blob: 6b787609b9994e4a5b12b48de3e93e9e829ec7ab [file] [log] [blame]
// Copyright 2019 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
#include "textflag.h"
// This is a port of the s390x asm implementation.
// to ppc64le.
// Some changes were needed due to differences in
// the Go opcodes and/or available instructions
// between s390x and ppc64le.
// 1. There were operand order differences in the
// VSUBUQM, VSUBCUQ, and VSEL instructions.
// 2. ppc64 does not have a multiply high and low
// like s390x, so those were implemented using
// macros to compute the equivalent values.
// 3. The LVX, STVX instructions on ppc64 require
// 16 byte alignment of the data. To avoid that
// requirement, data is loaded using LXVD2X and
// STXVD2X with VPERM to reorder bytes correctly.
// I have identified some areas where I believe
// changes would be needed to make this work for big
// endian; however additional changes beyond what I
// have noted are most likely needed to make it work.
// - The string used with VPERM to swap the byte order
// for loads and stores.
// - The constants that are loaded from CPOOL.
//
// The following constants are defined in an order
// that is correct for use with LXVD2X/STXVD2X
// on little endian.
DATA p256<>+0x00(SB)/8, $0xffffffff00000001 // P256
DATA p256<>+0x08(SB)/8, $0x0000000000000000 // P256
DATA p256<>+0x10(SB)/8, $0x00000000ffffffff // P256
DATA p256<>+0x18(SB)/8, $0xffffffffffffffff // P256
DATA p256<>+0x20(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0
DATA p256<>+0x28(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0
DATA p256<>+0x30(SB)/8, $0x0000000010111213 // SEL 0 d1 d0 0
DATA p256<>+0x38(SB)/8, $0x1415161700000000 // SEL 0 d1 d0 0
DATA p256<>+0x40(SB)/8, $0x18191a1b1c1d1e1f // SEL d1 d0 d1 d0
DATA p256<>+0x48(SB)/8, $0x18191a1b1c1d1e1f // SEL d1 d0 d1 d0
DATA p256mul<>+0x00(SB)/8, $0x00000000ffffffff // P256 original
DATA p256mul<>+0x08(SB)/8, $0xffffffffffffffff // P256
DATA p256mul<>+0x10(SB)/8, $0xffffffff00000001 // P256 original
DATA p256mul<>+0x18(SB)/8, $0x0000000000000000 // P256
DATA p256mul<>+0x20(SB)/8, $0x1c1d1e1f00000000 // SEL d0 0 0 d0
DATA p256mul<>+0x28(SB)/8, $0x000000001c1d1e1f // SEL d0 0 0 d0
DATA p256mul<>+0x30(SB)/8, $0x0001020304050607 // SEL d0 0 d1 d0
DATA p256mul<>+0x38(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL d0 0 d1 d0
DATA p256mul<>+0x40(SB)/8, $0x040506071c1d1e1f // SEL 0 d1 d0 d1
DATA p256mul<>+0x48(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL 0 d1 d0 d1
DATA p256mul<>+0x50(SB)/8, $0x0405060704050607 // SEL 0 0 d1 d0
DATA p256mul<>+0x58(SB)/8, $0x1c1d1e1f0c0d0e0f // SEL 0 0 d1 d0
DATA p256mul<>+0x60(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0
DATA p256mul<>+0x68(SB)/8, $0x0c0d0e0f1c1d1e1f // SEL d1 d0 d1 d0
DATA p256mul<>+0x70(SB)/8, $0x141516170c0d0e0f // SEL 0 d1 d0 0
DATA p256mul<>+0x78(SB)/8, $0x1c1d1e1f14151617 // SEL 0 d1 d0 0
DATA p256mul<>+0x80(SB)/8, $0xffffffff00000000 // (1*2^256)%P256
DATA p256mul<>+0x88(SB)/8, $0x0000000000000001 // (1*2^256)%P256
DATA p256mul<>+0x90(SB)/8, $0x00000000fffffffe // (1*2^256)%P256
DATA p256mul<>+0x98(SB)/8, $0xffffffffffffffff // (1*2^256)%P256
// External declarations for constants
GLOBL p256ord<>(SB), 8, $32
GLOBL p256<>(SB), 8, $80
GLOBL p256mul<>(SB), 8, $160
// The following macros are used to implement the ppc64le
// equivalent function from the corresponding s390x
// instruction for vector multiply high, low, and add,
// since there aren't exact equivalent instructions.
// The corresponding s390x instructions appear in the
// comments.
// Implementation for big endian would have to be
// investigated, I think it would be different.
//
//
// Vector multiply word
//
// VMLF x0, x1, out_low
// VMLHF x0, x1, out_hi
#define VMULT(x1, x2, out_low, out_hi) \
VMULEUW x1, x2, TMP1; \
VMULOUW x1, x2, TMP2; \
VMRGEW TMP1, TMP2, out_hi; \
VMRGOW TMP1, TMP2, out_low
//
// Vector multiply add word
//
// VMALF x0, x1, y, out_low
// VMALHF x0, x1, y, out_hi
#define VMULT_ADD(x1, x2, y, one, out_low, out_hi) \
VMULEUW y, one, TMP2; \
VMULOUW y, one, TMP1; \
VMULEUW x1, x2, out_low; \
VMULOUW x1, x2, out_hi; \
VADDUDM TMP2, out_low, TMP2; \
VADDUDM TMP1, out_hi, TMP1; \
VMRGOW TMP2, TMP1, out_low; \
VMRGEW TMP2, TMP1, out_hi
#define res_ptr R3
#define a_ptr R4
#undef res_ptr
#undef a_ptr
#define P1ptr R3
#define CPOOL R7
#define Y1L V0
#define Y1H V1
#define T1L V2
#define T1H V3
#define PL V30
#define PH V31
#define CAR1 V6
// func p256NegCond(val *p256Point, cond int)
TEXT ·p256NegCond(SB), NOSPLIT, $0-16
MOVD val+0(FP), P1ptr
MOVD $16, R16
MOVD cond+8(FP), R6
CMP $0, R6
BC 12, 2, LR // just return if cond == 0
MOVD $p256mul<>+0x00(SB), CPOOL
LXVD2X (P1ptr)(R0), Y1L
LXVD2X (P1ptr)(R16), Y1H
XXPERMDI Y1H, Y1H, $2, Y1H
XXPERMDI Y1L, Y1L, $2, Y1L
LXVD2X (CPOOL)(R0), PL
LXVD2X (CPOOL)(R16), PH
VSUBCUQ PL, Y1L, CAR1 // subtract part2 giving carry
VSUBUQM PL, Y1L, T1L // subtract part2 giving result
VSUBEUQM PH, Y1H, CAR1, T1H // subtract part1 using carry from part2
XXPERMDI T1H, T1H, $2, T1H
XXPERMDI T1L, T1L, $2, T1L
STXVD2X T1L, (R0+P1ptr)
STXVD2X T1H, (R16+P1ptr)
RET
#undef P1ptr
#undef CPOOL
#undef Y1L
#undef Y1H
#undef T1L
#undef T1H
#undef PL
#undef PH
#undef CAR1
#define P3ptr R3
#define P1ptr R4
#define P2ptr R5
#define X1L V0
#define X1H V1
#define Y1L V2
#define Y1H V3
#define Z1L V4
#define Z1H V5
#define X2L V6
#define X2H V7
#define Y2L V8
#define Y2H V9
#define Z2L V10
#define Z2H V11
#define SEL V12
#define ZER V13
// This function uses LXVD2X and STXVD2X to avoid the
// data alignment requirement for LVX, STVX. Since
// this code is just moving bytes and not doing arithmetic,
// order of the bytes doesn't matter.
//
// func p256MovCond(res, a, b *p256Point, cond int)
TEXT ·p256MovCond(SB), NOSPLIT, $0-32
MOVD res+0(FP), P3ptr
MOVD a+8(FP), P1ptr
MOVD b+16(FP), P2ptr
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $56, R21
MOVD $64, R19
MOVD $80, R20
// cond is R1 + 24 (cond offset) + 32
LXVDSX (R1)(R21), SEL
VSPLTISB $0, ZER
// SEL controls whether to store a or b
VCMPEQUD SEL, ZER, SEL
LXVD2X (P1ptr+R0), X1H
LXVD2X (P1ptr+R16), X1L
LXVD2X (P1ptr+R17), Y1H
LXVD2X (P1ptr+R18), Y1L
LXVD2X (P1ptr+R19), Z1H
LXVD2X (P1ptr+R20), Z1L
LXVD2X (P2ptr+R0), X2H
LXVD2X (P2ptr+R16), X2L
LXVD2X (P2ptr+R17), Y2H
LXVD2X (P2ptr+R18), Y2L
LXVD2X (P2ptr+R19), Z2H
LXVD2X (P2ptr+R20), Z2L
VSEL X1H, X2H, SEL, X1H
VSEL X1L, X2L, SEL, X1L
VSEL Y1H, Y2H, SEL, Y1H
VSEL Y1L, Y2L, SEL, Y1L
VSEL Z1H, Z2H, SEL, Z1H
VSEL Z1L, Z2L, SEL, Z1L
STXVD2X X1H, (P3ptr+R0)
STXVD2X X1L, (P3ptr+R16)
STXVD2X Y1H, (P3ptr+R17)
STXVD2X Y1L, (P3ptr+R18)
STXVD2X Z1H, (P3ptr+R19)
STXVD2X Z1L, (P3ptr+R20)
RET
#undef P3ptr
#undef P1ptr
#undef P2ptr
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef X2L
#undef X2H
#undef Y2L
#undef Y2H
#undef Z2L
#undef Z2H
#undef SEL
#undef ZER
#define P3ptr R3
#define P1ptr R4
#define COUNT R5
#define X1L V0
#define X1H V1
#define Y1L V2
#define Y1H V3
#define Z1L V4
#define Z1H V5
#define X2L V6
#define X2H V7
#define Y2L V8
#define Y2H V9
#define Z2L V10
#define Z2H V11
#define ONE V18
#define IDX V19
#define SEL1 V20
#define SEL2 V21
// func p256Select(point *p256Point, table *p256Table, idx int)
TEXT ·p256Select(SB), NOSPLIT, $0-24
MOVD res+0(FP), P3ptr
MOVD table+8(FP), P1ptr
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
LXVDSX (R1)(R18), SEL1 // VLREPG idx+32(FP), SEL1
VSPLTB $7, SEL1, IDX // splat byte
VSPLTISB $1, ONE // VREPIB $1, ONE
VSPLTISB $1, SEL2 // VREPIB $1, SEL2
MOVD $17, COUNT
MOVD COUNT, CTR // set up ctr
VSPLTISB $0, X1H // VZERO X1H
VSPLTISB $0, X1L // VZERO X1L
VSPLTISB $0, Y1H // VZERO Y1H
VSPLTISB $0, Y1L // VZERO Y1L
VSPLTISB $0, Z1H // VZERO Z1H
VSPLTISB $0, Z1L // VZERO Z1L
loop_select:
// LVXD2X is used here since data alignment doesn't
// matter.
