarch.PtrSize |
| if typ.Size_ == dataSize { // Single element |
| if ptrs <= ptrBits { // Single small element |
| m := readUintptr(typ.GCData) |
| h = h.write(m, ptrs) |
| } else { // Single large element |
| p := typ.GCData |
| for { |
| h = h.write(readUintptr(p), ptrBits) |
| p = addb(p, ptrBits/8) |
| ptrs -= ptrBits |
| if ptrs <= ptrBits { |
| break |
| } |
| } |
| m := readUintptr(p) |
| h = h.write(m, ptrs) |
| } |
| } else { // Repeated element |
| words := typ.Size_ / goarch.PtrSize // total words, including scalar tail |
| if words <= ptrBits { // Repeated small element |
| n := dataSize / typ.Size_ |
| m := readUintptr(typ.GCData) |
| // Make larger unit to repeat |
| for words <= ptrBits/2 { |
| if n&1 != 0 { |
| h = h.write(m, words) |
| } |
| n /= 2 |
| m |= m << words |
| ptrs += words |
| words *= 2 |
| if n == 1 { |
| break |
| } |
| } |
| for n > 1 { |
| h = h.write(m, words) |
| n-- |
| } |
| h = h.write(m, ptrs) |
| } else { // Repeated large element |
| for i := uintptr(0); true; i += typ.Size_ { |
| p := typ.GCData |
| j := ptrs |
| for j > ptrBits { |
| h = h.write(readUintptr(p), ptrBits) |
| p = addb(p, ptrBits/8) |
| j -= ptrBits |
| } |
| m := readUintptr(p) |
| h = h.write(m, j) |
| if i+typ.Size_ == dataSize { |
| break // don't need the trailing nonptr bits on the last element. |
| } |
| // Pad with zeros to the start of the next element. |
| h = h.pad(typ.Size_ - typ.PtrBytes) |
| } |
| } |
| } |
| h.flush(x, size) |
| |
| if doubleCheck { |
| h := heapBitsForAddr(x, size) |
| for i := uintptr(0); i < size; i += goarch.PtrSize { |
| // Compute the pointer bit we want at offset i. |
| want := false |
| if i < dataSize { |
| off := i % typ.Size_ |
| if off < typ.PtrBytes { |
| j := off / goarch.PtrSize |
| want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0 |
| } |
| } |
| if want { |
| var addr uintptr |
| h, addr = h.next() |
| if addr != x+i { |
| throw("heapBitsSetType: pointer entry not correct") |
| } |
| } |
| } |
| if _, addr := h.next(); addr != 0 { |
| throw("heapBitsSetType: extra pointer") |
| } |
| } |
| } |
| |
| // For goexperiment.AllocHeaders |
| func heapSetType(x, dataSize uintptr, typ *_type, header **_type, span *mspan) (scanSize uintptr) { |
| return 0 |
| } |
| |
| // Testing. |
| |
| // Returns GC type info for the pointer stored in ep for testing. |
| // If ep points to the stack, only static live information will be returned |
| // (i.e. not for objects which are only dynamically live stack objects). |
| func getgcmask(ep any) (mask []byte) { |
| e := *efaceOf(&ep) |
| p := e.data |
| t := e._type |
| // data or bss |
| for _, datap := range activeModules() { |
| // data |
| if datap.data <= uintptr(p) && uintptr(p) < datap.edata { |
| bitmap := datap.gcdatamask.bytedata |
| n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_ |
| mask = make([]byte, n/goarch.PtrSize) |
| for i := uintptr(0); i < n; i += goarch.PtrSize { |
| off := (uintptr(p) + i - datap.data) / goarch.PtrSize |
| mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 |
| } |
| return |
| } |
| |
| // bss |
| if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss { |
| bitmap := datap.gcbssmask.bytedata |
| n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_ |
| mask = make([]byte, n/goarch.PtrSize) |
| for i := uintptr(0); i < n; i += goarch.PtrSize { |
