| // Copyright 2009 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Garbage collector (GC). |
| // |
| // GC is: |
| // - mark&sweep |
| // - mostly precise (with the exception of some C-allocated objects, assembly frames/arguments, etc) |
| // - parallel (up to MaxGcproc threads) |
| // - partially concurrent (mark is stop-the-world, while sweep is concurrent) |
| // - non-moving/non-compacting |
| // - full (non-partial) |
| // |
| // GC rate. |
| // Next GC is after we've allocated an extra amount of memory proportional to |
| // the amount already in use. The proportion is controlled by GOGC environment variable |
| // (100 by default). If GOGC=100 and we're using 4M, we'll GC again when we get to 8M |
| // (this mark is tracked in next_gc variable). This keeps the GC cost in linear |
| // proportion to the allocation cost. Adjusting GOGC just changes the linear constant |
| // (and also the amount of extra memory used). |
| // |
| // Concurrent sweep. |
| // The sweep phase proceeds concurrently with normal program execution. |
| // The heap is swept span-by-span both lazily (when a goroutine needs another span) |
| // and concurrently in a background goroutine (this helps programs that are not CPU bound). |
| // However, at the end of the stop-the-world GC phase we don't know the size of the live heap, |
| // and so next_gc calculation is tricky and happens as follows. |
| // At the end of the stop-the-world phase next_gc is conservatively set based on total |
| // heap size; all spans are marked as "needs sweeping". |
| // Whenever a span is swept, next_gc is decremented by GOGC*newly_freed_memory. |
| // The background sweeper goroutine simply sweeps spans one-by-one bringing next_gc |
| // closer to the target value. However, this is not enough to avoid over-allocating memory. |
| // Consider that a goroutine wants to allocate a new span for a large object and |
| // there are no free swept spans, but there are small-object unswept spans. |
| // If the goroutine naively allocates a new span, it can surpass the yet-unknown |
| // target next_gc value. In order to prevent such cases (1) when a goroutine needs |
| // to allocate a new small-object span, it sweeps small-object spans for the same |
| // object size until it frees at least one object; (2) when a goroutine needs to |
| // allocate large-object span from heap, it sweeps spans until it frees at least |
| // that many pages into heap. Together these two measures ensure that we don't surpass |
| // target next_gc value by a large margin. There is an exception: if a goroutine sweeps |
| // and frees two nonadjacent one-page spans to the heap, it will allocate a new two-page span, |
| // but there can still be other one-page unswept spans which could be combined into a two-page span. |
| // It's critical to ensure that no operations proceed on unswept spans (that would corrupt |
| // mark bits in GC bitmap). During GC all mcaches are flushed into the central cache, |
| // so they are empty. When a goroutine grabs a new span into mcache, it sweeps it. |
| // When a goroutine explicitly frees an object or sets a finalizer, it ensures that |
| // the span is swept (either by sweeping it, or by waiting for the concurrent sweep to finish). |
| // The finalizer goroutine is kicked off only when all spans are swept. |
| // When the next GC starts, it sweeps all not-yet-swept spans (if any). |
| |
| #include "runtime.h" |
| #include "arch_GOARCH.h" |
| #include "malloc.h" |
| #include "stack.h" |
| #include "mgc0.h" |
| #include "chan.h" |
| #include "race.h" |
| #include "type.h" |
| #include "typekind.h" |
| #include "funcdata.h" |
| #include "textflag.h" |
| |
| enum { |
| Debug = 0, |
| DebugPtrs = 0, // if 1, print trace of every pointer load during GC |
| ConcurrentSweep = 1, |
| |
| WorkbufSize = 4*1024, |
| FinBlockSize = 4*1024, |
| RootData = 0, |
| RootBss = 1, |
| RootFinalizers = 2, |
| RootSpans = 3, |
| RootFlushCaches = 4, |
| RootCount = 5, |
| }; |
| |
| // ptrmask for an allocation containing a single pointer. |
| static byte oneptr[] = {BitsPointer}; |
| |
| // Initialized from $GOGC. GOGC=off means no gc. |
| extern int32 runtime·gcpercent; |
| |
| // Holding worldsema grants an M the right to try to stop the world. |
| // The procedure is: |
| // |
| // runtime·semacquire(&runtime·worldsema); |
| // m->gcing = 1; |
| // runtime·stoptheworld(); |
| // |
| // ... do stuff ... |
| // |
| // m->gcing = 0; |
| // runtime·semrelease(&runtime·worldsema); |
| // runtime·starttheworld(); |
| // |
| uint32 runtime·worldsema = 1; |
| |
| typedef struct Workbuf Workbuf; |
| struct Workbuf |
| { |
| LFNode node; // must be first |
| uintptr nobj; |
| byte* obj[(WorkbufSize-sizeof(LFNode)-sizeof(uintptr))/PtrSize]; |
| }; |
| |
| extern byte runtime·data[]; |
| extern byte runtime·edata[]; |
| extern byte runtime·bss[]; |
| extern byte runtime·ebss[]; |
| |
| extern byte runtime·gcdata[]; |
| extern byte runtime·gcbss[]; |
| |
| Mutex runtime·finlock; // protects the following variables |
| G* runtime·fing; // goroutine that runs finalizers |
| FinBlock* runtime·finq; // list of finalizers that are to be executed |
| FinBlock* runtime·finc; // cache of free blocks |
| static byte finptrmask[FinBlockSize/PtrSize/PointersPerByte]; |
| bool runtime·fingwait; |
| bool runtime·fingwake; |
| FinBlock *runtime·allfin; // list of all blocks |
| |
| BitVector runtime·gcdatamask; |
| BitVector runtime·gcbssmask; |
| |
| Mutex runtime·gclock; |
| |
| static uintptr badblock[1024]; |
| static int32 nbadblock; |
| |
| static Workbuf* getempty(Workbuf*); |
| static Workbuf* getfull(Workbuf*); |
| static void putempty(Workbuf*); |
| static Workbuf* handoff(Workbuf*); |
| static void gchelperstart(void); |
| static void flushallmcaches(void); |
| static bool scanframe(Stkframe *frame, void *unused); |
| static void scanstack(G *gp); |
| static BitVector unrollglobgcprog(byte *prog, uintptr size); |
| |
| void runtime·bgsweep(void); |
| static FuncVal bgsweepv = {runtime·bgsweep}; |
| |
| typedef struct WorkData WorkData; |
| struct WorkData { |
| uint64 full; // lock-free list of full blocks |
| uint64 empty; // lock-free list of empty blocks |
| byte pad0[CacheLineSize]; // prevents false-sharing between full/empty and nproc/nwait |
| uint32 nproc; |
| int64 tstart; |
| volatile uint32 nwait; |
| volatile uint32 ndone; |
| Note alldone; |
| ParFor* markfor; |
| |
| // Copy of mheap.allspans for marker or sweeper. |
| MSpan** spans; |
| uint32 nspan; |
| }; |
| WorkData runtime·work; |
| |
| // Is _cgo_allocate linked into the binary? |
| static bool |
| have_cgo_allocate(void) |
| { |
| extern byte go·weak·runtime·_cgo_allocate_internal[1]; |
| return go·weak·runtime·_cgo_allocate_internal != nil; |
| } |
| |
| // scanblock scans a block of n bytes starting at pointer b for references |
| // to other objects, scanning any it finds recursively until there are no |