LXVD2X (P1ptr+R0), X2H
LXVD2X (P1ptr+R16), X2L
LXVD2X (P1ptr+R17), Y2H
LXVD2X (P1ptr+R18), Y2L
LXVD2X (P1ptr+R19), Z2H
LXVD2X (P1ptr+R20), Z2L
VCMPEQUD SEL2, IDX, SEL1 // VCEQG SEL2, IDX, SEL1 OK
// This will result in SEL1 being all 0s or 1s, meaning
// the result is either X1L or X2L, no individual byte
// selection.
VSEL X1L, X2L, SEL1, X1L
VSEL X1H, X2H, SEL1, X1H
VSEL Y1L, Y2L, SEL1, Y1L
VSEL Y1H, Y2H, SEL1, Y1H
VSEL Z1L, Z2L, SEL1, Z1L
VSEL Z1H, Z2H, SEL1, Z1H
// Add 1 to all bytes in SEL2
VADDUBM SEL2, ONE, SEL2 // VAB SEL2, ONE, SEL2 OK
ADD $96, P1ptr
BDNZ loop_select
// STXVD2X is used here so that alignment doesn't
// need to be verified. Since values were loaded
// using LXVD2X this is OK.
STXVD2X X1H, (P3ptr+R0)
STXVD2X X1L, (P3ptr+R16)
STXVD2X Y1H, (P3ptr+R17)
STXVD2X Y1L, (P3ptr+R18)
STXVD2X Z1H, (P3ptr+R19)
STXVD2X Z1L, (P3ptr+R20)
RET
#undef P3ptr
#undef P1ptr
#undef COUNT
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef X2L
#undef X2H
#undef Y2L
#undef Y2H
#undef Z2L
#undef Z2H
#undef ONE
#undef IDX
#undef SEL1
#undef SEL2
// The following functions all reverse the byte order.
//func p256BigToLittle(res *p256Element, in *[32]byte)
TEXT ·p256BigToLittle(SB), NOSPLIT, $0-16
MOVD res+0(FP), R3
MOVD in+8(FP), R4
BR p256InternalEndianSwap<>(SB)
//func p256LittleToBig(res *[32]byte, in *p256Element)
TEXT ·p256LittleToBig(SB), NOSPLIT, $0-16
MOVD res+0(FP), R3
MOVD in+8(FP), R4
BR p256InternalEndianSwap<>(SB)
//func p256OrdBigToLittle(res *p256OrdElement, in *[32]byte)
TEXT ·p256OrdBigToLittle(SB), NOSPLIT, $0-16
MOVD res+0(FP), R3
MOVD in+8(FP), R4
BR p256InternalEndianSwap<>(SB)
//func p256OrdLittleToBig(res *[32]byte, in *p256OrdElement)
TEXT ·p256OrdLittleToBig(SB), NOSPLIT, $0-16
MOVD res+0(FP), R3
MOVD in+8(FP), R4
BR p256InternalEndianSwap<>(SB)
TEXT p256InternalEndianSwap<>(SB), NOSPLIT, $0-0
// Index registers needed for BR movs
MOVD $8, R9
MOVD $16, R10
MOVD $24, R14
MOVDBR (R0)(R4), R5
MOVDBR (R9)(R4), R6
MOVDBR (R10)(R4), R7
MOVDBR (R14)(R4), R8
MOVD R8, 0(R3)
MOVD R7, 8(R3)
MOVD R6, 16(R3)
MOVD R5, 24(R3)
RET
#define P3ptr R3
#define P1ptr R4
#define COUNT R5
#define X1L V0
#define X1H V1
#define Y1L V2
#define Y1H V3
#define Z1L V4
#define Z1H V5
#define X2L V6
#define X2H V7
#define Y2L V8
#define Y2H V9
#define Z2L V10
#define Z2H V11
#define ONE V18
#define IDX V19
#define SEL1 V20
#define SEL2 V21
// func p256SelectAffine(res *p256AffinePoint, table *p256AffineTable, idx int)
TEXT ·p256SelectAffine(SB), NOSPLIT, $0-24
MOVD res+0(FP), P3ptr
MOVD table+8(FP), P1ptr
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
LXVDSX (R1)(R18), SEL1
VSPLTB $7, SEL1, IDX // splat byte
VSPLTISB $1, ONE // Vector with byte 1s
VSPLTISB $1, SEL2 // Vector with byte 1s
MOVD $64, COUNT
MOVD COUNT, CTR // loop count
VSPLTISB $0, X1H // VZERO X1H
VSPLTISB $0, X1L // VZERO X1L
VSPLTISB $0, Y1H // VZERO Y1H
VSPLTISB $0, Y1L // VZERO Y1L
loop_select:
LXVD2X (P1ptr+R0), X2H
LXVD2X (P1ptr+R16), X2L
LXVD2X (P1ptr+R17), Y2H
LXVD2X (P1ptr+R18), Y2L
VCMPEQUD SEL2, IDX, SEL1 // Compare against idx
VSEL X1L, X2L, SEL1, X1L // Select if idx matched
VSEL X1H, X2H, SEL1, X1H
VSEL Y1L, Y2L, SEL1, Y1L
VSEL Y1H, Y2H, SEL1, Y1H
VADDUBM SEL2, ONE, SEL2 // Increment SEL2 bytes by 1
ADD $64, P1ptr // Next chunk
BDNZ loop_select
STXVD2X X1H, (P3ptr+R0)
STXVD2X X1L, (P3ptr+R16)
STXVD2X Y1H, (P3ptr+R17)
STXVD2X Y1L, (P3ptr+R18)
RET
#undef P3ptr
#undef P1ptr
#undef COUNT
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef X2L
#undef X2H
#undef Y2L
#undef Y2H
#undef Z2L
#undef Z2H
#undef ONE
#undef IDX
#undef SEL1
#undef SEL2
#define res_ptr R3
#define x_ptr R4
#define CPOOL R7
#define T0 V0
#define T1 V1
#define T2 V2
#define TT0 V3
#define TT1 V4
#define ZER V6
#define SEL1 V7
#define SEL2 V8
#define CAR1 V9
#define CAR2 V10
#define RED1 V11
#define RED2 V12
#define PL V13
#define PH V14
// func p256FromMont(res, in *p256Element)
TEXT ·p256FromMont(SB), NOSPLIT, $0-16
MOVD res+0(FP), res_ptr
MOVD in+8(FP), x_ptr
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $p256<>+0x00(SB), CPOOL
VSPLTISB $0, T2 // VZERO T2
VSPLTISB $0, ZER // VZERO ZER
// Constants are defined so that the LXVD2X is correct
LXVD2X (CPOOL+R0), PH
LXVD2X (CPOOL+R16), PL
// VPERM byte selections
LXVD2X (CPOOL+R18), SEL2
LXVD2X (CPOOL+R19), SEL1
LXVD2X (R16)(x_ptr), T1
LXVD2X (R0)(x_ptr), T0
// Put in true little endian order
XXPERMDI T0, T0, $2, T0
XXPERMDI T1, T1, $2, T1
// First round
VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0
VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0
VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// Second round
VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0
VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0
VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// Third round
VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0
VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0
VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// Last round
VPERM T1, T0, SEL1, RED2 // d1 d0 d1 d0
VPERM ZER, RED2, SEL2, RED1 // 0 d1 d0 0
VSUBUQM RED2, RED1, RED2 // VSQ RED1, RED2, RED2 // Guaranteed not to underflow
VSLDOI $8, T1, T0, T0 // VSLDB $8, T1, T0, T0
VSLDOI $8, T2, T1, T1 // VSLDB $8, T2, T1, T1
VADDCUQ T0, RED1, CAR1 // VACCQ T0, RED1, CAR1
VADDUQM T0, RED1, T0 // VAQ T0, RED1, T0
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ T1, RED2, CAR1, CAR2
VADDEUQM T1, RED2, CAR1, T1 // VACQ T1, RED2, CAR1, T1
VADDUQM T2, CAR2, T2 // VAQ T2, CAR2, T2
// ---------------------------------------------------
VSUBCUQ T0, PL, CAR1 // VSCBIQ PL, T0, CAR1
VSUBUQM T0, PL, TT0 // VSQ PL, T0, TT0
VSUBECUQ T1, PH, CAR1, CAR2 // VSBCBIQ T1, PH, CAR1, CAR2
VSUBEUQM T1, PH, CAR1, TT1 // VSBIQ T1, PH, CAR1, TT1
VSUBEUQM T2, ZER, CAR2, T2 // VSBIQ T2, ZER, CAR2, T2
VSEL TT0, T0, T2, T0
VSEL TT1, T1, T2, T1
// Reorder the bytes so STXVD2X can be used.
