blob: d0e52ad864d8115da746223e21ed7a52a321eb94 [file] [log] [blame]
// Copyright 2011 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as
// defined in FIPS 186-4 and SEC 1, Version 2.0.
//
// Signatures generated by this package are not deterministic, but entropy is
// mixed with the private key and the message, achieving the same level of
// security in case of randomness source failure.
package ecdsa
// [FIPS 186-4] references ANSI X9.62-2005 for the bulk of the ECDSA algorithm.
// That standard is not freely available, which is a problem in an open source
// implementation, because not only the implementer, but also any maintainer,
// contributor, reviewer, auditor, and learner needs access to it. Instead, this
// package references and follows the equivalent [SEC 1, Version 2.0].
//
// [FIPS 186-4]: https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-4.pdf
// [SEC 1, Version 2.0]: https://www.secg.org/sec1-v2.pdf
import (
"crypto"
"crypto/aes"
"crypto/cipher"
"crypto/elliptic"
"crypto/internal/boring"
"crypto/internal/boring/bbig"
"crypto/internal/randutil"
"crypto/sha512"
"errors"
"io"
"math/big"
"golang.org/x/crypto/cryptobyte"
"golang.org/x/crypto/cryptobyte/asn1"
)
// A invertible implements fast inverse in GF(N).
type invertible interface {
// Inverse returns the inverse of k mod Params().N.
Inverse(k *big.Int) *big.Int
}
// A combinedMult implements fast combined multiplication for verification.
type combinedMult interface {
// CombinedMult returns [s1]G + [s2]P where G is the generator.
CombinedMult(Px, Py *big.Int, s1, s2 []byte) (x, y *big.Int)
}
const (
aesIV = "IV for ECDSA CTR"
)
// PublicKey represents an ECDSA public key.
type PublicKey struct {
elliptic.Curve
X, Y *big.Int
}
// Any methods implemented on PublicKey might need to also be implemented on
// PrivateKey, as the latter embeds the former and will expose its methods.
// Equal reports whether pub and x have the same value.
//
// Two keys are only considered to have the same value if they have the same Curve value.
// Note that for example elliptic.P256() and elliptic.P256().Params() are different
// values, as the latter is a generic not constant time implementation.
func (pub *PublicKey) Equal(x crypto.PublicKey) bool {
xx, ok := x.(*PublicKey)
if !ok {
return false
}
return pub.X.Cmp(xx.X) == 0 && pub.Y.Cmp(xx.Y) == 0 &&
// Standard library Curve implementations are singletons, so this check
// will work for those. Other Curves might be equivalent even if not
// singletons, but there is no definitive way to check for that, and
// better to err on the side of safety.
pub.Curve == xx.Curve
}
// PrivateKey represents an ECDSA private key.
type PrivateKey struct {
PublicKey
D *big.Int
}
// Public returns the public key corresponding to priv.
func (priv *PrivateKey) Public() crypto.PublicKey {
return &priv.PublicKey
}
// Equal reports whether priv and x have the same value.
//
// See PublicKey.Equal for details on how Curve is compared.
func (priv *PrivateKey) Equal(x crypto.PrivateKey) bool {
xx, ok := x.(*PrivateKey)
if !ok {
return false
}
return priv.PublicKey.Equal(&xx.PublicKey) && priv.D.Cmp(xx.D) == 0
}
// Sign signs digest with priv, reading randomness from rand. The opts argument
// is not currently used but, in keeping with the crypto.Signer interface,
// should be the hash function used to digest the message.
//
// This method implements crypto.Signer, which is an interface to support keys
// where the private part is kept in, for example, a hardware module. Common
// uses can use the SignASN1 function in this package directly.
func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) {
if boring.Enabled && rand == boring.RandReader {
b, err := boringPrivateKey(priv)
if err != nil {
return nil, err
}
return boring.SignMarshalECDSA(b, digest)
}
boring.UnreachableExceptTests()
r, s, err := Sign(rand, priv, digest)
if err != nil {
return nil, err
}
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
b.AddASN1BigInt(r)
b.AddASN1BigInt(s)
})
return b.Bytes()
}
var one = new(big.Int).SetInt64(1)
// randFieldElement returns a random element of the order of the given
// curve using the procedure given in FIPS 186-4, Appendix B.5.1.
func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) {
params := c.Params()
// Note that for P-521 this will actually be 63 bits more than the order, as
// division rounds down, but the extra bit is inconsequential.