| // unscanned objects left. Instead of using an explicit recursion, it keeps |
| // a work list in the Workbuf* structures and loops in the main function |
| // body. Keeping an explicit work list is easier on the stack allocator and |
| // more efficient. |
| static void |
| scanblock(byte *b, uintptr n, byte *ptrmask) |
| { |
| byte *obj, *obj0, *p, *arena_start, *arena_used, **wp, *scanbuf[8], *ptrbitp, *bitp; |
| uintptr i, j, nobj, size, idx, x, off, scanbufpos, bits, xbits, shift; |
| Workbuf *wbuf; |
| Iface *iface; |
| Eface *eface; |
| Type *typ; |
| MSpan *s; |
| pageID k; |
| bool keepworking; |
| |
| // Cache memory arena parameters in local vars. |
| arena_start = runtime·mheap.arena_start; |
| arena_used = runtime·mheap.arena_used; |
| |
| wbuf = getempty(nil); |
| nobj = wbuf->nobj; |
| wp = &wbuf->obj[nobj]; |
| keepworking = b == nil; |
| scanbufpos = 0; |
| for(i = 0; i < nelem(scanbuf); i++) |
| scanbuf[i] = nil; |
| |
| ptrbitp = nil; |
| |
| // ptrmask can have 2 possible values: |
| // 1. nil - obtain pointer mask from GC bitmap. |
| // 2. pointer to a compact mask (for stacks and data). |
| if(b != nil) |
| goto scanobj; |
| for(;;) { |
| if(nobj == 0) { |
| // Out of work in workbuf. |
| // First, see is there is any work in scanbuf. |
| for(i = 0; i < nelem(scanbuf); i++) { |
| b = scanbuf[scanbufpos]; |
| scanbuf[scanbufpos++] = nil; |
| scanbufpos %= nelem(scanbuf); |
| if(b != nil) { |
| n = arena_used - b; // scan until bitBoundary or BitsDead |
| ptrmask = nil; // use GC bitmap for pointer info |
| goto scanobj; |
| } |
| } |
| if(!keepworking) { |
| putempty(wbuf); |
| return; |
| } |
| // Refill workbuf from global queue. |
| wbuf = getfull(wbuf); |
| if(wbuf == nil) |
| return; |
| nobj = wbuf->nobj; |
| wp = &wbuf->obj[nobj]; |
| } |
| |
| // If another proc wants a pointer, give it some. |
| if(runtime·work.nwait > 0 && nobj > 4 && runtime·work.full == 0) { |
| wbuf->nobj = nobj; |
| wbuf = handoff(wbuf); |
| nobj = wbuf->nobj; |
| wp = &wbuf->obj[nobj]; |
| } |
| |
| wp--; |
| nobj--; |
| b = *wp; |
| n = arena_used - b; // scan until next bitBoundary or BitsDead |
| ptrmask = nil; // use GC bitmap for pointer info |
| |
| scanobj: |
| if(DebugPtrs) |
| runtime·printf("scanblock %p +%p %p\n", b, n, ptrmask); |
| // Find bits of the beginning of the object. |
| if(ptrmask == nil) { |
| off = (uintptr*)b - (uintptr*)arena_start; |
| ptrbitp = arena_start - off/wordsPerBitmapByte - 1; |
| } |
| for(i = 0; i < n; i += PtrSize) { |
| obj = nil; |
| // Find bits for this word. |
| if(ptrmask == nil) { |
| // Check is we have reached end of span. |
| if((((uintptr)b+i)%PageSize) == 0 && |
| runtime·mheap.spans[(b-arena_start)>>PageShift] != runtime·mheap.spans[(b+i-arena_start)>>PageShift]) |
| break; |
| // Consult GC bitmap. |
| bits = *ptrbitp; |
| |
| if(wordsPerBitmapByte != 2) |
| runtime·throw("alg doesn't work for wordsPerBitmapByte != 2"); |
| j = ((uintptr)b+i)/PtrSize & 1; |
| ptrbitp -= j; |
| bits >>= gcBits*j; |
| |
| if((bits&bitBoundary) != 0 && i != 0) |
| break; // reached beginning of the next object |
| bits = (bits>>2)&BitsMask; |
| if(bits == BitsDead) |
| break; // reached no-scan part of the object |
| } else // dense mask (stack or data) |
| bits = (ptrmask[(i/PtrSize)/4]>>(((i/PtrSize)%4)*BitsPerPointer))&BitsMask; |
| |
| if(bits <= BitsScalar) // BitsScalar || BitsDead |
| continue; |
| if(bits == BitsPointer) { |
| obj = *(byte**)(b+i); |
| obj0 = obj; |
| goto markobj; |
| } |
| |
| // With those three out of the way, must be multi-word. |
| if(Debug && bits != BitsMultiWord) |
| runtime·throw("unexpected garbage collection bits"); |
| // Find the next pair of bits. |
| if(ptrmask == nil) { |
| bits = *ptrbitp; |
| j = ((uintptr)b+i+PtrSize)/PtrSize & 1; |
| ptrbitp -= j; |
| bits >>= gcBits*j; |
| bits = (bits>>2)&BitsMask; |
| } else |
| bits = (ptrmask[((i+PtrSize)/PtrSize)/4]>>((((i+PtrSize)/PtrSize)%4)*BitsPerPointer))&BitsMask; |
| |
| if(Debug && bits != BitsIface && bits != BitsEface) |
| runtime·throw("unexpected garbage collection bits"); |
| |
| if(bits == BitsIface) { |
| iface = (Iface*)(b+i); |
| if(iface->tab != nil) { |
| typ = iface->tab->type; |
| if(!(typ->kind&KindDirectIface) || !(typ->kind&KindNoPointers)) |
| obj = iface->data; |
| } |
| } else { |
| eface = (Eface*)(b+i); |
| typ = eface->type; |
| if(typ != nil) { |
| if(!(typ->kind&KindDirectIface) || !(typ->kind&KindNoPointers)) |
| obj = eface->data; |
| } |
| } |
| |
| i += PtrSize; |
| |
| obj0 = obj; |
| markobj: |
| // At this point we have extracted the next potential pointer. |
| // Check if it points into heap. |
| if(obj == nil) |
| continue; |
| if(obj < arena_start || obj >= arena_used) { |
| if((uintptr)obj < PhysPageSize && runtime·invalidptr) { |
| s = nil; |
| goto badobj; |
| } |
| continue; |
| } |
| // Mark the object. |
| obj = (byte*)((uintptr)obj & ~(PtrSize-1)); |
| off = (uintptr*)obj - (uintptr*)arena_start; |
| bitp = arena_start - off/wordsPerBitmapByte - 1; |
| shift = (off % wordsPerBitmapByte) * gcBits; |
| xbits = *bitp; |
| bits = (xbits >> shift) & bitMask; |
| if((bits&bitBoundary) == 0) { |
| // Not a beginning of a block, consult span table to find the block beginning. |
| k = (uintptr)obj>>PageShift; |
| x = k; |
| x -= (uintptr)arena_start>>PageShift; |
| s = runtime·mheap.spans[x]; |
| if(s == nil || k < s->start || obj >= s->limit || s->state != MSpanInUse) { |
| // Stack pointers lie within the arena bounds but are not part of the GC heap. |
| // Ignore them. |
| if(s != nil && s->state == MSpanStack) |
| continue; |
| |
| badobj: |
| // If cgo_allocate is linked into the binary, it can allocate |
| // memory as []unsafe.Pointer that may not contain actual |
| // pointers and must be scanned conservatively. |
| // In this case alone, allow the bad pointer. |
| if(have_cgo_allocate() && ptrmask == nil) |
| continue; |
| |
| // Anything else indicates a bug somewhere. |
| // If we're in the middle of chasing down a different bad pointer, |
| // don't confuse the trace by printing about this one. |
| if(nbadblock > 0) |
| continue; |
| |
| runtime·printf("runtime: garbage collector found invalid heap pointer *(%p+%p)=%p", b, i, obj); |
| if(s == nil) |
| runtime·printf(" s=nil\n"); |
| else |
| runtime·printf(" span=%p-%p-%p state=%d\n", (uintptr)s->start<<PageShift, s->limit, (uintptr)(s->start+s->npages)<<PageShift, s->state); |
| if(ptrmask != nil) |
| runtime·throw("invalid heap pointer"); |
| // Add to badblock list, which will cause the garbage collection |
| // to keep repeating until it has traced the chain of pointers |
| // leading to obj all the way back to a root. |
| if(nbadblock == 0) |
| badblock[nbadblock++] = (uintptr)b; |
| continue; |
| } |
| p = (byte*)((uintptr)s->start<<PageShift); |
| if(s->sizeclass != 0) { |
| size = s->elemsize; |
| idx = ((byte*)obj - p)/size; |
| p = p+idx*size; |