// TT0, TT1 used for VPERM result in case
// the caller expects T0, T1 to be good.
XXPERMDI T0, T0, $2, TT0
XXPERMDI T1, T1, $2, TT1
STXVD2X TT0, (R0)(res_ptr)
STXVD2X TT1, (R16)(res_ptr)
RET
#undef res_ptr
#undef x_ptr
#undef CPOOL
#undef T0
#undef T1
#undef T2
#undef TT0
#undef TT1
#undef ZER
#undef SEL1
#undef SEL2
#undef CAR1
#undef CAR2
#undef RED1
#undef RED2
#undef PL
#undef PH
// ---------------------------------------
// p256MulInternal
// V0-V3 V30,V31 - Not Modified
// V4-V15 V27-V29 - Volatile
#define CPOOL R7
// Parameters
#define X0 V0 // Not modified
#define X1 V1 // Not modified
#define Y0 V2 // Not modified
#define Y1 V3 // Not modified
#define T0 V4 // Result
#define T1 V5 // Result
#define P0 V30 // Not modified
#define P1 V31 // Not modified
// Temporaries: lots of reused vector regs
#define YDIG V6 // Overloaded with CAR2
#define ADD1H V7 // Overloaded with ADD3H
#define ADD2H V8 // Overloaded with ADD4H
#define ADD3 V9 // Overloaded with SEL2,SEL5
#define ADD4 V10 // Overloaded with SEL3,SEL6
#define RED1 V11 // Overloaded with CAR2
#define RED2 V12
#define RED3 V13 // Overloaded with SEL1
#define T2 V14
// Overloaded temporaries
#define ADD1 V4 // Overloaded with T0
#define ADD2 V5 // Overloaded with T1
#define ADD3H V7 // Overloaded with ADD1H
#define ADD4H V8 // Overloaded with ADD2H
#define ZER V28 // Overloaded with TMP1
#define CAR1 V6 // Overloaded with YDIG
#define CAR2 V11 // Overloaded with RED1
// Constant Selects
#define SEL1 V13 // Overloaded with RED3
#define SEL2 V9 // Overloaded with ADD3,SEL5
#define SEL3 V10 // Overloaded with ADD4,SEL6
#define SEL4 V6 // Overloaded with YDIG,CAR1
#define SEL5 V9 // Overloaded with ADD3,SEL2
#define SEL6 V10 // Overloaded with ADD4,SEL3
// TMP1, TMP2 used in
// VMULT macros
#define TMP1 V13 // Overloaded with RED3
#define TMP2 V27
#define ONE V29 // 1s splatted by word
/* *
* To follow the flow of bits, for your own sanity a stiff drink, need you shall.
* Of a single round, a 'helpful' picture, here is. Meaning, column position has.
* With you, SIMD be...
*
* +--------+--------+
* +--------| RED2 | RED1 |
* | +--------+--------+
* | ---+--------+--------+
* | +---- T2| T1 | T0 |--+
* | | ---+--------+--------+ |
* | | |
* | | ======================= |
* | | |
* | | +--------+--------+<-+
* | +-------| ADD2 | ADD1 |--|-----+
* | | +--------+--------+ | |
* | | +--------+--------+<---+ |
* | | | ADD2H | ADD1H |--+ |
* | | +--------+--------+ | |
* | | +--------+--------+<-+ |
* | | | ADD4 | ADD3 |--|-+ |
* | | +--------+--------+ | | |
* | | +--------+--------+<---+ | |
* | | | ADD4H | ADD3H |------|-+ |(+vzero)
* | | +--------+--------+ | | V
* | | ------------------------ | | +--------+
* | | | | | RED3 | [d0 0 0 d0]
* | | | | +--------+
* | +---->+--------+--------+ | | |
* (T2[1w]||ADD2[4w]||ADD1[3w]) +--------| T1 | T0 | | | |
* | +--------+--------+ | | |
* +---->---+--------+--------+ | | |
* T2| T1 | T0 |----+ | |
* ---+--------+--------+ | | |
* ---+--------+--------+<---+ | |
* +--- T2| T1 | T0 |----------+
* | ---+--------+--------+ | |
* | +--------+--------+<-------------+
* | | RED2 | RED1 |-----+ | | [0 d1 d0 d1] [d0 0 d1 d0]
* | +--------+--------+ | | |
* | +--------+<----------------------+
* | | RED3 |--------------+ | [0 0 d1 d0]
* | +--------+ | |
* +--->+--------+--------+ | |
* | T1 | T0 |--------+
* +--------+--------+ | |
* --------------------------- | |
* | |
* +--------+--------+<----+ |
* | RED2 | RED1 | |
* +--------+--------+ |
* ---+--------+--------+<-------+
* T2| T1 | T0 | (H1P-H1P-H00RRAY!)
* ---+--------+--------+
*
* *Mi obra de arte de siglo XXI @vpaprots
*
*
* First group is special, doesn't get the two inputs:
* +--------+--------+<-+
* +-------| ADD2 | ADD1 |--|-----+
* | +--------+--------+ | |
* | +--------+--------+<---+ |
* | | ADD2H | ADD1H |--+ |
* | +--------+--------+ | |
* | +--------+--------+<-+ |
* | | ADD4 | ADD3 |--|-+ |
* | +--------+--------+ | | |
* | +--------+--------+<---+ | |
* | | ADD4H | ADD3H |------|-+ |(+vzero)
* | +--------+--------+ | | V
* | ------------------------ | | +--------+
* | | | | RED3 | [d0 0 0 d0]
* | | | +--------+
* +---->+--------+--------+ | | |
* (T2[1w]||ADD2[4w]||ADD1[3w]) | T1 | T0 |----+ | |
* +--------+--------+ | | |
* ---+--------+--------+<---+ | |
* +--- T2| T1 | T0 |----------+
* | ---+--------+--------+ | |
* | +--------+--------+<-------------+
* | | RED2 | RED1 |-----+ | | [0 d1 d0 d1] [d0 0 d1 d0]
* | +--------+--------+ | | |
* | +--------+<----------------------+
* | | RED3 |--------------+ | [0 0 d1 d0]
* | +--------+ | |
* +--->+--------+--------+ | |
* | T1 | T0 |--------+
* +--------+--------+ | |
* --------------------------- | |
* | |
* +--------+--------+<----+ |
* | RED2 | RED1 | |
* +--------+--------+ |
* ---+--------+--------+<-------+
* T2| T1 | T0 | (H1P-H1P-H00RRAY!)