b := make([]byte, params.N.BitLen()/8+8)
_, err = io.ReadFull(rand, b)
if err != nil {
return
}
k = new(big.Int).SetBytes(b)
n := new(big.Int).Sub(params.N, one)
k.Mod(k, n)
k.Add(k, one)
return
}
// GenerateKey generates a public and private key pair.
func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) {
if boring.Enabled && rand == boring.RandReader {
x, y, d, err := boring.GenerateKeyECDSA(c.Params().Name)
if err != nil {
return nil, err
}
return &PrivateKey{PublicKey: PublicKey{Curve: c, X: bbig.Dec(x), Y: bbig.Dec(y)}, D: bbig.Dec(d)}, nil
}
boring.UnreachableExceptTests()
k, err := randFieldElement(c, rand)
if err != nil {
return nil, err
}
priv := new(PrivateKey)
priv.PublicKey.Curve = c
priv.D = k
priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes())
return priv, nil
}
// hashToInt converts a hash value to an integer. Per FIPS 186-4, Section 6.4,
// we use the left-most bits of the hash to match the bit-length of the order of
// the curve. This also performs Step 5 of SEC 1, Version 2.0, Section 4.1.3.
func hashToInt(hash []byte, c elliptic.Curve) *big.Int {
orderBits := c.Params().N.BitLen()
orderBytes := (orderBits + 7) / 8
if len(hash) > orderBytes {
hash = hash[:orderBytes]
}
ret := new(big.Int).SetBytes(hash)
excess := len(hash)*8 - orderBits
if excess > 0 {
ret.Rsh(ret, uint(excess))
}
return ret
}
// fermatInverse calculates the inverse of k in GF(P) using Fermat's method
// (exponentiation modulo P - 2, per Euler's theorem). This has better
// constant-time properties than Euclid's method (implemented in
// math/big.Int.ModInverse and FIPS 186-4, Appendix C.1) although math/big
// itself isn't strictly constant-time so it's not perfect.
func fermatInverse(k, N *big.Int) *big.Int {
two := big.NewInt(2)
nMinus2 := new(big.Int).Sub(N, two)
return new(big.Int).Exp(k, nMinus2, N)
}
var errZeroParam = errors.New("zero parameter")
// Sign signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. If the hash is longer than the bit-length of the
// private key's curve order, the hash will be truncated to that length. It
// returns the signature as a pair of integers. Most applications should use
// SignASN1 instead of dealing directly with r, s.
func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) {
randutil.MaybeReadByte(rand)
if boring.Enabled && rand == boring.RandReader {
b, err := boringPrivateKey(priv)
if err != nil {
return nil, nil, err
}
sig, err := boring.SignMarshalECDSA(b, hash)
if err != nil {
return nil, nil, err
}
var r, s big.Int
var inner cryptobyte.String
input := cryptobyte.String(sig)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(&r) ||
!inner.ReadASN1Integer(&s) ||
!inner.Empty() {
return nil, nil, errors.New("invalid ASN.1 from boringcrypto")
}
return &r, &s, nil
}
boring.UnreachableExceptTests()
// This implementation derives the nonce from an AES-CTR CSPRNG keyed by:
//
// SHA2-512(priv.D || entropy || hash)[:32]
//
// The CSPRNG key is indifferentiable from a random oracle as shown in
// [Coron], the AES-CTR stream is indifferentiable from a random oracle
// under standard cryptographic assumptions (see [Larsson] for examples).
//
// [Coron]: https://cs.nyu.edu/~dodis/ps/merkle.pdf
// [Larsson]: https://web.archive.org/web/20040719170906/https://www.nada.kth.se/kurser/kth/2D1441/semteo03/lecturenotes/assump.pdf
// Get 256 bits of entropy from rand.
entropy := make([]byte, 32)
_, err = io.ReadFull(rand, entropy)
if err != nil {
return
}
// Initialize an SHA-512 hash context; digest...
md := sha512.New()
md.Write(priv.D.Bytes()) // the private key,
md.Write(entropy) // the entropy,
md.Write(hash) // and the input hash;
key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512),
// which is an indifferentiable MAC.