| } |
| if(p == obj) { |
| runtime·printf("runtime: failed to find block beginning for %p s=%p s->limit=%p\n", |
| p, s->start*PageSize, s->limit); |
| runtime·throw("failed to find block beginning"); |
| } |
| obj = p; |
| goto markobj; |
| } |
| if(DebugPtrs) |
| runtime·printf("scan *%p = %p => base %p\n", b+i, obj0, obj); |
| |
| if(nbadblock > 0 && (uintptr)obj == badblock[nbadblock-1]) { |
| // Running garbage collection again because |
| // we want to find the path from a root to a bad pointer. |
| // Found possible next step; extend or finish path. |
| for(j=0; j<nbadblock; j++) |
| if(badblock[j] == (uintptr)b) |
| goto AlreadyBad; |
| runtime·printf("runtime: found *(%p+%p) = %p+%p\n", b, i, obj0, (uintptr)(obj-obj0)); |
| if(ptrmask != nil) |
| runtime·throw("bad pointer"); |
| if(nbadblock >= nelem(badblock)) |
| runtime·throw("badblock trace too long"); |
| badblock[nbadblock++] = (uintptr)b; |
| AlreadyBad:; |
| } |
| |
| // Now we have bits, bitp, and shift correct for |
| // obj pointing at the base of the object. |
| // Only care about not marked objects. |
| if((bits&bitMarked) != 0) |
| continue; |
| // If obj size is greater than 8, then each byte of GC bitmap |
| // contains info for at most one object. In such case we use |
| // non-atomic byte store to mark the object. This can lead |
| // to double enqueue of the object for scanning, but scanning |
| // is an idempotent operation, so it is OK. This cannot lead |
| // to bitmap corruption because the single marked bit is the |
| // only thing that can change in the byte. |
| // For 8-byte objects we use non-atomic store, if the other |
| // quadruple is already marked. Otherwise we resort to CAS |
| // loop for marking. |
| if((xbits&(bitMask|(bitMask<<gcBits))) != (bitBoundary|(bitBoundary<<gcBits)) || |
| runtime·work.nproc == 1) |
| *bitp = xbits | (bitMarked<<shift); |
| else |
| runtime·atomicor8(bitp, bitMarked<<shift); |
| |
| if(((xbits>>(shift+2))&BitsMask) == BitsDead) |
| continue; // noscan object |
| |
| // Queue the obj for scanning. |
| PREFETCH(obj); |
| p = scanbuf[scanbufpos]; |
| scanbuf[scanbufpos++] = obj; |
| scanbufpos %= nelem(scanbuf); |
| if(p == nil) |
| continue; |
| |
| // If workbuf is full, obtain an empty one. |
| if(nobj >= nelem(wbuf->obj)) { |
| wbuf->nobj = nobj; |
| wbuf = getempty(wbuf); |
| nobj = wbuf->nobj; |
| wp = &wbuf->obj[nobj]; |
| } |
| *wp = p; |
| wp++; |
| nobj++; |
| } |
| if(DebugPtrs) |
| runtime·printf("end scanblock %p +%p %p\n", b, n, ptrmask); |
| |
| if(Debug && ptrmask == nil) { |
| // For heap objects ensure that we did not overscan. |
| n = 0; |
| p = nil; |
| if(!runtime·mlookup(b, &p, &n, nil) || b != p || i > n) { |
| runtime·printf("runtime: scanned (%p,%p), heap object (%p,%p)\n", b, i, p, n); |
| runtime·throw("scanblock: scanned invalid object"); |
| } |
| } |
| } |
| } |
| |
| static void |
| markroot(ParFor *desc, uint32 i) |
| { |
| FinBlock *fb; |
| MSpan *s; |
| uint32 spanidx, sg; |
| G *gp; |
| void *p; |
| uint32 status; |
| bool restart; |
| |
| USED(&desc); |
| // Note: if you add a case here, please also update heapdump.c:dumproots. |
| switch(i) { |
| case RootData: |
| scanblock(runtime·data, runtime·edata - runtime·data, runtime·gcdatamask.bytedata); |
| break; |
| |
| case RootBss: |
| scanblock(runtime·bss, runtime·ebss - runtime·bss, runtime·gcbssmask.bytedata); |
| break; |
| |
| case RootFinalizers: |
| for(fb=runtime·allfin; fb; fb=fb->alllink) |
| scanblock((byte*)fb->fin, fb->cnt*sizeof(fb->fin[0]), finptrmask); |
| break; |
| |
| case RootSpans: |
| // mark MSpan.specials |
| sg = runtime·mheap.sweepgen; |
| for(spanidx=0; spanidx<runtime·work.nspan; spanidx++) { |
| Special *sp; |
| SpecialFinalizer *spf; |
| |
| s = runtime·work.spans[spanidx]; |
| if(s->state != MSpanInUse) |
| continue; |
| if(s->sweepgen != sg) { |
| runtime·printf("sweep %d %d\n", s->sweepgen, sg); |
| runtime·throw("gc: unswept span"); |
| } |
| for(sp = s->specials; sp != nil; sp = sp->next) { |
| if(sp->kind != KindSpecialFinalizer) |
| continue; |
| // don't mark finalized object, but scan it so we |
| // retain everything it points to. |
| spf = (SpecialFinalizer*)sp; |
| // A finalizer can be set for an inner byte of an object, find object beginning. |
| p = (void*)((s->start << PageShift) + spf->special.offset/s->elemsize*s->elemsize); |
| scanblock(p, s->elemsize, nil); |
| scanblock((void*)&spf->fn, PtrSize, oneptr); |
| } |
| } |
| break; |
| |
| case RootFlushCaches: |
| flushallmcaches(); |
| break; |
| |
| default: |
| // the rest is scanning goroutine stacks |
| if(i - RootCount >= runtime·allglen) |
| runtime·throw("markroot: bad index"); |
| gp = runtime·allg[i - RootCount]; |
| // remember when we've first observed the G blocked |
| // needed only to output in traceback |
| status = runtime·readgstatus(gp); |
| if((status == Gwaiting || status == Gsyscall) && gp->waitsince == 0) |
| gp->waitsince = runtime·work.tstart; |
| // Shrink a stack if not much of it is being used. |
| runtime·shrinkstack(gp); |
| if(runtime·readgstatus(gp) == Gdead) |
| gp->gcworkdone = true; |
| else |
| gp->gcworkdone = false; |
| restart = runtime·stopg(gp); |
| scanstack(gp); |
| if(restart) |
| runtime·restartg(gp); |
| break; |
| } |
| } |
| |
| // Get an empty work buffer off the work.empty list, |
| // allocating new buffers as needed. |
| static Workbuf* |
| getempty(Workbuf *b) |
| { |
| MCache *c; |
| |
| if(b != nil) |
| runtime·lfstackpush(&runtime·work.full, &b->node); |
| b = nil; |
| c = g->m->mcache; |
| if(c->gcworkbuf != nil) { |
| b = c->gcworkbuf; |
| c->gcworkbuf = nil; |
| } |
| if(b == nil) |
| b = (Workbuf*)runtime·lfstackpop(&runtime·work.empty); |
| if(b == nil) |
| b = runtime·persistentalloc(sizeof(*b), CacheLineSize, &mstats.gc_sys); |
| b->nobj = 0; |
| return b; |
| } |
| |
| static void |
| putempty(Workbuf *b) |
| { |
| MCache *c; |
| |
| c = g->m->mcache; |
| if(c->gcworkbuf == nil) { |
| c->gcworkbuf = b; |
| return; |
| } |
| runtime·lfstackpush(&runtime·work.empty, &b->node); |
| } |
| |
| void |
| runtime·gcworkbuffree(void *b) |
| { |
| if(b != nil) |
| putempty(b); |
| } |
| |
| // Get a full work buffer off the work.full list, or return nil. |
| static Workbuf* |
| getfull(Workbuf *b) |
| { |
| int32 i; |
| |
| if(b != nil) |
| runtime·lfstackpush(&runtime·work.empty, &b->node); |
| b = (Workbuf*)runtime·lfstackpop(&runtime·work.full); |
| if(b != nil || runtime·work.nproc == 1) |
| return b; |
| |
| runtime·xadd(&runtime·work.nwait, +1); |
| for(i=0;; i++) { |
| if(runtime·work.full != 0) { |
| runtime·xadd(&runtime·work.nwait, -1); |
| b = (Workbuf*)runtime·lfstackpop(&runtime·work.full); |
| if(b != nil) |
| return b; |
| runtime·xadd(&runtime·work.nwait, +1); |
| } |
| if(runtime·work.nwait == runtime·work.nproc) |
| return nil; |
| if(i < 10) { |
| g->m->gcstats.nprocyield++; |
| runtime·procyield(20); |
| } else if(i < 20) { |