* ---+--------+--------+
*
* Last 'group' needs to RED2||RED1 shifted less
*/
TEXT p256MulInternal<>(SB), NOSPLIT, $0-16
// CPOOL loaded from caller
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
MOVD $96, R21
MOVD $112, R22
// ---------------------------------------------------
VSPLTW $3, Y0, YDIG // VREPF Y0 is input
// VMLHF X0, YDIG, ADD1H
// VMLHF X1, YDIG, ADD2H
// VMLF X0, YDIG, ADD1
// VMLF X1, YDIG, ADD2
//
VMULT(X0, YDIG, ADD1, ADD1H)
VMULT(X1, YDIG, ADD2, ADD2H)
VSPLTISW $1, ONE
VSPLTW $2, Y0, YDIG // VREPF
// VMALF X0, YDIG, ADD1H, ADD3
// VMALF X1, YDIG, ADD2H, ADD4
// VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free
// VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free
VMULT_ADD(X0, YDIG, ADD1H, ONE, ADD3, ADD3H)
VMULT_ADD(X1, YDIG, ADD2H, ONE, ADD4, ADD4H)
LXVD2X (R17)(CPOOL), SEL1
VSPLTISB $0, ZER // VZERO ZER
VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0]
VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free // VSLDB
VSLDOI $12, ZER, ADD2, T1 // ADD2 Free // VSLDB
VADDCUQ T0, ADD3, CAR1 // VACCQ
VADDUQM T0, ADD3, T0 // ADD3 Free // VAQ
VADDECUQ T1, ADD4, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4, CAR1, T1 // ADD4 Free // VACQ
LXVD2X (R18)(CPOOL), SEL2
LXVD2X (R19)(CPOOL), SEL3
LXVD2X (R20)(CPOOL), SEL4
VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0]
VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1]
VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0]
VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow -->? // VSQ
VSLDOI $12, T1, T0, T0 // VSLDB
VSLDOI $12, T2, T1, T1 // VSLDB
VADDCUQ T0, ADD3H, CAR1 // VACCQ
VADDUQM T0, ADD3H, T0 // VAQ
VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4H, CAR1, T1 // VACQ
// ---------------------------------------------------
VSPLTW $1, Y0, YDIG // VREPF
// VMALHF X0, YDIG, T0, ADD1H
// VMALHF X1, YDIG, T1, ADD2H
// VMALF X0, YDIG, T0, ADD1 // T0 Free->ADD1
// VMALF X1, YDIG, T1, ADD2 // T1 Free->ADD2
VMULT_ADD(X0, YDIG, T0, ONE, ADD1, ADD1H)
VMULT_ADD(X1, YDIG, T1, ONE, ADD2, ADD2H)
VSPLTW $0, Y0, YDIG // VREPF
// VMALF X0, YDIG, ADD1H, ADD3
// VMALF X1, YDIG, ADD2H, ADD4
// VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free->ADD3H
// VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free->ADD4H , YDIG Free->ZER
VMULT_ADD(X0, YDIG, ADD1H, ONE, ADD3, ADD3H)
VMULT_ADD(X1, YDIG, ADD2H, ONE, ADD4, ADD4H)
VSPLTISB $0, ZER // VZERO ZER
LXVD2X (R17)(CPOOL), SEL1
VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0]
VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free->T0 // VSLDB
VSLDOI $12, T2, ADD2, T1 // ADD2 Free->T1, T2 Free // VSLDB
VADDCUQ T0, RED1, CAR1 // VACCQ
VADDUQM T0, RED1, T0 // VAQ
VADDECUQ T1, RED2, CAR1, T2 // VACCCQ
VADDEUQM T1, RED2, CAR1, T1 // VACQ
VADDCUQ T0, ADD3, CAR1 // VACCQ
VADDUQM T0, ADD3, T0 // VAQ
VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ
VADDEUQM T1, ADD4, CAR1, T1 // VACQ
VADDUQM T2, CAR2, T2 // VAQ
LXVD2X (R18)(CPOOL), SEL2
LXVD2X (R19)(CPOOL), SEL3
LXVD2X (R20)(CPOOL), SEL4
VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0]
VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1]
VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0]
VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow // VSQ
VSLDOI $12, T1, T0, T0 // VSLDB
VSLDOI $12, T2, T1, T1 // VSLDB
VADDCUQ T0, ADD3H, CAR1 // VACCQ
VADDUQM T0, ADD3H, T0 // VAQ
VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4H, CAR1, T1 // VACQ
// ---------------------------------------------------
VSPLTW $3, Y1, YDIG // VREPF
// VMALHF X0, YDIG, T0, ADD1H
// VMALHF X1, YDIG, T1, ADD2H
// VMALF X0, YDIG, T0, ADD1
// VMALF X1, YDIG, T1, ADD2
VMULT_ADD(X0, YDIG, T0, ONE, ADD1, ADD1H)
VMULT_ADD(X1, YDIG, T1, ONE, ADD2, ADD2H)
VSPLTW $2, Y1, YDIG // VREPF
// VMALF X0, YDIG, ADD1H, ADD3
// VMALF X1, YDIG, ADD2H, ADD4
// VMALHF X0, YDIG, ADD1H, ADD3H // ADD1H Free
// VMALHF X1, YDIG, ADD2H, ADD4H // ADD2H Free
VMULT_ADD(X0, YDIG, ADD1H, ONE, ADD3, ADD3H)
VMULT_ADD(X1, YDIG, ADD2H, ONE, ADD4, ADD4H)
LXVD2X (R17)(CPOOL), SEL1
VSPLTISB $0, ZER // VZERO ZER
LXVD2X (R17)(CPOOL), SEL1
VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0]
VSLDOI $12, ADD2, ADD1, T0 // ADD1 Free // VSLDB
VSLDOI $12, T2, ADD2, T1 // ADD2 Free // VSLDB
VADDCUQ T0, RED1, CAR1 // VACCQ
VADDUQM T0, RED1, T0 // VAQ
VADDECUQ T1, RED2, CAR1, T2 // VACCCQ
VADDEUQM T1, RED2, CAR1, T1 // VACQ
VADDCUQ T0, ADD3, CAR1 // VACCQ
VADDUQM T0, ADD3, T0 // VAQ
VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ
VADDEUQM T1, ADD4, CAR1, T1 // VACQ
VADDUQM T2, CAR2, T2 // VAQ
LXVD2X (R18)(CPOOL), SEL2
LXVD2X (R19)(CPOOL), SEL3
LXVD2X (R20)(CPOOL), SEL4
VPERM RED3, T0, SEL2, RED1 // [d0 0 d1 d0]
VPERM RED3, T0, SEL3, RED2 // [ 0 d1 d0 d1]
VPERM RED3, T0, SEL4, RED3 // [ 0 0 d1 d0]
VSUBUQM RED2, RED3, RED2 // Guaranteed not to underflow // VSQ
VSLDOI $12, T1, T0, T0 // VSLDB
VSLDOI $12, T2, T1, T1 // VSLDB
VADDCUQ T0, ADD3H, CAR1 // VACCQ
VADDUQM T0, ADD3H, T0 // VAQ
VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4H, CAR1, T1 // VACQ
// ---------------------------------------------------
VSPLTW $1, Y1, YDIG // VREPF
// VMALHF X0, YDIG, T0, ADD1H
// VMALHF X1, YDIG, T1, ADD2H
// VMALF X0, YDIG, T0, ADD1
// VMALF X1, YDIG, T1, ADD2
VMULT_ADD(X0, YDIG, T0, ONE, ADD1, ADD1H)
VMULT_ADD(X1, YDIG, T1, ONE, ADD2, ADD2H)
VSPLTW $0, Y1, YDIG // VREPF
// VMALF X0, YDIG, ADD1H, ADD3
// VMALF X1, YDIG, ADD2H, ADD4
// VMALHF X0, YDIG, ADD1H, ADD3H
// VMALHF X1, YDIG, ADD2H, ADD4H
VMULT_ADD(X0, YDIG, ADD1H, ONE, ADD3, ADD3H)
VMULT_ADD(X1, YDIG, ADD2H, ONE, ADD4, ADD4H)
VSPLTISB $0, ZER // VZERO ZER
LXVD2X (R17)(CPOOL), SEL1
VPERM ZER, ADD1, SEL1, RED3 // [d0 0 0 d0]
VSLDOI $12, ADD2, ADD1, T0 // VSLDB
VSLDOI $12, T2, ADD2, T1 // VSLDB
VADDCUQ T0, RED1, CAR1 // VACCQ
VADDUQM T0, RED1, T0 // VAQ
VADDECUQ T1, RED2, CAR1, T2 // VACCCQ
VADDEUQM T1, RED2, CAR1, T1 // VACQ
VADDCUQ T0, ADD3, CAR1 // VACCQ
VADDUQM T0, ADD3, T0 // VAQ
VADDECUQ T1, ADD4, CAR1, CAR2 // VACCCQ
VADDEUQM T1, ADD4, CAR1, T1 // VACQ
VADDUQM T2, CAR2, T2 // VAQ
LXVD2X (R21)(CPOOL), SEL5
LXVD2X (R22)(CPOOL), SEL6
VPERM T0, RED3, SEL5, RED2 // [d1 d0 d1 d0]
VPERM T0, RED3, SEL6, RED1 // [ 0 d1 d0 0]
VSUBUQM RED2, RED1, RED2 // Guaranteed not to underflow // VSQ
VSLDOI $12, T1, T0, T0 // VSLDB
VSLDOI $12, T2, T1, T1 // VSLDB
VADDCUQ T0, ADD3H, CAR1 // VACCQ
VADDUQM T0, ADD3H, T0 // VAQ
VADDECUQ T1, ADD4H, CAR1, T2 // VACCCQ
VADDEUQM T1, ADD4H, CAR1, T1 // VACQ
VADDCUQ T0, RED1, CAR1 // VACCQ
VADDUQM T0, RED1, T0 // VAQ
VADDECUQ T1, RED2, CAR1, CAR2 // VACCCQ
VADDEUQM T1, RED2, CAR1, T1 // VACQ
VADDUQM T2, CAR2, T2 // VAQ
// ---------------------------------------------------
VSPLTISB $0, RED3 // VZERO RED3
VSUBCUQ T0, P0, CAR1 // VSCBIQ
VSUBUQM T0, P0, ADD1H // VSQ
VSUBECUQ T1, P1, CAR1, CAR2 // VSBCBIQ
VSUBEUQM T1, P1, CAR1, ADD2H // VSBIQ
VSUBEUQM T2, RED3, CAR2, T2 // VSBIQ
// what output to use, ADD2H||ADD1H or T1||T0?