| off := (uintptr(p) + i - datap.bss) / goarch.PtrSize |
| mask[i/goarch.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1 |
| } |
| return |
| } |
| } |
| |
| // heap |
| if base, s, _ := findObject(uintptr(p), 0, 0); base != 0 { |
| if s.spanclass.noscan() { |
| return nil |
| } |
| n := s.elemsize |
| hbits := heapBitsForAddr(base, n) |
| mask = make([]byte, n/goarch.PtrSize) |
| for { |
| var addr uintptr |
| if hbits, addr = hbits.next(); addr == 0 { |
| break |
| } |
| mask[(addr-base)/goarch.PtrSize] = 1 |
| } |
| // Callers expect this mask to end at the last pointer. |
| for len(mask) > 0 && mask[len(mask)-1] == 0 { |
| mask = mask[:len(mask)-1] |
| } |
| |
| // Make sure we keep ep alive. We may have stopped referencing |
| // ep's data pointer sometime before this point and it's possible |
| // for that memory to get freed. |
| KeepAlive(ep) |
| return |
| } |
| |
| // stack |
| if gp := getg(); gp.m.curg.stack.lo <= uintptr(p) && uintptr(p) < gp.m.curg.stack.hi { |
| found := false |
| var u unwinder |
| for u.initAt(gp.m.curg.sched.pc, gp.m.curg.sched.sp, 0, gp.m.curg, 0); u.valid(); u.next() { |
| if u.frame.sp <= uintptr(p) && uintptr(p) < u.frame.varp { |
| found = true |
| break |
| } |
| } |
| if found { |
| locals, _, _ := u.frame.getStackMap(false) |
| if locals.n == 0 { |
| return |
| } |
| size := uintptr(locals.n) * goarch.PtrSize |
| n := (*ptrtype)(unsafe.Pointer(t)).Elem.Size_ |
| mask = make([]byte, n/goarch.PtrSize) |
| for i := uintptr(0); i < n; i += goarch.PtrSize { |
| off := (uintptr(p) + i - u.frame.varp + size) / goarch.PtrSize |
| mask[i/goarch.PtrSize] = locals.ptrbit(off) |
| } |
| } |
| return |
| } |
| |
| // otherwise, not something the GC knows about. |
| // possibly read-only data, like malloc(0). |
| // must not have pointers |
| return |
| } |
| |
| // userArenaHeapBitsSetType is the equivalent of heapBitsSetType but for |
| // non-slice-backing-store Go values allocated in a user arena chunk. It |
| // sets up the heap bitmap for the value with type typ allocated at address ptr. |
| // base is the base address of the arena chunk. |
| func userArenaHeapBitsSetType(typ *_type, ptr unsafe.Pointer, s *mspan) { |
| base := s.base() |
| h := writeHeapBitsForAddr(uintptr(ptr)) |
| |
| // Our last allocation might have ended right at a noMorePtrs mark, |
| // which we would not have erased. We need to erase that mark here, |
| // because we're going to start adding new heap bitmap bits. |
| // We only need to clear one mark, because below we make sure to |
| // pad out the bits with zeroes and only write one noMorePtrs bit |
| // for each new object. |
| // (This is only necessary at noMorePtrs boundaries, as noMorePtrs |
| // marks within an object allocated with newAt will be erased by |
| // the normal writeHeapBitsForAddr mechanism.) |
| // |
| // Note that we skip this if this is the first allocation in the |
| // arena because there's definitely no previous noMorePtrs mark |
| // (in fact, we *must* do this, because we're going to try to back |
| // up a pointer to fix this up). |
| if uintptr(ptr)%(8*goarch.PtrSize*goarch.PtrSize) == 0 && uintptr(ptr) != base { |
| // Back up one pointer and rewrite that pointer. That will |
| // cause the writeHeapBits implementation to clear the |
| // noMorePtrs bit we need to clear. |