| g->m->gcstats.nosyield++; |
| runtime·osyield(); |
| } else { |
| g->m->gcstats.nsleep++; |
| runtime·usleep(100); |
| } |
| } |
| } |
| |
| static Workbuf* |
| handoff(Workbuf *b) |
| { |
| int32 n; |
| Workbuf *b1; |
| |
| // Make new buffer with half of b's pointers. |
| b1 = getempty(nil); |
| n = b->nobj/2; |
| b->nobj -= n; |
| b1->nobj = n; |
| runtime·memmove(b1->obj, b->obj+b->nobj, n*sizeof b1->obj[0]); |
| g->m->gcstats.nhandoff++; |
| g->m->gcstats.nhandoffcnt += n; |
| |
| // Put b on full list - let first half of b get stolen. |
| runtime·lfstackpush(&runtime·work.full, &b->node); |
| return b1; |
| } |
| |
| BitVector |
| runtime·stackmapdata(StackMap *stackmap, int32 n) |
| { |
| if(n < 0 || n >= stackmap->n) |
| runtime·throw("stackmapdata: index out of range"); |
| return (BitVector){stackmap->nbit, stackmap->bytedata + n*((stackmap->nbit+31)/32*4)}; |
| } |
| |
| // Scan a stack frame: local variables and function arguments/results. |
| static bool |
| scanframe(Stkframe *frame, void *unused) |
| { |
| Func *f; |
| StackMap *stackmap; |
| BitVector bv; |
| uintptr size, minsize; |
| uintptr targetpc; |
| int32 pcdata; |
| |
| USED(unused); |
| f = frame->fn; |
| targetpc = frame->continpc; |
| if(targetpc == 0) { |
| // Frame is dead. |
| return true; |
| } |
| if(Debug > 1) |
| runtime·printf("scanframe %s\n", runtime·funcname(f)); |
| if(targetpc != f->entry) |
| targetpc--; |
| pcdata = runtime·pcdatavalue(f, PCDATA_StackMapIndex, targetpc); |
| if(pcdata == -1) { |
| // We do not have a valid pcdata value but there might be a |
| // stackmap for this function. It is likely that we are looking |
| // at the function prologue, assume so and hope for the best. |
| pcdata = 0; |
| } |
| |
| // Scan local variables if stack frame has been allocated. |
| size = frame->varp - frame->sp; |
| if(thechar != '6' && thechar != '8') |
| minsize = sizeof(uintptr); |
| else |
| minsize = 0; |
| if(size > minsize) { |
| stackmap = runtime·funcdata(f, FUNCDATA_LocalsPointerMaps); |
| if(stackmap == nil || stackmap->n <= 0) { |
| runtime·printf("runtime: frame %s untyped locals %p+%p\n", runtime·funcname(f), (byte*)(frame->varp-size), size); |
| runtime·throw("missing stackmap"); |
| } |
| |
| // Locals bitmap information, scan just the pointers in locals. |
| if(pcdata < 0 || pcdata >= stackmap->n) { |
| // don't know where we are |
| runtime·printf("runtime: pcdata is %d and %d locals stack map entries for %s (targetpc=%p)\n", |
| pcdata, stackmap->n, runtime·funcname(f), targetpc); |
| runtime·throw("scanframe: bad symbol table"); |
| } |
| bv = runtime·stackmapdata(stackmap, pcdata); |
| size = (bv.n * PtrSize) / BitsPerPointer; |
| scanblock((byte*)(frame->varp - size), bv.n/BitsPerPointer*PtrSize, bv.bytedata); |
| } |
| |
| // Scan arguments. |
| if(frame->arglen > 0) { |
| if(frame->argmap != nil) |
| bv = *frame->argmap; |
| else { |
| stackmap = runtime·funcdata(f, FUNCDATA_ArgsPointerMaps); |
| if(stackmap == nil || stackmap->n <= 0) { |
| runtime·printf("runtime: frame %s untyped args %p+%p\n", runtime·funcname(f), frame->argp, (uintptr)frame->arglen); |
| runtime·throw("missing stackmap"); |
| } |
| if(pcdata < 0 || pcdata >= stackmap->n) { |
| // don't know where we are |
| runtime·printf("runtime: pcdata is %d and %d args stack map entries for %s (targetpc=%p)\n", |
| pcdata, stackmap->n, runtime·funcname(f), targetpc); |
| runtime·throw("scanframe: bad symbol table"); |
| } |
| bv = runtime·stackmapdata(stackmap, pcdata); |
| } |
| scanblock((byte*)frame->argp, bv.n/BitsPerPointer*PtrSize, bv.bytedata); |
| } |
| return true; |
| } |
| |
| static void |
| scanstack(G *gp) |
| { |
| M *mp; |
| bool (*fn)(Stkframe*, void*); |
| |
| if(runtime·readgstatus(gp)&Gscan == 0) { |
| runtime·printf("runtime: gp=%p, goid=%D, gp->atomicstatus=%d\n", gp, gp->goid, runtime·readgstatus(gp)); |
| runtime·throw("mark - bad status"); |
| } |
| |
| switch(runtime·readgstatus(gp)&~Gscan) { |
| default: |
| runtime·printf("runtime: gp=%p, goid=%D, gp->atomicstatus=%d\n", gp, gp->goid, runtime·readgstatus(gp)); |
| runtime·throw("mark - bad status"); |
| case Gdead: |
| return; |
| case Grunning: |
| runtime·printf("runtime: gp=%p, goid=%D, gp->atomicstatus=%d\n", gp, gp->goid, runtime·readgstatus(gp)); |
| runtime·throw("mark - world not stopped"); |
| case Grunnable: |
| case Gsyscall: |
| case Gwaiting: |
| break; |
| } |
| |
| if(gp == g) |
| runtime·throw("can't scan our own stack"); |
| if((mp = gp->m) != nil && mp->helpgc) |
| runtime·throw("can't scan gchelper stack"); |
| |
| fn = scanframe; |
| runtime·gentraceback(~(uintptr)0, ~(uintptr)0, 0, gp, 0, nil, 0x7fffffff, &fn, nil, 0); |
| runtime·tracebackdefers(gp, &fn, nil); |
| } |
| |
| // The gp has been moved to a gc safepoint. If there is gcphase specific |
| // work it is done here. |
| void |
| runtime·gcphasework(G *gp) |
| { |
| switch(runtime·gcphase) { |
| default: |
| runtime·throw("gcphasework in bad gcphase"); |
| case GCoff: |
| case GCquiesce: |
| case GCstw: |
| case GCsweep: |
| // No work for now. |
| break; |
| case GCmark: |
| // Disabled until concurrent GC is implemented |
| // but indicate the scan has been done. |
| // scanstack(gp); |
| break; |
| } |
| gp->gcworkdone = true; |
| } |
| |
| #pragma dataflag NOPTR |
| static byte finalizer1[] = { |
| // Each Finalizer is 5 words, ptr ptr uintptr ptr ptr. |
| // Each byte describes 4 words. |
| // Need 4 Finalizers described by 5 bytes before pattern repeats: |
| // ptr ptr uintptr ptr ptr |
| // ptr ptr uintptr ptr ptr |
| // ptr ptr uintptr ptr ptr |
| // ptr ptr uintptr ptr ptr |
| // aka |
| // ptr ptr uintptr ptr |
| // ptr ptr ptr uintptr |
| // ptr ptr ptr ptr |
| // uintptr ptr ptr ptr |
| // ptr uintptr ptr ptr |
| // Assumptions about Finalizer layout checked below. |
| BitsPointer | BitsPointer<<2 | BitsScalar<<4 | BitsPointer<<6, |
| BitsPointer | BitsPointer<<2 | BitsPointer<<4 | BitsScalar<<6, |
| BitsPointer | BitsPointer<<2 | BitsPointer<<4 | BitsPointer<<6, |
| BitsScalar | BitsPointer<<2 | BitsPointer<<4 | BitsPointer<<6, |
| BitsPointer | BitsScalar<<2 | BitsPointer<<4 | BitsPointer<<6, |
| }; |
| |
| void |
| runtime·queuefinalizer(byte *p, FuncVal *fn, uintptr nret, Type *fint, PtrType *ot) |
| { |
| FinBlock *block; |
| Finalizer *f; |
| int32 i; |
| |
| runtime·lock(&runtime·finlock); |
| if(runtime·finq == nil || runtime·finq->cnt == runtime·finq->cap) { |
| if(runtime·finc == nil) { |
| runtime·finc = runtime·persistentalloc(FinBlockSize, 0, &mstats.gc_sys); |
| runtime·finc->cap = (FinBlockSize - sizeof(FinBlock)) / sizeof(Finalizer) + 1; |
| runtime·finc->alllink = runtime·allfin; |
| runtime·allfin = runtime·finc; |
| if(finptrmask[0] == 0) { |
| // Build pointer mask for Finalizer array in block. |
| // Check assumptions made in finalizer1 array above. |
| if(sizeof(Finalizer) != 5*PtrSize || |
| offsetof(Finalizer, fn) != 0 || |