VSEL ADD1H, T0, T2, T0
VSEL ADD2H, T1, T2, T1
RET
#undef CPOOL
#undef X0
#undef X1
#undef Y0
#undef Y1
#undef T0
#undef T1
#undef P0
#undef P1
#undef SEL1
#undef SEL2
#undef SEL3
#undef SEL4
#undef SEL5
#undef SEL6
#undef YDIG
#undef ADD1H
#undef ADD2H
#undef ADD3
#undef ADD4
#undef RED1
#undef RED2
#undef RED3
#undef T2
#undef ADD1
#undef ADD2
#undef ADD3H
#undef ADD4H
#undef ZER
#undef CAR1
#undef CAR2
#undef TMP1
#undef TMP2
#define p256SubInternal(T1, T0, X1, X0, Y1, Y0) \
VSPLTISB $0, ZER \ // VZERO
VSUBCUQ X0, Y0, CAR1 \
VSUBUQM X0, Y0, T0 \
VSUBECUQ X1, Y1, CAR1, SEL1 \
VSUBEUQM X1, Y1, CAR1, T1 \
VSUBUQM ZER, SEL1, SEL1 \ // VSQ
\
VADDCUQ T0, PL, CAR1 \ // VACCQ
VADDUQM T0, PL, TT0 \ // VAQ
VADDEUQM T1, PH, CAR1, TT1 \ // VACQ
\
VSEL TT0, T0, SEL1, T0 \
VSEL TT1, T1, SEL1, T1 \
#define p256AddInternal(T1, T0, X1, X0, Y1, Y0) \
VADDCUQ X0, Y0, CAR1 \
VADDUQM X0, Y0, T0 \
VADDECUQ X1, Y1, CAR1, T2 \ // VACCCQ
VADDEUQM X1, Y1, CAR1, T1 \
\
VSPLTISB $0, ZER \
VSUBCUQ T0, PL, CAR1 \ // VSCBIQ
VSUBUQM T0, PL, TT0 \
VSUBECUQ T1, PH, CAR1, CAR2 \ // VSBCBIQ
VSUBEUQM T1, PH, CAR1, TT1 \ // VSBIQ
VSUBEUQM T2, ZER, CAR2, SEL1 \
\
VSEL TT0, T0, SEL1, T0 \
VSEL TT1, T1, SEL1, T1
#define p256HalfInternal(T1, T0, X1, X0) \
VSPLTISB $0, ZER \
VSUBEUQM ZER, ZER, X0, SEL1 \
\
VADDCUQ X0, PL, CAR1 \
VADDUQM X0, PL, T0 \
VADDECUQ X1, PH, CAR1, T2 \
VADDEUQM X1, PH, CAR1, T1 \
\
VSEL T0, X0, SEL1, T0 \
VSEL T1, X1, SEL1, T1 \
VSEL T2, ZER, SEL1, T2 \
\
VSLDOI $15, T2, ZER, TT1 \
VSLDOI $15, T1, ZER, TT0 \
VSPLTISB $1, SEL1 \
VSR T0, SEL1, T0 \ // VSRL
VSR T1, SEL1, T1 \
VSPLTISB $7, SEL1 \ // VREPIB
VSL TT0, SEL1, TT0 \
VSL TT1, SEL1, TT1 \
VOR T0, TT0, T0 \
VOR T1, TT1, T1
#define res_ptr R3
#define x_ptr R4
#define y_ptr R5
#define CPOOL R7
#define TEMP R8
#define N R9
// Parameters
#define X0 V0
#define X1 V1
#define Y0 V2
#define Y1 V3
#define T0 V4
#define T1 V5
// Constants
#define P0 V30
#define P1 V31
// func p256MulAsm(res, in1, in2 *p256Element)
TEXT ·p256Mul(SB), NOSPLIT, $0-24
MOVD res+0(FP), res_ptr
MOVD in1+8(FP), x_ptr
MOVD in2+16(FP), y_ptr
MOVD $16, R16
MOVD $32, R17
MOVD $p256mul<>+0x00(SB), CPOOL
LXVD2X (R0)(x_ptr), X0
LXVD2X (R16)(x_ptr), X1
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
LXVD2X (R0)(y_ptr), Y0
LXVD2X (R16)(y_ptr), Y1
XXPERMDI Y0, Y0, $2, Y0
XXPERMDI Y1, Y1, $2, Y1
LXVD2X (R16)(CPOOL), P1
LXVD2X (R0)(CPOOL), P0
CALL p256MulInternal<>(SB)
MOVD $p256mul<>+0x00(SB), CPOOL
XXPERMDI T0, T0, $2, T0
XXPERMDI T1, T1, $2, T1
STXVD2X T0, (R0)(res_ptr)
STXVD2X T1, (R16)(res_ptr)
RET
// func p256Sqr(res, in *p256Element, n int)
TEXT ·p256Sqr(SB), NOSPLIT, $0-24
MOVD res+0(FP), res_ptr
MOVD in+8(FP), x_ptr
MOVD $16, R16
MOVD $32, R17
MOVD $p256mul<>+0x00(SB), CPOOL
LXVD2X (R0)(x_ptr), X0
LXVD2X (R16)(x_ptr), X1
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
sqrLoop:
// Sqr uses same value for both
VOR X0, X0, Y0
VOR X1, X1, Y1
LXVD2X (R16)(CPOOL), P1
LXVD2X (R0)(CPOOL), P0
CALL p256MulInternal<>(SB)
MOVD n+16(FP), N
ADD $-1, N
CMP $0, N
BEQ done
MOVD N, n+16(FP) // Save counter to avoid clobber
VOR T0, T0, X0
VOR T1, T1, X1
BR sqrLoop
done:
MOVD $p256mul<>+0x00(SB), CPOOL
XXPERMDI T0, T0, $2, T0
XXPERMDI T1, T1, $2, T1
STXVD2X T0, (R0)(res_ptr)
STXVD2X T1, (R16)(res_ptr)
RET
#undef res_ptr
#undef x_ptr
#undef y_ptr
#undef CPOOL
#undef X0
#undef X1
#undef Y0
#undef Y1
#undef T0
#undef T1
#undef P0
#undef P1
#define P3ptr R3
#define P1ptr R4
#define P2ptr R5
#define CPOOL R7
// Temporaries in REGs
#define Y2L V15
#define Y2H V16
#define T1L V17
#define T1H V18
#define T2L V19
#define T2H V20
#define T3L V21
#define T3H V22
#define T4L V23
#define T4H V24
// Temps for Sub and Add
#define TT0 V11
#define TT1 V12
#define T2 V13
// p256MulAsm Parameters
#define X0 V0
#define X1 V1
#define Y0 V2
#define Y1 V3
#define T0 V4
#define T1 V5
#define PL V30
#define PH V31
// Names for zero/sel selects
#define X1L V0
#define X1H V1
#define Y1L V2 // p256MulAsmParmY
#define Y1H V3 // p256MulAsmParmY
#define Z1L V4
#define Z1H V5
#define X2L V0
#define X2H V1
#define Z2L V4
#define Z2H V5
#define X3L V17 // T1L
#define X3H V18 // T1H
#define Y3L V21 // T3L
#define Y3H V22 // T3H
#define Z3L V25
#define Z3H V26
#define ZER V6
#define SEL1 V7
#define CAR1 V8
#define CAR2 V9
/* *
* Three operand formula:
* Source: 2004 Hankerson–Menezes–Vanstone, page 91.
* T1 = Z1²
* T2 = T1*Z1
* T1 = T1*X2
* T2 = T2*Y2
* T1 = T1-X1
* T2 = T2-Y1
* Z3 = Z1*T1
* T3 = T1²
* T4 = T3*T1
* T3 = T3*X1
* T1 = 2*T3
* X3 = T2²
* X3 = X3-T1
* X3 = X3-T4
* T3 = T3-X3
* T3 = T3*T2
* T4 = T4*Y1
* Y3 = T3-T4
* Three operand formulas, but with MulInternal X,Y used to store temps
X=Z1; Y=Z1; MUL;T- // T1 = Z1² T1
X=T ; Y- ; MUL;T2=T // T2 = T1*Z1 T1 T2
X- ; Y=X2; MUL;T1=T // T1 = T1*X2 T1 T2
X=T2; Y=Y2; MUL;T- // T2 = T2*Y2 T1 T2
SUB(T2<T-Y1) // T2 = T2-Y1 T1 T2
SUB(Y<T1-X1) // T1 = T1-X1 T1 T2
X=Z1; Y- ; MUL;Z3:=T// Z3 = Z1*T1 T2
X=Y; Y- ; MUL;X=T // T3 = T1*T1 T2
X- ; Y- ; MUL;T4=T // T4 = T3*T1 T2 T4
X- ; Y=X1; MUL;T3=T // T3 = T3*X1 T2 T3 T4
ADD(T1<T+T) // T1 = T3+T3 T1 T2 T3 T4
X=T2; Y=T2; MUL;T- // X3 = T2*T2 T1 T2 T3 T4
SUB(T<T-T1) // X3 = X3-T1 T1 T2 T3 T4
SUB(T<T-T4) X3:=T // X3 = X3-T4 T2 T3 T4
SUB(X<T3-T) // T3 = T3-X3 T2 T3 T4
X- ; Y- ; MUL;T3=T // T3 = T3*T2 T2 T3 T4
X=T4; Y=Y1; MUL;T- // T4 = T4*Y1 T3 T4
SUB(T<T3-T) Y3:=T // Y3 = T3-T4 T3 T4
*/
//
// V27 is clobbered by p256MulInternal so must be
// saved in a temp.
//
// func p256PointAddAffineAsm(res, in1 *P256Point, in2 *p256AffinePoint, sign, sel, zero int)
TEXT ·p256PointAddAffineAsm(SB), NOSPLIT, $16-48
MOVD res+0(FP), P3ptr
MOVD in1+8(FP), P1ptr
MOVD in2+16(FP), P2ptr
MOVD $p256mul<>+0x00(SB), CPOOL
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
MOVD $96, R21
MOVD $112, R22
MOVD $128, R23
MOVD $144, R24
MOVD $160, R25
MOVD $104, R26 // offset of sign+24(FP)
LXVD2X (R16)(CPOOL), PH
LXVD2X (R0)(CPOOL), PL
LXVD2X (R17)(P2ptr), Y2L
LXVD2X (R18)(P2ptr), Y2H
XXPERMDI Y2H, Y2H, $2, Y2H
XXPERMDI Y2L, Y2L, $2, Y2L
// Equivalent of VLREPG sign+24(FP), SEL1
LXVDSX (R1)(R26), SEL1
VSPLTISB $0, ZER
VCMPEQUD SEL1, ZER, SEL1
VSUBCUQ PL, Y2L, CAR1
VSUBUQM PL, Y2L, T1L
VSUBEUQM PH, Y2H, CAR1, T1H
VSEL T1L, Y2L, SEL1, Y2L
VSEL T1H, Y2H, SEL1, Y2H
/* *
* Three operand formula:
* Source: 2004 Hankerson–Menezes–Vanstone, page 91.