| r := heapBitsForAddr(uintptr(ptr)-goarch.PtrSize, goarch.PtrSize) |
| _, p := r.next() |
| b := uintptr(0) |
| if p == uintptr(ptr)-goarch.PtrSize { |
| b = 1 |
| } |
| h = writeHeapBitsForAddr(uintptr(ptr) - goarch.PtrSize) |
| h = h.write(b, 1) |
| } |
| |
| p := typ.GCData // start of 1-bit pointer mask (or GC program) |
| var gcProgBits uintptr |
| if typ.Kind_&kindGCProg != 0 { |
| // Expand gc program, using the object itself for storage. |
| gcProgBits = runGCProg(addb(p, 4), (*byte)(ptr)) |
| p = (*byte)(ptr) |
| } |
| nb := typ.PtrBytes / goarch.PtrSize |
| |
| for i := uintptr(0); i < nb; i += ptrBits { |
| k := nb - i |
| if k > ptrBits { |
| k = ptrBits |
| } |
| h = h.write(readUintptr(addb(p, i/8)), k) |
| } |
| // Note: we call pad here to ensure we emit explicit 0 bits |
| // for the pointerless tail of the object. This ensures that |
| // there's only a single noMorePtrs mark for the next object |
| // to clear. We don't need to do this to clear stale noMorePtrs |
| // markers from previous uses because arena chunk pointer bitmaps |
| // are always fully cleared when reused. |
| h = h.pad(typ.Size_ - typ.PtrBytes) |
| h.flush(uintptr(ptr), typ.Size_) |
| |
| if typ.Kind_&kindGCProg != 0 { |
| // Zero out temporary ptrmask buffer inside object. |
| memclrNoHeapPointers(ptr, (gcProgBits+7)/8) |
| } |
| |
| // Double-check that the bitmap was written out correctly. |
| // |
| // Derived from heapBitsSetType. |
| const doubleCheck = false |
| if doubleCheck { |
| size := typ.Size_ |
| x := uintptr(ptr) |
| h := heapBitsForAddr(x, size) |
| for i := uintptr(0); i < size; i += goarch.PtrSize { |
| // Compute the pointer bit we want at offset i. |
| want := false |
| off := i % typ.Size_ |
| if off < typ.PtrBytes { |
| j := off / goarch.PtrSize |
| want = *addb(typ.GCData, j/8)>>(j%8)&1 != 0 |
| } |
| if want { |
| var addr uintptr |
| h, addr = h.next() |
| if addr != x+i { |
| throw("userArenaHeapBitsSetType: pointer entry not correct") |
| } |
| } |
| } |
| if _, addr := h.next(); addr != 0 { |
| throw("userArenaHeapBitsSetType: extra pointer") |
| } |
| } |
| } |
| |
| // For goexperiment.AllocHeaders. |
| type typePointers struct { |
| addr uintptr |
| } |
| |
| // For goexperiment.AllocHeaders. |
| // |
| //go:nosplit |
| func (span *mspan) typePointersOf(addr, size uintptr) typePointers { |
| panic("not implemented") |
| } |
| |
| // For goexperiment.AllocHeaders. |
| // |
| //go:nosplit |
| func (span *mspan) typePointersOfUnchecked(addr uintptr) typePointers { |
| panic("not implemented") |
| } |
| |
| // For goexperiment.AllocHeaders. |
| // |
| //go:nosplit |
| func (tp typePointers) nextFast() (typePointers, uintptr) { |
| panic("not implemented") |
| } |
| |
| // For goexperiment.AllocHeaders. |
| // |
| //go:nosplit |
| func (tp typePointers) next(limit uintptr) (typePointers, uintptr) { |
| panic("not implemented") |
| } |
| |
| // For goexperiment.AllocHeaders. |
| // |
| //go:nosplit |
| func (tp typePointers) fastForward(n, limit uintptr) typePointers { |
| panic("not implemented") |
| } |
| |
| // For goexperiment.AllocHeaders, to pass TestIntendedInlining. |
| func (s *mspan) writeUserArenaHeapBits() { |
| panic("not implemented") |
| } |
| |
| // For goexperiment.AllocHeaders, to pass TestIntendedInlining. |
| func heapBitsSlice() { |
| panic("not implemented") |
| } |