| offsetof(Finalizer, arg) != PtrSize || |
| offsetof(Finalizer, nret) != 2*PtrSize || |
| offsetof(Finalizer, fint) != 3*PtrSize || |
| offsetof(Finalizer, ot) != 4*PtrSize || |
| BitsPerPointer != 2) { |
| runtime·throw("finalizer out of sync"); |
| } |
| for(i=0; i<nelem(finptrmask); i++) |
| finptrmask[i] = finalizer1[i%nelem(finalizer1)]; |
| } |
| } |
| block = runtime·finc; |
| runtime·finc = block->next; |
| block->next = runtime·finq; |
| runtime·finq = block; |
| } |
| f = &runtime·finq->fin[runtime·finq->cnt]; |
| runtime·finq->cnt++; |
| f->fn = fn; |
| f->nret = nret; |
| f->fint = fint; |
| f->ot = ot; |
| f->arg = p; |
| runtime·fingwake = true; |
| runtime·unlock(&runtime·finlock); |
| } |
| |
| void |
| runtime·iterate_finq(void (*callback)(FuncVal*, byte*, uintptr, Type*, PtrType*)) |
| { |
| FinBlock *fb; |
| Finalizer *f; |
| uintptr i; |
| |
| for(fb = runtime·allfin; fb; fb = fb->alllink) { |
| for(i = 0; i < fb->cnt; i++) { |
| f = &fb->fin[i]; |
| callback(f->fn, f->arg, f->nret, f->fint, f->ot); |
| } |
| } |
| } |
| |
| void |
| runtime·MSpan_EnsureSwept(MSpan *s) |
| { |
| uint32 sg; |
| |
| // Caller must disable preemption. |
| // Otherwise when this function returns the span can become unswept again |
| // (if GC is triggered on another goroutine). |
| if(g->m->locks == 0 && g->m->mallocing == 0 && g != g->m->g0) |
| runtime·throw("MSpan_EnsureSwept: m is not locked"); |
| |
| sg = runtime·mheap.sweepgen; |
| if(runtime·atomicload(&s->sweepgen) == sg) |
| return; |
| if(runtime·cas(&s->sweepgen, sg-2, sg-1)) { |
| runtime·MSpan_Sweep(s, false); |
| return; |
| } |
| // unfortunate condition, and we don't have efficient means to wait |
| while(runtime·atomicload(&s->sweepgen) != sg) |
| runtime·osyield(); |
| } |
| |
| // Sweep frees or collects finalizers for blocks not marked in the mark phase. |
| // It clears the mark bits in preparation for the next GC round. |
| // Returns true if the span was returned to heap. |
| // If preserve=true, don't return it to heap nor relink in MCentral lists; |
| // caller takes care of it. |
| bool |
| runtime·MSpan_Sweep(MSpan *s, bool preserve) |
| { |
| int32 cl, n, npages, nfree; |
| uintptr size, off, step; |
| uint32 sweepgen; |
| byte *p, *bitp, shift, xbits, bits; |
| MCache *c; |
| byte *arena_start; |
| MLink head, *end, *link; |
| Special *special, **specialp, *y; |
| bool res, sweepgenset; |
| |
| // It's critical that we enter this function with preemption disabled, |
| // GC must not start while we are in the middle of this function. |
| if(g->m->locks == 0 && g->m->mallocing == 0 && g != g->m->g0) |
| runtime·throw("MSpan_Sweep: m is not locked"); |
| sweepgen = runtime·mheap.sweepgen; |
| if(s->state != MSpanInUse || s->sweepgen != sweepgen-1) { |
| runtime·printf("MSpan_Sweep: state=%d sweepgen=%d mheap.sweepgen=%d\n", |
| s->state, s->sweepgen, sweepgen); |
| runtime·throw("MSpan_Sweep: bad span state"); |
| } |
| arena_start = runtime·mheap.arena_start; |
| cl = s->sizeclass; |
| size = s->elemsize; |
| if(cl == 0) { |
| n = 1; |
| } else { |
| // Chunk full of small blocks. |
| npages = runtime·class_to_allocnpages[cl]; |
| n = (npages << PageShift) / size; |
| } |
| res = false; |
| nfree = 0; |
| end = &head; |
| c = g->m->mcache; |
| sweepgenset = false; |
| |
| // Mark any free objects in this span so we don't collect them. |
| for(link = s->freelist; link != nil; link = link->next) { |
| off = (uintptr*)link - (uintptr*)arena_start; |
| bitp = arena_start - off/wordsPerBitmapByte - 1; |
| shift = (off % wordsPerBitmapByte) * gcBits; |
| *bitp |= bitMarked<<shift; |
| } |
| |
| // Unlink & free special records for any objects we're about to free. |
| specialp = &s->specials; |
| special = *specialp; |
| while(special != nil) { |
| // A finalizer can be set for an inner byte of an object, find object beginning. |
| p = (byte*)(s->start << PageShift) + special->offset/size*size; |
| off = (uintptr*)p - (uintptr*)arena_start; |
| bitp = arena_start - off/wordsPerBitmapByte - 1; |
| shift = (off % wordsPerBitmapByte) * gcBits; |
| bits = (*bitp>>shift) & bitMask; |
| if((bits&bitMarked) == 0) { |
| // Find the exact byte for which the special was setup |
| // (as opposed to object beginning). |
| p = (byte*)(s->start << PageShift) + special->offset; |
| // about to free object: splice out special record |
| y = special; |
| special = special->next; |
| *specialp = special; |
| if(!runtime·freespecial(y, p, size, false)) { |
| // stop freeing of object if it has a finalizer |
| *bitp |= bitMarked << shift; |
| } |
| } else { |
| // object is still live: keep special record |
| specialp = &special->next; |
| special = *specialp; |
| } |
| } |
| |
| // Sweep through n objects of given size starting at p. |
| // This thread owns the span now, so it can manipulate |
| // the block bitmap without atomic operations. |
| p = (byte*)(s->start << PageShift); |
| // Find bits for the beginning of the span. |
| off = (uintptr*)p - (uintptr*)arena_start; |
| bitp = arena_start - off/wordsPerBitmapByte - 1; |
| shift = 0; |
| step = size/(PtrSize*wordsPerBitmapByte); |
| // Rewind to the previous quadruple as we move to the next |
| // in the beginning of the loop. |
| bitp += step; |
| if(step == 0) { |
| // 8-byte objects. |
| bitp++; |
| shift = gcBits; |
| } |
| for(; n > 0; n--, p += size) { |
| bitp -= step; |
| if(step == 0) { |
| if(shift != 0) |
| bitp--; |
| shift = gcBits - shift; |
| } |
| |
| xbits = *bitp; |
| bits = (xbits>>shift) & bitMask; |
| |
| // Allocated and marked object, reset bits to allocated. |
| if((bits&bitMarked) != 0) { |
| *bitp &= ~(bitMarked<<shift); |
| continue; |
| } |
| // At this point we know that we are looking at garbage object |
| // that needs to be collected. |
| if(runtime·debug.allocfreetrace) |
| runtime·tracefree(p, size); |
| // Reset to allocated+noscan. |
| *bitp = (xbits & ~((bitMarked|(BitsMask<<2))<<shift)) | ((uintptr)BitsDead<<(shift+2)); |
| if(cl == 0) { |
| // Free large span. |
| if(preserve) |
| runtime·throw("can't preserve large span"); |
| runtime·unmarkspan(p, s->npages<<PageShift); |
| s->needzero = 1; |
| // important to set sweepgen before returning it to heap |
| runtime·atomicstore(&s->sweepgen, sweepgen); |
| sweepgenset = true; |
| // NOTE(rsc,dvyukov): The original implementation of efence |
| // in CL 22060046 used SysFree instead of SysFault, so that |
| // the operating system would eventually give the memory |
| // back to us again, so that an efence program could run |
| // longer without running out of memory. Unfortunately, |
| // calling SysFree here without any kind of adjustment of the |
| // heap data structures means that when the memory does |
| // come back to us, we have the wrong metadata for it, either in |
| // the MSpan structures or in the garbage collection bitmap. |
| // Using SysFault here means that the program will run out of |