*/
// X=Z1; Y=Z1; MUL; T- // T1 = Z1² T1
LXVD2X (R19)(P1ptr), X0 // Z1H
LXVD2X (R20)(P1ptr), X1 // Z1L
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// X=T ; Y- ; MUL; T2=T // T2 = T1*Z1 T1 T2
VOR T0, T0, X0
VOR T1, T1, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, T2L
VOR T1, T1, T2H
// X- ; Y=X2; MUL; T1=T // T1 = T1*X2 T1 T2
MOVD in2+16(FP), P2ptr
LXVD2X (R0)(P2ptr), Y0 // X2H
LXVD2X (R16)(P2ptr), Y1 // X2L
XXPERMDI Y0, Y0, $2, Y0
XXPERMDI Y1, Y1, $2, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, T1L
VOR T1, T1, T1H
// X=T2; Y=Y2; MUL; T- // T2 = T2*Y2 T1 T2
VOR T2L, T2L, X0
VOR T2H, T2H, X1
VOR Y2L, Y2L, Y0
VOR Y2H, Y2H, Y1
CALL p256MulInternal<>(SB)
// SUB(T2<T-Y1) // T2 = T2-Y1 T1 T2
MOVD in1+8(FP), P1ptr
LXVD2X (R17)(P1ptr), Y1L
LXVD2X (R18)(P1ptr), Y1H
XXPERMDI Y1H, Y1H, $2, Y1H
XXPERMDI Y1L, Y1L, $2, Y1L
p256SubInternal(T2H,T2L,T1,T0,Y1H,Y1L)
// SUB(Y<T1-X1) // T1 = T1-X1 T1 T2
LXVD2X (R0)(P1ptr), X1L
LXVD2X (R16)(P1ptr), X1H
XXPERMDI X1H, X1H, $2, X1H
XXPERMDI X1L, X1L, $2, X1L
p256SubInternal(Y1,Y0,T1H,T1L,X1H,X1L)
// X=Z1; Y- ; MUL; Z3:=T// Z3 = Z1*T1 T2
LXVD2X (R19)(P1ptr), X0 // Z1H
LXVD2X (R20)(P1ptr), X1 // Z1L
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, Z3L
VOR T1, T1, Z3H
// X=Y; Y- ; MUL; X=T // T3 = T1*T1 T2
VOR Y0, Y0, X0
VOR Y1, Y1, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, X0
VOR T1, T1, X1
// X- ; Y- ; MUL; T4=T // T4 = T3*T1 T2 T4
CALL p256MulInternal<>(SB)
VOR T0, T0, T4L
VOR T1, T1, T4H
// X- ; Y=X1; MUL; T3=T // T3 = T3*X1 T2 T3 T4
MOVD in1+8(FP), P1ptr
LXVD2X (R0)(P1ptr), Y0 // X1H
LXVD2X (R16)(P1ptr), Y1 // X1L
XXPERMDI Y1, Y1, $2, Y1
XXPERMDI Y0, Y0, $2, Y0
CALL p256MulInternal<>(SB)
VOR T0, T0, T3L
VOR T1, T1, T3H
// ADD(T1<T+T) // T1 = T3+T3 T1 T2 T3 T4
p256AddInternal(T1H,T1L, T1,T0,T1,T0)
// X=T2; Y=T2; MUL; T- // X3 = T2*T2 T1 T2 T3 T4
VOR T2L, T2L, X0
VOR T2H, T2H, X1
VOR T2L, T2L, Y0
VOR T2H, T2H, Y1
CALL p256MulInternal<>(SB)
// SUB(T<T-T1) // X3 = X3-T1 T1 T2 T3 T4 (T1 = X3)
p256SubInternal(T1,T0,T1,T0,T1H,T1L)
// SUB(T<T-T4) X3:=T // X3 = X3-T4 T2 T3 T4
p256SubInternal(T1,T0,T1,T0,T4H,T4L)
VOR T0, T0, X3L
VOR T1, T1, X3H
// SUB(X<T3-T) // T3 = T3-X3 T2 T3 T4
p256SubInternal(X1,X0,T3H,T3L,T1,T0)
// X- ; Y- ; MUL; T3=T // T3 = T3*T2 T2 T3 T4
CALL p256MulInternal<>(SB)
VOR T0, T0, T3L
VOR T1, T1, T3H
// X=T4; Y=Y1; MUL; T- // T4 = T4*Y1 T3 T4
VOR T4L, T4L, X0
VOR T4H, T4H, X1
MOVD in1+8(FP), P1ptr
LXVD2X (R17)(P1ptr), Y0 // Y1H
LXVD2X (R18)(P1ptr), Y1 // Y1L
XXPERMDI Y0, Y0, $2, Y0
XXPERMDI Y1, Y1, $2, Y1
CALL p256MulInternal<>(SB)
// SUB(T<T3-T) Y3:=T // Y3 = T3-T4 T3 T4 (T3 = Y3)
p256SubInternal(Y3H,Y3L,T3H,T3L,T1,T0)
// if (sel == 0) {
// copy(P3.x[:], X1)
// copy(P3.y[:], Y1)
// copy(P3.z[:], Z1)
// }
LXVD2X (R0)(P1ptr), X1L
LXVD2X (R16)(P1ptr), X1H
XXPERMDI X1H, X1H, $2, X1H
XXPERMDI X1L, X1L, $2, X1L
// Y1 already loaded, left over from addition
LXVD2X (R19)(P1ptr), Z1L
LXVD2X (R20)(P1ptr), Z1H
XXPERMDI Z1H, Z1H, $2, Z1H
XXPERMDI Z1L, Z1L, $2, Z1L
MOVD $112, R26 // Get offset to sel+32
LXVDSX (R1)(R26), SEL1
VSPLTISB $0, ZER
VCMPEQUD SEL1, ZER, SEL1
VSEL X3L, X1L, SEL1, X3L
VSEL X3H, X1H, SEL1, X3H
VSEL Y3L, Y1L, SEL1, Y3L
VSEL Y3H, Y1H, SEL1, Y3H
VSEL Z3L, Z1L, SEL1, Z3L
VSEL Z3H, Z1H, SEL1, Z3H
MOVD in2+16(FP), P2ptr
LXVD2X (R0)(P2ptr), X2L
LXVD2X (R16)(P2ptr), X2H
XXPERMDI X2H, X2H, $2, X2H
XXPERMDI X2L, X2L, $2, X2L
// Y2 already loaded
LXVD2X (R23)(CPOOL), Z2L
LXVD2X (R24)(CPOOL), Z2H
MOVD $120, R26 // Get the value from zero+40(FP)
LXVDSX (R1)(R26), SEL1
VSPLTISB $0, ZER
VCMPEQUD SEL1, ZER, SEL1
VSEL X3L, X2L, SEL1, X3L
VSEL X3H, X2H, SEL1, X3H
VSEL Y3L, Y2L, SEL1, Y3L
VSEL Y3H, Y2H, SEL1, Y3H
VSEL Z3L, Z2L, SEL1, Z3L
VSEL Z3H, Z2H, SEL1, Z3H
// Reorder the bytes so they can be stored using STXVD2X.
MOVD res+0(FP), P3ptr
XXPERMDI X3H, X3H, $2, X3H
XXPERMDI X3L, X3L, $2, X3L
XXPERMDI Y3H, Y3H, $2, Y3H
XXPERMDI Y3L, Y3L, $2, Y3L
XXPERMDI Z3H, Z3H, $2, Z3H
XXPERMDI Z3L, Z3L, $2, Z3L
STXVD2X X3L, (R0)(P3ptr)
STXVD2X X3H, (R16)(P3ptr)
STXVD2X Y3L, (R17)(P3ptr)
STXVD2X Y3H, (R18)(P3ptr)
STXVD2X Z3L, (R19)(P3ptr)
STXVD2X Z3H, (R20)(P3ptr)
RET
#undef P3ptr
#undef P1ptr
#undef P2ptr
#undef CPOOL
#undef Y2L
#undef Y2H
#undef T1L
#undef T1H
#undef T2L
#undef T2H
#undef T3L
#undef T3H
#undef T4L
#undef T4H
#undef TT0
#undef TT1
#undef T2
#undef X0
#undef X1
#undef Y0
#undef Y1
#undef T0
#undef T1
#undef PL
#undef PH
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef X2L
#undef X2H
#undef Z2L
#undef Z2H
#undef X3L
#undef X3H
#undef Y3L
#undef Y3H
#undef Z3L
#undef Z3H
#undef ZER
#undef SEL1
#undef CAR1
#undef CAR2
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian.html#doubling-dbl-2007-bl
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw.html
// http://www.hyperelliptic.org/EFD/g1p/auto-shortw-projective-3.html
#define P3ptr R3
#define P1ptr R4
#define CPOOL R7
// Temporaries in REGs
#define X3L V15
#define X3H V16
#define Y3L V17
#define Y3H V18
#define T1L V19
#define T1H V20
#define T2L V21
#define T2H V22
#define T3L V23
#define T3H V24
#define X1L V6
#define X1H V7
#define Y1L V8
#define Y1H V9
#define Z1L V10
#define Z1H V11
// Temps for Sub and Add
#define TT0 V11
#define TT1 V12
#define T2 V13
// p256MulAsm Parameters
#define X0 V0
#define X1 V1
#define Y0 V2
#define Y1 V3
#define T0 V4
#define T1 V5
#define PL V30
#define PH V31
#define Z3L V23
#define Z3H V24
#define ZER V26
#define SEL1 V27
#define CAR1 V28
#define CAR2 V29
/*
* http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2004-hmv
* Cost: 4M + 4S + 1*half + 5add + 2*2 + 1*3.