// Create an AES-CTR instance to use as a CSPRNG.
block, err := aes.NewCipher(key)
if err != nil {
return nil, nil, err
}
// Create a CSPRNG that xors a stream of zeros with
// the output of the AES-CTR instance.
csprng := &cipher.StreamReader{
R: zeroReader,
S: cipher.NewCTR(block, []byte(aesIV)),
}
c := priv.PublicKey.Curve
return sign(priv, csprng, c, hash)
}
func signGeneric(priv *PrivateKey, csprng *cipher.StreamReader, c elliptic.Curve, hash []byte) (r, s *big.Int, err error) {
// SEC 1, Version 2.0, Section 4.1.3
N := c.Params().N
if N.Sign() == 0 {
return nil, nil, errZeroParam
}
var k, kInv *big.Int
for {
for {
k, err = randFieldElement(c, *csprng)
if err != nil {
r = nil
return
}
if in, ok := priv.Curve.(invertible); ok {
kInv = in.Inverse(k)
} else {
kInv = fermatInverse(k, N) // N != 0
}
r, _ = priv.Curve.ScalarBaseMult(k.Bytes())
r.Mod(r, N)
if r.Sign() != 0 {
break
}
}
e := hashToInt(hash, c)
s = new(big.Int).Mul(priv.D, r)
s.Add(s, e)
s.Mul(s, kInv)
s.Mod(s, N) // N != 0
if s.Sign() != 0 {
break
}
}
return
}
// SignASN1 signs a hash (which should be the result of hashing a larger message)
// using the private key, priv. If the hash is longer than the bit-length of the
// private key's curve order, the hash will be truncated to that length. It
// returns the ASN.1 encoded signature.
func SignASN1(rand io.Reader, priv *PrivateKey, hash []byte) ([]byte, error) {
return priv.Sign(rand, hash, nil)
}
// Verify verifies the signature in r, s of hash using the public key, pub. Its
// return value records whether the signature is valid. Most applications should
// use VerifyASN1 instead of dealing directly with r, s.
func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool {
if boring.Enabled {
key, err := boringPublicKey(pub)
if err != nil {
return false
}
var b cryptobyte.Builder
b.AddASN1(asn1.SEQUENCE, func(b *cryptobyte.Builder) {
b.AddASN1BigInt(r)
b.AddASN1BigInt(s)
})
sig, err := b.Bytes()
if err != nil {
return false
}
return boring.VerifyECDSA(key, hash, sig)
}
boring.UnreachableExceptTests()
c := pub.Curve
N := c.Params().N
if r.Sign() <= 0 || s.Sign() <= 0 {
return false
}
if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 {
return false
}
return verify(pub, c, hash, r, s)
}
func verifyGeneric(pub *PublicKey, c elliptic.Curve, hash []byte, r, s *big.Int) bool {
// SEC 1, Version 2.0, Section 4.1.4
e := hashToInt(hash, c)
var w *big.Int
N := c.Params().N
if in, ok := c.(invertible); ok {
w = in.Inverse(s)
} else {
w = new(big.Int).ModInverse(s, N)
}
u1 := e.Mul(e, w)
u1.Mod(u1, N)
u2 := w.Mul(r, w)
u2.Mod(u2, N)
// Check if implements S1*g + S2*p
var x, y *big.Int
if opt, ok := c.(combinedMult); ok {
x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes())
} else {
x1, y1 := c.ScalarBaseMult(u1.Bytes())
x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes())
x, y = c.Add(x1, y1, x2, y2)
}
if x.Sign() == 0 && y.Sign() == 0 {
return false
}
x.Mod(x, N)
return x.Cmp(r) == 0
}
// VerifyASN1 verifies the ASN.1 encoded signature, sig, of hash using the
// public key, pub. Its return value records whether the signature is valid.
func VerifyASN1(pub *PublicKey, hash, sig []byte) bool {
var (
r, s = &big.Int{}, &big.Int{}
inner cryptobyte.String
)
input := cryptobyte.String(sig)
if !input.ReadASN1(&inner, asn1.SEQUENCE) ||
!input.Empty() ||
!inner.ReadASN1Integer(r) ||
!inner.ReadASN1Integer(s) ||
!inner.Empty() {
return false
}
return Verify(pub, hash, r, s)
}
type zr struct{}
// Read replaces the contents of dst with zeros. It is safe for concurrent use.
func (zr) Read(dst []byte) (n int, err error) {
for i := range dst {
dst[i] = 0
}
return len(dst), nil
}
var zeroReader = zr{}