| // memory fairly quickly in efence mode, but at least it won't |
| // have mysterious crashes due to confused memory reuse. |
| // It should be possible to switch back to SysFree if we also |
| // implement and then call some kind of MHeap_DeleteSpan. |
| if(runtime·debug.efence) { |
| s->limit = nil; // prevent mlookup from finding this span |
| runtime·SysFault(p, size); |
| } else |
| runtime·MHeap_Free(&runtime·mheap, s, 1); |
| c->local_nlargefree++; |
| c->local_largefree += size; |
| runtime·xadd64(&mstats.next_gc, -(uint64)(size * (runtime·gcpercent + 100)/100)); |
| res = true; |
| } else { |
| // Free small object. |
| if(size > 2*sizeof(uintptr)) |
| ((uintptr*)p)[1] = (uintptr)0xdeaddeaddeaddeadll; // mark as "needs to be zeroed" |
| else if(size > sizeof(uintptr)) |
| ((uintptr*)p)[1] = 0; |
| |
| end->next = (MLink*)p; |
| end = (MLink*)p; |
| nfree++; |
| } |
| } |
| |
| // We need to set s->sweepgen = h->sweepgen only when all blocks are swept, |
| // because of the potential for a concurrent free/SetFinalizer. |
| // But we need to set it before we make the span available for allocation |
| // (return it to heap or mcentral), because allocation code assumes that a |
| // span is already swept if available for allocation. |
| |
| if(!sweepgenset && nfree == 0) { |
| // The span must be in our exclusive ownership until we update sweepgen, |
| // check for potential races. |
| if(s->state != MSpanInUse || s->sweepgen != sweepgen-1) { |
| runtime·printf("MSpan_Sweep: state=%d sweepgen=%d mheap.sweepgen=%d\n", |
| s->state, s->sweepgen, sweepgen); |
| runtime·throw("MSpan_Sweep: bad span state after sweep"); |
| } |
| runtime·atomicstore(&s->sweepgen, sweepgen); |
| } |
| if(nfree > 0) { |
| c->local_nsmallfree[cl] += nfree; |
| c->local_cachealloc -= nfree * size; |
| runtime·xadd64(&mstats.next_gc, -(uint64)(nfree * size * (runtime·gcpercent + 100)/100)); |
| res = runtime·MCentral_FreeSpan(&runtime·mheap.central[cl].mcentral, s, nfree, head.next, end, preserve); |
| // MCentral_FreeSpan updates sweepgen |
| } |
| return res; |
| } |
| |
| // State of background runtime·sweep. |
| // Protected by runtime·gclock. |
| typedef struct SweepData SweepData; |
| struct SweepData |
| { |
| G* g; |
| bool parked; |
| |
| uint32 spanidx; // background sweeper position |
| |
| uint32 nbgsweep; |
| uint32 npausesweep; |
| }; |
| SweepData runtime·sweep; |
| |
| // sweeps one span |
| // returns number of pages returned to heap, or -1 if there is nothing to sweep |
| uintptr |
| runtime·sweepone(void) |
| { |
| MSpan *s; |
| uint32 idx, sg; |
| uintptr npages; |
| |
| // increment locks to ensure that the goroutine is not preempted |
| // in the middle of sweep thus leaving the span in an inconsistent state for next GC |
| g->m->locks++; |
| sg = runtime·mheap.sweepgen; |
| for(;;) { |
| idx = runtime·xadd(&runtime·sweep.spanidx, 1) - 1; |
| if(idx >= runtime·work.nspan) { |
| runtime·mheap.sweepdone = true; |
| g->m->locks--; |
| return -1; |
| } |
| s = runtime·work.spans[idx]; |
| if(s->state != MSpanInUse) { |
| s->sweepgen = sg; |
| continue; |
| } |
| if(s->sweepgen != sg-2 || !runtime·cas(&s->sweepgen, sg-2, sg-1)) |
| continue; |
| npages = s->npages; |
| if(!runtime·MSpan_Sweep(s, false)) |
| npages = 0; |
| g->m->locks--; |
| return npages; |
| } |
| } |
| |
| static void |
| sweepone_m(void) |
| { |
| g->m->scalararg[0] = runtime·sweepone(); |
| } |
| |
| #pragma textflag NOSPLIT |
| uintptr |
| runtime·gosweepone(void) |
| { |
| void (*fn)(void); |
| |
| fn = sweepone_m; |
| runtime·onM(&fn); |
| return g->m->scalararg[0]; |
| } |
| |
| #pragma textflag NOSPLIT |
| bool |
| runtime·gosweepdone(void) |
| { |
| return runtime·mheap.sweepdone; |
| } |
| |
| void |
| runtime·gchelper(void) |
| { |
| uint32 nproc; |
| |
| g->m->traceback = 2; |
| gchelperstart(); |
| |
| // parallel mark for over gc roots |
| runtime·parfordo(runtime·work.markfor); |
| |
| // help other threads scan secondary blocks |
| scanblock(nil, 0, nil); |
| |
| nproc = runtime·work.nproc; // runtime·work.nproc can change right after we increment runtime·work.ndone |
| if(runtime·xadd(&runtime·work.ndone, +1) == nproc-1) |
| runtime·notewakeup(&runtime·work.alldone); |
| g->m->traceback = 0; |
| } |
| |
| static void |
| cachestats(void) |
| { |
| MCache *c; |
| P *p, **pp; |
| |
| for(pp=runtime·allp; p=*pp; pp++) { |
| c = p->mcache; |
| if(c==nil) |
| continue; |
| runtime·purgecachedstats(c); |
| } |
| } |
| |
| static void |
| flushallmcaches(void) |
| { |
| P *p, **pp; |
| MCache *c; |
| |
| // Flush MCache's to MCentral. |
| for(pp=runtime·allp; p=*pp; pp++) { |
| c = p->mcache; |
| if(c==nil) |
| continue; |
| runtime·MCache_ReleaseAll(c); |
| runtime·stackcache_clear(c); |
| } |
| } |
| |
| static void |
| flushallmcaches_m(G *gp) |
| { |
| flushallmcaches(); |
| runtime·gogo(&gp->sched); |
| } |
| |
| void |
| runtime·updatememstats(GCStats *stats) |
| { |
| M *mp; |
| MSpan *s; |
| int32 i; |
| uint64 smallfree; |
| uint64 *src, *dst; |
| void (*fn)(G*); |
| |
| if(stats) |
| runtime·memclr((byte*)stats, sizeof(*stats)); |
| for(mp=runtime·allm; mp; mp=mp->alllink) { |
| if(stats) { |
| src = (uint64*)&mp->gcstats; |
| dst = (uint64*)stats; |
| for(i=0; i<sizeof(*stats)/sizeof(uint64); i++) |
| dst[i] += src[i]; |
| runtime·memclr((byte*)&mp->gcstats, sizeof(mp->gcstats)); |
| } |
| } |
| mstats.mcache_inuse = runtime·mheap.cachealloc.inuse; |
| mstats.mspan_inuse = runtime·mheap.spanalloc.inuse; |
| mstats.sys = mstats.heap_sys + mstats.stacks_sys + mstats.mspan_sys + |
| mstats.mcache_sys + mstats.buckhash_sys + mstats.gc_sys + mstats.other_sys; |
| |
| // Calculate memory allocator stats. |
| // During program execution we only count number of frees and amount of freed memory. |
| // Current number of alive object in the heap and amount of alive heap memory |
| // are calculated by scanning all spans. |
| // Total number of mallocs is calculated as number of frees plus number of alive objects. |
| // Similarly, total amount of allocated memory is calculated as amount of freed memory |
| // plus amount of alive heap memory. |
| mstats.alloc = 0; |
| mstats.total_alloc = 0; |
| mstats.nmalloc = 0; |
| mstats.nfree = 0; |
| for(i = 0; i < nelem(mstats.by_size); i++) { |
| mstats.by_size[i].nmalloc = 0; |
| mstats.by_size[i].nfree = 0; |
| } |
| |
| // Flush MCache's to MCentral. |
| if(g == g->m->g0) |
| flushallmcaches(); |
| else { |
| fn = flushallmcaches_m; |
| runtime·mcall(&fn); |
| } |
| |
| // Aggregate local stats. |
| cachestats(); |
| |
| // Scan all spans and count number of alive objects. |
| runtime·lock(&runtime·mheap.lock); |
| for(i = 0; i < runtime·mheap.nspan; i++) { |
| s = runtime·mheap.allspans[i]; |
| if(s->state != MSpanInUse) |
| continue; |
| if(s->sizeclass == 0) { |
| mstats.nmalloc++; |
| mstats.alloc += s->elemsize; |
| } else { |
| mstats.nmalloc += s->ref; |