* Source: 2004 Hankerson–Menezes–Vanstone, page 91.
* A = 3(X₁-Z₁²)×(X₁+Z₁²)
* B = 2Y₁
* Z₃ = B×Z₁
* C = B²
* D = C×X₁
* X₃ = A²-2D
* Y₃ = (D-X₃)×A-C²/2
*
* Three-operand formula:
* T1 = Z1²
* T2 = X1-T1
* T1 = X1+T1
* T2 = T2*T1
* T2 = 3*T2
* Y3 = 2*Y1
* Z3 = Y3*Z1
* Y3 = Y3²
* T3 = Y3*X1
* Y3 = Y3²
* Y3 = half*Y3
* X3 = T2²
* T1 = 2*T3
* X3 = X3-T1
* T1 = T3-X3
* T1 = T1*T2
* Y3 = T1-Y3
*/
// p256PointDoubleAsm(res, in1 *p256Point)
TEXT ·p256PointDoubleAsm(SB), NOSPLIT, $0-16
MOVD res+0(FP), P3ptr
MOVD in+8(FP), P1ptr
MOVD $p256mul<>+0x00(SB), CPOOL
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
LXVD2X (R16)(CPOOL), PH
LXVD2X (R0)(CPOOL), PL
// X=Z1; Y=Z1; MUL; T- // T1 = Z1²
LXVD2X (R19)(P1ptr), X0 // Z1H
LXVD2X (R20)(P1ptr), X1 // Z1L
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// SUB(X<X1-T) // T2 = X1-T1
LXVD2X (R0)(P1ptr), X1L
LXVD2X (R16)(P1ptr), X1H
XXPERMDI X1L, X1L, $2, X1L
XXPERMDI X1H, X1H, $2, X1H
p256SubInternal(X1,X0,X1H,X1L,T1,T0)
// ADD(Y<X1+T) // T1 = X1+T1
p256AddInternal(Y1,Y0,X1H,X1L,T1,T0)
// X- ; Y- ; MUL; T- // T2 = T2*T1
CALL p256MulInternal<>(SB)
// ADD(T2<T+T); ADD(T2<T2+T) // T2 = 3*T2
p256AddInternal(T2H,T2L,T1,T0,T1,T0)
p256AddInternal(T2H,T2L,T2H,T2L,T1,T0)
// ADD(X<Y1+Y1) // Y3 = 2*Y1
LXVD2X (R17)(P1ptr), Y1L
LXVD2X (R18)(P1ptr), Y1H
XXPERMDI Y1L, Y1L, $2, Y1L
XXPERMDI Y1H, Y1H, $2, Y1H
p256AddInternal(X1,X0,Y1H,Y1L,Y1H,Y1L)
// X- ; Y=Z1; MUL; Z3:=T // Z3 = Y3*Z1
LXVD2X (R19)(P1ptr), Y0
LXVD2X (R20)(P1ptr), Y1
XXPERMDI Y0, Y0, $2, Y0
XXPERMDI Y1, Y1, $2, Y1
CALL p256MulInternal<>(SB)
// Leave T0, T1 as is.
XXPERMDI T0, T0, $2, TT0
XXPERMDI T1, T1, $2, TT1
STXVD2X TT0, (R19)(P3ptr)
STXVD2X TT1, (R20)(P3ptr)
// X- ; Y=X ; MUL; T- // Y3 = Y3²
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// X=T ; Y=X1; MUL; T3=T // T3 = Y3*X1
VOR T0, T0, X0
VOR T1, T1, X1
LXVD2X (R0)(P1ptr), Y0
LXVD2X (R16)(P1ptr), Y1
XXPERMDI Y0, Y0, $2, Y0
XXPERMDI Y1, Y1, $2, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, T3L
VOR T1, T1, T3H
// X- ; Y=X ; MUL; T- // Y3 = Y3²
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// HAL(Y3<T) // Y3 = half*Y3
p256HalfInternal(Y3H,Y3L, T1,T0)
// X=T2; Y=T2; MUL; T- // X3 = T2²
VOR T2L, T2L, X0
VOR T2H, T2H, X1
VOR T2L, T2L, Y0
VOR T2H, T2H, Y1
CALL p256MulInternal<>(SB)
// ADD(T1<T3+T3) // T1 = 2*T3
p256AddInternal(T1H,T1L,T3H,T3L,T3H,T3L)
// SUB(X3<T-T1) X3:=X3 // X3 = X3-T1
p256SubInternal(X3H,X3L,T1,T0,T1H,T1L)
XXPERMDI X3L, X3L, $2, TT0
XXPERMDI X3H, X3H, $2, TT1
STXVD2X TT0, (R0)(P3ptr)
STXVD2X TT1, (R16)(P3ptr)
// SUB(X<T3-X3) // T1 = T3-X3
p256SubInternal(X1,X0,T3H,T3L,X3H,X3L)
// X- ; Y- ; MUL; T- // T1 = T1*T2
CALL p256MulInternal<>(SB)
// SUB(Y3<T-Y3) // Y3 = T1-Y3
p256SubInternal(Y3H,Y3L,T1,T0,Y3H,Y3L)
XXPERMDI Y3L, Y3L, $2, Y3L
XXPERMDI Y3H, Y3H, $2, Y3H
STXVD2X Y3L, (R17)(P3ptr)
STXVD2X Y3H, (R18)(P3ptr)
RET
#undef P3ptr
#undef P1ptr
#undef CPOOL
#undef X3L
#undef X3H
#undef Y3L
#undef Y3H
#undef T1L
#undef T1H
#undef T2L
#undef T2H
#undef T3L
#undef T3H
#undef X1L
#undef X1H
#undef Y1L
#undef Y1H
#undef Z1L
#undef Z1H
#undef TT0
#undef TT1
#undef T2
#undef X0
#undef X1
#undef Y0
#undef Y1
#undef T0
#undef T1
#undef PL
#undef PH
#undef Z3L
#undef Z3H
#undef ZER
#undef SEL1
#undef CAR1
#undef CAR2
#define P3ptr R3
#define P1ptr R4
#define P2ptr R5
#define CPOOL R7
#define TRUE R14
#define RES1 R9
#define RES2 R10
// Temporaries in REGs
#define T1L V16
#define T1H V17
#define T2L V18
#define T2H V19
#define U1L V20
#define U1H V21
#define S1L V22
#define S1H V23
#define HL V24
#define HH V25
#define RL V26
#define RH V27
// Temps for Sub and Add
#define ZER V6
#define SEL1 V7
#define CAR1 V8
#define CAR2 V9
#define TT0 V11
#define TT1 V12
#define T2 V13
// p256MulAsm Parameters
#define X0 V0
#define X1 V1
#define Y0 V2
#define Y1 V3
#define T0 V4
#define T1 V5
#define PL V30
#define PH V31
/*
* https://choucroutage.com/Papers/SideChannelAttacks/ctrsa-2011-brown.pdf "Software Implementation of the NIST Elliptic Curves Over Prime Fields"
*
* A = X₁×Z₂²
* B = Y₁×Z₂³
* C = X₂×Z₁²-A
* D = Y₂×Z₁³-B
* X₃ = D² - 2A×C² - C³
* Y₃ = D×(A×C² - X₃) - B×C³
* Z₃ = Z₁×Z₂×C
*
* Three-operand formula (adopted): http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-1998-cmo-2
* Temp storage: T1,T2,U1,H,Z3=X3=Y3,S1,R
*
* T1 = Z1*Z1
* T2 = Z2*Z2
* U1 = X1*T2
* H = X2*T1
* H = H-U1
* Z3 = Z1*Z2
* Z3 = Z3*H << store-out Z3 result reg.. could override Z1, if slices have same backing array
*
* S1 = Z2*T2
* S1 = Y1*S1
* R = Z1*T1
* R = Y2*R
* R = R-S1
*
* T1 = H*H
* T2 = H*T1
* U1 = U1*T1
*
* X3 = R*R
* X3 = X3-T2
* T1 = 2*U1
* X3 = X3-T1 << store-out X3 result reg
*
* T2 = S1*T2
* Y3 = U1-X3
* Y3 = R*Y3
* Y3 = Y3-T2 << store-out Y3 result reg
// X=Z1; Y=Z1; MUL; T- // T1 = Z1*Z1
// X- ; Y=T ; MUL; R=T // R = Z1*T1
// X=X2; Y- ; MUL; H=T // H = X2*T1
// X=Z2; Y=Z2; MUL; T- // T2 = Z2*Z2
// X- ; Y=T ; MUL; S1=T // S1 = Z2*T2
// X=X1; Y- ; MUL; U1=T // U1 = X1*T2
// SUB(H<H-T) // H = H-U1
// X=Z1; Y=Z2; MUL; T- // Z3 = Z1*Z2
// X=T ; Y=H ; MUL; Z3:=T// Z3 = Z3*H << store-out Z3 result reg.. could override Z1, if slices have same backing array
// X=Y1; Y=S1; MUL; S1=T // S1 = Y1*S1
// X=Y2; Y=R ; MUL; T- // R = Y2*R
// SUB(R<T-S1) // R = R-S1
// X=H ; Y=H ; MUL; T- // T1 = H*H
// X- ; Y=T ; MUL; T2=T // T2 = H*T1
// X=U1; Y- ; MUL; U1=T // U1 = U1*T1
// X=R ; Y=R ; MUL; T- // X3 = R*R