| mstats.by_size[s->sizeclass].nmalloc += s->ref; |
| mstats.alloc += s->ref*s->elemsize; |
| } |
| } |
| runtime·unlock(&runtime·mheap.lock); |
| |
| // Aggregate by size class. |
| smallfree = 0; |
| mstats.nfree = runtime·mheap.nlargefree; |
| for(i = 0; i < nelem(mstats.by_size); i++) { |
| mstats.nfree += runtime·mheap.nsmallfree[i]; |
| mstats.by_size[i].nfree = runtime·mheap.nsmallfree[i]; |
| mstats.by_size[i].nmalloc += runtime·mheap.nsmallfree[i]; |
| smallfree += runtime·mheap.nsmallfree[i] * runtime·class_to_size[i]; |
| } |
| mstats.nfree += mstats.tinyallocs; |
| mstats.nmalloc += mstats.nfree; |
| |
| // Calculate derived stats. |
| mstats.total_alloc = mstats.alloc + runtime·mheap.largefree + smallfree; |
| mstats.heap_alloc = mstats.alloc; |
| mstats.heap_objects = mstats.nmalloc - mstats.nfree; |
| } |
| |
| // Structure of arguments passed to function gc(). |
| // This allows the arguments to be passed via runtime·mcall. |
| struct gc_args |
| { |
| int64 start_time; // start time of GC in ns (just before stoptheworld) |
| bool eagersweep; |
| }; |
| |
| static void gc(struct gc_args *args); |
| |
| int32 |
| runtime·readgogc(void) |
| { |
| byte *p; |
| |
| p = runtime·getenv("GOGC"); |
| if(p == nil || p[0] == '\0') |
| return 100; |
| if(runtime·strcmp(p, (byte*)"off") == 0) |
| return -1; |
| return runtime·atoi(p); |
| } |
| |
| void |
| runtime·gcinit(void) |
| { |
| if(sizeof(Workbuf) != WorkbufSize) |
| runtime·throw("runtime: size of Workbuf is suboptimal"); |
| |
| runtime·work.markfor = runtime·parforalloc(MaxGcproc); |
| runtime·gcpercent = runtime·readgogc(); |
| runtime·gcdatamask = unrollglobgcprog(runtime·gcdata, runtime·edata - runtime·data); |
| runtime·gcbssmask = unrollglobgcprog(runtime·gcbss, runtime·ebss - runtime·bss); |
| } |
| |
| void |
| runtime·gc_m(void) |
| { |
| struct gc_args a; |
| G *gp; |
| |
| gp = g->m->curg; |
| runtime·casgstatus(gp, Grunning, Gwaiting); |
| gp->waitreason = runtime·gostringnocopy((byte*)"garbage collection"); |
| |
| a.start_time = (uint64)(g->m->scalararg[0]) | ((uint64)(g->m->scalararg[1]) << 32); |
| a.eagersweep = g->m->scalararg[2]; |
| gc(&a); |
| |
| if(nbadblock > 0) { |
| // Work out path from root to bad block. |
| for(;;) { |
| gc(&a); |
| if(nbadblock >= nelem(badblock)) |
| runtime·throw("cannot find path to bad pointer"); |
| } |
| } |
| |
| runtime·casgstatus(gp, Gwaiting, Grunning); |
| } |
| |
| static void |
| gc(struct gc_args *args) |
| { |
| int64 t0, t1, t2, t3, t4; |
| uint64 heap0, heap1, obj; |
| GCStats stats; |
| |
| if(DebugPtrs) |
| runtime·printf("GC start\n"); |
| |
| if(runtime·debug.allocfreetrace) |
| runtime·tracegc(); |
| |
| g->m->traceback = 2; |
| t0 = args->start_time; |
| runtime·work.tstart = args->start_time; |
| |
| t1 = 0; |
| if(runtime·debug.gctrace) |
| t1 = runtime·nanotime(); |
| |
| // Sweep what is not sweeped by bgsweep. |
| while(runtime·sweepone() != -1) |
| runtime·sweep.npausesweep++; |
| |
| // Cache runtime.mheap.allspans in work.spans to avoid conflicts with |
| // resizing/freeing allspans. |
| // New spans can be created while GC progresses, but they are not garbage for |
| // this round: |
| // - new stack spans can be created even while the world is stopped. |
| // - new malloc spans can be created during the concurrent sweep |
| |
| // Even if this is stop-the-world, a concurrent exitsyscall can allocate a stack from heap. |
| runtime·lock(&runtime·mheap.lock); |
| // Free the old cached sweep array if necessary. |
| if(runtime·work.spans != nil && runtime·work.spans != runtime·mheap.allspans) |
| runtime·SysFree(runtime·work.spans, runtime·work.nspan*sizeof(runtime·work.spans[0]), &mstats.other_sys); |
| // Cache the current array for marking. |
| runtime·mheap.gcspans = runtime·mheap.allspans; |
| runtime·work.spans = runtime·mheap.allspans; |
| runtime·work.nspan = runtime·mheap.nspan; |
| runtime·unlock(&runtime·mheap.lock); |
| |
| runtime·work.nwait = 0; |
| runtime·work.ndone = 0; |
| runtime·work.nproc = runtime·gcprocs(); |
| runtime·parforsetup(runtime·work.markfor, runtime·work.nproc, RootCount + runtime·allglen, nil, false, markroot); |
| if(runtime·work.nproc > 1) { |
| runtime·noteclear(&runtime·work.alldone); |
| runtime·helpgc(runtime·work.nproc); |
| } |
| |
| t2 = 0; |
| if(runtime·debug.gctrace) |
| t2 = runtime·nanotime(); |
| |
| gchelperstart(); |
| runtime·parfordo(runtime·work.markfor); |
| scanblock(nil, 0, nil); |
| |
| t3 = 0; |
| if(runtime·debug.gctrace) |
| t3 = runtime·nanotime(); |
| |
| if(runtime·work.nproc > 1) |
| runtime·notesleep(&runtime·work.alldone); |
| |
| runtime·shrinkfinish(); |
| |
| cachestats(); |
| // next_gc calculation is tricky with concurrent sweep since we don't know size of live heap |
| // estimate what was live heap size after previous GC (for tracing only) |
| heap0 = mstats.next_gc*100/(runtime·gcpercent+100); |
| // conservatively set next_gc to high value assuming that everything is live |
| // concurrent/lazy sweep will reduce this number while discovering new garbage |
| mstats.next_gc = mstats.heap_alloc+mstats.heap_alloc*runtime·gcpercent/100; |
| |
| t4 = runtime·nanotime(); |
| runtime·atomicstore64(&mstats.last_gc, runtime·unixnanotime()); // must be Unix time to make sense to user |
| mstats.pause_ns[mstats.numgc%nelem(mstats.pause_ns)] = t4 - t0; |
| mstats.pause_end[mstats.numgc%nelem(mstats.pause_end)] = t4; |
| mstats.pause_total_ns += t4 - t0; |
| mstats.numgc++; |
| if(mstats.debuggc) |
| runtime·printf("pause %D\n", t4-t0); |
| |
| if(runtime·debug.gctrace) { |
| heap1 = mstats.heap_alloc; |
| runtime·updatememstats(&stats); |
| if(heap1 != mstats.heap_alloc) { |
| runtime·printf("runtime: mstats skew: heap=%D/%D\n", heap1, mstats.heap_alloc); |
| runtime·throw("mstats skew"); |
| } |
| obj = mstats.nmalloc - mstats.nfree; |
| |
| stats.nprocyield += runtime·work.markfor->nprocyield; |
| stats.nosyield += runtime·work.markfor->nosyield; |
| stats.nsleep += runtime·work.markfor->nsleep; |
| |
| runtime·printf("gc%d(%d): %D+%D+%D+%D us, %D -> %D MB, %D (%D-%D) objects," |
| " %d goroutines," |
| " %d/%d/%d sweeps," |
| " %D(%D) handoff, %D(%D) steal, %D/%D/%D yields\n", |
| mstats.numgc, runtime·work.nproc, (t1-t0)/1000, (t2-t1)/1000, (t3-t2)/1000, (t4-t3)/1000, |
| heap0>>20, heap1>>20, obj, |
| mstats.nmalloc, mstats.nfree, |
| runtime·gcount(), |
| runtime·work.nspan, runtime·sweep.nbgsweep, runtime·sweep.npausesweep, |
| stats.nhandoff, stats.nhandoffcnt, |
| runtime·work.markfor->nsteal, runtime·work.markfor->nstealcnt, |
| stats.nprocyield, stats.nosyield, stats.nsleep); |
| runtime·sweep.nbgsweep = runtime·sweep.npausesweep = 0; |
| } |
| |
| // See the comment in the beginning of this function as to why we need the following. |
| // Even if this is still stop-the-world, a concurrent exitsyscall can allocate a stack from heap. |
| runtime·lock(&runtime·mheap.lock); |
| // Free the old cached mark array if necessary. |