// SUB(T<T-T2) // X3 = X3-T2
// ADD(X<U1+U1) // T1 = 2*U1
// SUB(T<T-X) X3:=T // X3 = X3-T1 << store-out X3 result reg
// SUB(Y<U1-T) // Y3 = U1-X3
// X=R ; Y- ; MUL; U1=T // Y3 = R*Y3
// X=S1; Y=T2; MUL; T- // T2 = S1*T2
// SUB(T<U1-T); Y3:=T // Y3 = Y3-T2 << store-out Y3 result reg
*/
// p256PointAddAsm(res, in1, in2 *p256Point)
TEXT ·p256PointAddAsm(SB), NOSPLIT, $16-32
MOVD res+0(FP), P3ptr
MOVD in1+8(FP), P1ptr
MOVD $p256mul<>+0x00(SB), CPOOL
MOVD $16, R16
MOVD $32, R17
MOVD $48, R18
MOVD $64, R19
MOVD $80, R20
LXVD2X (R16)(CPOOL), PH
LXVD2X (R0)(CPOOL), PL
// X=Z1; Y=Z1; MUL; T- // T1 = Z1*Z1
LXVD2X (R19)(P1ptr), X0 // Z1L
LXVD2X (R20)(P1ptr), X1 // Z1H
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// X- ; Y=T ; MUL; R=T // R = Z1*T1
VOR T0, T0, Y0
VOR T1, T1, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, RL // SAVE: RL
VOR T1, T1, RH // SAVE: RH
STXVD2X RH, (R1)(R17) // V27 has to be saved
// X=X2; Y- ; MUL; H=T // H = X2*T1
MOVD in2+16(FP), P2ptr
LXVD2X (R0)(P2ptr), X0 // X2L
LXVD2X (R16)(P2ptr), X1 // X2H
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, HL // SAVE: HL
VOR T1, T1, HH // SAVE: HH
// X=Z2; Y=Z2; MUL; T- // T2 = Z2*Z2
MOVD in2+16(FP), P2ptr
LXVD2X (R19)(P2ptr), X0 // Z2L
LXVD2X (R20)(P2ptr), X1 // Z2H
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
VOR X0, X0, Y0
VOR X1, X1, Y1
CALL p256MulInternal<>(SB)
// X- ; Y=T ; MUL; S1=T // S1 = Z2*T2
VOR T0, T0, Y0
VOR T1, T1, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, S1L // SAVE: S1L
VOR T1, T1, S1H // SAVE: S1H
// X=X1; Y- ; MUL; U1=T // U1 = X1*T2
MOVD in1+8(FP), P1ptr
LXVD2X (R0)(P1ptr), X0 // X1L
LXVD2X (R16)(P1ptr), X1 // X1H
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, U1L // SAVE: U1L
VOR T1, T1, U1H // SAVE: U1H
// SUB(H<H-T) // H = H-U1
p256SubInternal(HH,HL,HH,HL,T1,T0)
// if H == 0 or H^P == 0 then ret=1 else ret=0
// clobbers T1H and T1L
MOVD $1, TRUE
VSPLTISB $0, ZER
VOR HL, HH, T1H
VCMPEQUDCC ZER, T1H, T1H
// 26 = CR6 NE
ISEL $26, R0, TRUE, RES1
VXOR HL, PL, T1L // SAVE: T1L
VXOR HH, PH, T1H // SAVE: T1H
VOR T1L, T1H, T1H
VCMPEQUDCC ZER, T1H, T1H
// 26 = CR6 NE
ISEL $26, R0, TRUE, RES2
OR RES2, RES1, RES1
MOVD RES1, ret+24(FP)
// X=Z1; Y=Z2; MUL; T- // Z3 = Z1*Z2
MOVD in1+8(FP), P1ptr
MOVD in2+16(FP), P2ptr
LXVD2X (R19)(P1ptr), X0 // Z1L
LXVD2X (R20)(P1ptr), X1 // Z1H
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
LXVD2X (R19)(P2ptr), Y0 // Z2L
LXVD2X (R20)(P2ptr), Y1 // Z2H
XXPERMDI Y0, Y0, $2, Y0
XXPERMDI Y1, Y1, $2, Y1
CALL p256MulInternal<>(SB)
// X=T ; Y=H ; MUL; Z3:=T// Z3 = Z3*H
VOR T0, T0, X0
VOR T1, T1, X1
VOR HL, HL, Y0
VOR HH, HH, Y1
CALL p256MulInternal<>(SB)
MOVD res+0(FP), P3ptr
XXPERMDI T1, T1, $2, TT1
XXPERMDI T0, T0, $2, TT0
STXVD2X TT0, (R19)(P3ptr)
STXVD2X TT1, (R20)(P3ptr)
// X=Y1; Y=S1; MUL; S1=T // S1 = Y1*S1
MOVD in1+8(FP), P1ptr
LXVD2X (R17)(P1ptr), X0
LXVD2X (R18)(P1ptr), X1
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
VOR S1L, S1L, Y0
VOR S1H, S1H, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, S1L
VOR T1, T1, S1H
// X=Y2; Y=R ; MUL; T- // R = Y2*R
MOVD in2+16(FP), P2ptr
LXVD2X (R17)(P2ptr), X0
LXVD2X (R18)(P2ptr), X1
XXPERMDI X0, X0, $2, X0
XXPERMDI X1, X1, $2, X1
VOR RL, RL, Y0
// VOR RH, RH, Y1 RH was saved above in D2X format
LXVD2X (R1)(R17), Y1
CALL p256MulInternal<>(SB)
// SUB(R<T-S1) // R = T-S1
p256SubInternal(RH,RL,T1,T0,S1H,S1L)
STXVD2X RH, (R1)(R17) // Save RH
// if R == 0 or R^P == 0 then ret=ret else ret=0
// clobbers T1H and T1L
// Redo this using ISEL??
MOVD $1, TRUE
VSPLTISB $0, ZER
VOR RL, RH, T1H
VCMPEQUDCC ZER, T1H, T1H
// 24 = CR6 NE
ISEL $26, R0, TRUE, RES1
VXOR RL, PL, T1L
VXOR RH, PH, T1H // SAVE: T1L
VOR T1L, T1H, T1H
VCMPEQUDCC ZER, T1H, T1H
// 26 = CR6 NE
ISEL $26, R0, TRUE, RES2
OR RES2, RES1, RES1
MOVD ret+24(FP), RES2
AND RES2, RES1, RES1
MOVD RES1, ret+24(FP)
// X=H ; Y=H ; MUL; T- // T1 = H*H
VOR HL, HL, X0
VOR HH, HH, X1
VOR HL, HL, Y0
VOR HH, HH, Y1
CALL p256MulInternal<>(SB)
// X- ; Y=T ; MUL; T2=T // T2 = H*T1
VOR T0, T0, Y0
VOR T1, T1, Y1
CALL p256MulInternal<>(SB)
VOR T0, T0, T2L
VOR T1, T1, T2H
// X=U1; Y- ; MUL; U1=T // U1 = U1*T1
VOR U1L, U1L, X0
VOR U1H, U1H, X1
CALL p256MulInternal<>(SB)
VOR T0, T0, U1L
VOR T1, T1, U1H
// X=R ; Y=R ; MUL; T- // X3 = R*R
VOR RL, RL, X0
// VOR RH, RH, X1
VOR RL, RL, Y0
// RH was saved above using STXVD2X
LXVD2X (R1)(R17), X1
VOR X1, X1, Y1
// VOR RH, RH, Y1
CALL p256MulInternal<>(SB)
// SUB(T<T-T2) // X3 = X3-T2
p256SubInternal(T1,T0,T1,T0,T2H,T2L)
// ADD(X<U1+U1) // T1 = 2*U1
p256AddInternal(X1,X0,U1H,U1L,U1H,U1L)
// SUB(T<T-X) X3:=T // X3 = X3-T1 << store-out X3 result reg
p256SubInternal(T1,T0,T1,T0,X1,X0)
MOVD res+0(FP), P3ptr
XXPERMDI T1, T1, $2, TT1
XXPERMDI T0, T0, $2, TT0
STXVD2X TT0, (R0)(P3ptr)
STXVD2X TT1, (R16)(P3ptr)
// SUB(Y<U1-T) // Y3 = U1-X3
p256SubInternal(Y1,Y0,U1H,U1L,T1,T0)
// X=R ; Y- ; MUL; U1=T // Y3 = R*Y3
VOR RL, RL, X0
// VOR RH, RH, X1
LXVD2X (R1)(R17), X1
CALL p256MulInternal<>(SB)
VOR T0, T0, U1L
VOR T1, T1, U1H
// X=S1; Y=T2; MUL; T- // T2 = S1*T2
VOR S1L, S1L, X0
VOR S1H, S1H, X1
VOR T2L, T2L, Y0
VOR T2H, T2H, Y1
CALL p256MulInternal<>(SB)
// SUB(T<U1-T); Y3:=T // Y3 = Y3-T2 << store-out Y3 result reg
p256SubInternal(T1,T0,U1H,U1L,T1,T0)
MOVD res+0(FP), P3ptr
XXPERMDI T1, T1, $2, TT1
XXPERMDI T0, T0, $2, TT0
STXVD2X TT0, (R17)(P3ptr)
STXVD2X TT1, (R18)(P3ptr)
RET