| if(runtime·work.spans != nil && runtime·work.spans != runtime·mheap.allspans) |
| runtime·SysFree(runtime·work.spans, runtime·work.nspan*sizeof(runtime·work.spans[0]), &mstats.other_sys); |
| // Cache the current array for sweeping. |
| runtime·mheap.gcspans = runtime·mheap.allspans; |
| runtime·mheap.sweepgen += 2; |
| runtime·mheap.sweepdone = false; |
| runtime·work.spans = runtime·mheap.allspans; |
| runtime·work.nspan = runtime·mheap.nspan; |
| runtime·sweep.spanidx = 0; |
| runtime·unlock(&runtime·mheap.lock); |
| |
| if(ConcurrentSweep && !args->eagersweep) { |
| runtime·lock(&runtime·gclock); |
| if(runtime·sweep.g == nil) |
| runtime·sweep.g = runtime·newproc1(&bgsweepv, nil, 0, 0, gc); |
| else if(runtime·sweep.parked) { |
| runtime·sweep.parked = false; |
| runtime·ready(runtime·sweep.g); |
| } |
| runtime·unlock(&runtime·gclock); |
| } else { |
| // Sweep all spans eagerly. |
| while(runtime·sweepone() != -1) |
| runtime·sweep.npausesweep++; |
| // Do an additional mProf_GC, because all 'free' events are now real as well. |
| runtime·mProf_GC(); |
| } |
| |
| runtime·mProf_GC(); |
| g->m->traceback = 0; |
| |
| if(DebugPtrs) |
| runtime·printf("GC end\n"); |
| } |
| |
| extern uintptr runtime·sizeof_C_MStats; |
| |
| static void readmemstats_m(void); |
| |
| void |
| runtime·readmemstats_m(void) |
| { |
| MStats *stats; |
| |
| stats = g->m->ptrarg[0]; |
| g->m->ptrarg[0] = nil; |
| |
| runtime·updatememstats(nil); |
| // Size of the trailing by_size array differs between Go and C, |
| // NumSizeClasses was changed, but we can not change Go struct because of backward compatibility. |
| runtime·memmove(stats, &mstats, runtime·sizeof_C_MStats); |
| |
| // Stack numbers are part of the heap numbers, separate those out for user consumption |
| stats->stacks_sys = stats->stacks_inuse; |
| stats->heap_inuse -= stats->stacks_inuse; |
| stats->heap_sys -= stats->stacks_inuse; |
| } |
| |
| static void readgcstats_m(void); |
| |
| #pragma textflag NOSPLIT |
| void |
| runtime∕debug·readGCStats(Slice *pauses) |
| { |
| void (*fn)(void); |
| |
| g->m->ptrarg[0] = pauses; |
| fn = readgcstats_m; |
| runtime·onM(&fn); |
| } |
| |
| static void |
| readgcstats_m(void) |
| { |
| Slice *pauses; |
| uint64 *p; |
| uint32 i, j, n; |
| |
| pauses = g->m->ptrarg[0]; |
| g->m->ptrarg[0] = nil; |
| |
| // Calling code in runtime/debug should make the slice large enough. |
| if(pauses->cap < nelem(mstats.pause_ns)+3) |
| runtime·throw("runtime: short slice passed to readGCStats"); |
| |
| // Pass back: pauses, pause ends, last gc (absolute time), number of gc, total pause ns. |
| p = (uint64*)pauses->array; |
| runtime·lock(&runtime·mheap.lock); |
| |
| n = mstats.numgc; |
| if(n > nelem(mstats.pause_ns)) |
| n = nelem(mstats.pause_ns); |
| |
| // The pause buffer is circular. The most recent pause is at |
| // pause_ns[(numgc-1)%nelem(pause_ns)], and then backward |
| // from there to go back farther in time. We deliver the times |
| // most recent first (in p[0]). |
| for(i=0; i<n; i++) { |
| j = (mstats.numgc-1-i)%nelem(mstats.pause_ns); |
| p[i] = mstats.pause_ns[j]; |
| p[n+i] = mstats.pause_end[j]; |
| } |
| |
| p[n+n] = mstats.last_gc; |
| p[n+n+1] = mstats.numgc; |
| p[n+n+2] = mstats.pause_total_ns; |
| runtime·unlock(&runtime·mheap.lock); |
| pauses->len = n+n+3; |
| } |
| |
| void |
| runtime·setgcpercent_m(void) |
| { |
| int32 in; |
| int32 out; |
| |
| in = (int32)(intptr)g->m->scalararg[0]; |
| |
| runtime·lock(&runtime·mheap.lock); |
| out = runtime·gcpercent; |
| if(in < 0) |
| in = -1; |
| runtime·gcpercent = in; |
| runtime·unlock(&runtime·mheap.lock); |
| |
| g->m->scalararg[0] = (uintptr)(intptr)out; |
| } |
| |
| static void |
| gchelperstart(void) |
| { |
| if(g->m->helpgc < 0 || g->m->helpgc >= MaxGcproc) |
| runtime·throw("gchelperstart: bad m->helpgc"); |
| if(g != g->m->g0) |
| runtime·throw("gchelper not running on g0 stack"); |
| } |
| |
| G* |
| runtime·wakefing(void) |
| { |
| G *res; |
| |
| res = nil; |
| runtime·lock(&runtime·finlock); |
| if(runtime·fingwait && runtime·fingwake) { |
| runtime·fingwait = false; |
| runtime·fingwake = false; |
| res = runtime·fing; |
| } |
| runtime·unlock(&runtime·finlock); |
| return res; |
| } |
| |
| // Recursively unrolls GC program in prog. |
| // mask is where to store the result. |
| // ppos is a pointer to position in mask, in bits. |
| // sparse says to generate 4-bits per word mask for heap (2-bits for data/bss otherwise). |
| static byte* |
| unrollgcprog1(byte *mask, byte *prog, uintptr *ppos, bool inplace, bool sparse) |
| { |
| uintptr pos, siz, i, off; |
| byte *arena_start, *prog1, v, *bitp, shift; |
| |
| arena_start = runtime·mheap.arena_start; |
| pos = *ppos; |
| for(;;) { |
| switch(prog[0]) { |
| case insData: |
| prog++; |
| siz = prog[0]; |
| prog++; |
| for(i = 0; i < siz; i++) { |
| v = prog[i/PointersPerByte]; |
| v >>= (i%PointersPerByte)*BitsPerPointer; |
| v &= BitsMask; |
| if(inplace) { |
| // Store directly into GC bitmap. |
| off = (uintptr*)(mask+pos) - (uintptr*)arena_start; |
| bitp = arena_start - off/wordsPerBitmapByte - 1; |
| shift = (off % wordsPerBitmapByte) * gcBits; |
| if(shift==0) |
| *bitp = 0; |
| *bitp |= v<<(shift+2); |
| pos += PtrSize; |
| } else if(sparse) { |
| // 4-bits per word |
| v <<= (pos%8)+2; |
| mask[pos/8] |= v; |
| pos += gcBits; |
| } else { |
| // 2-bits per word |
| v <<= pos%8; |
| mask[pos/8] |= v; |
| pos += BitsPerPointer; |
| } |
| } |
| prog += ROUND(siz*BitsPerPointer, 8)/8; |
| break; |
| case insArray: |
| prog++; |
| siz = 0; |
| for(i = 0; i < PtrSize; i++) |
| siz = (siz<<8) + prog[PtrSize-i-1]; |
| prog += PtrSize; |
| prog1 = nil; |
| for(i = 0; i < siz; i++) |
| prog1 = unrollgcprog1(mask, prog, &pos, inplace, sparse); |
| if(prog1[0] != insArrayEnd) |
| runtime·throw("unrollgcprog: array does not end with insArrayEnd"); |
| prog = prog1+1; |
| break; |
| case insArrayEnd: |
| case insEnd: |
| *ppos = pos; |
| return prog; |
| default: |
| runtime·throw("unrollgcprog: unknown instruction"); |
| } |
| } |
| } |
| |
| // Unrolls GC program prog for data/bss, returns dense GC mask. |
| static BitVector |
| unrollglobgcprog(byte *prog, uintptr size) |
| { |
| byte *mask; |
| uintptr pos, masksize; |
| |
| masksize = ROUND(ROUND(size, PtrSize)/PtrSize*BitsPerPointer, 8)/8; |
| mask = runtime·persistentalloc(masksize+1, 0, &mstats.gc_sys); |
| mask[masksize] = 0xa1; |
| pos = 0; |
| prog = unrollgcprog1(mask, prog, &pos, false, false); |
| if(pos != size/PtrSize*BitsPerPointer) { |
| runtime·printf("unrollglobgcprog: bad program size, got %D, expect %D\n", |
| (uint64)pos, (uint64)size/PtrSize*BitsPerPointer); |
| runtime·throw("unrollglobgcprog: bad program size"); |
| } |
| if(prog[0] != insEnd) |
| runtime·throw("unrollglobgcprog: program does not end with insEnd"); |
| if(mask[masksize] != 0xa1) |
| runtime·throw("unrollglobgcprog: overflow"); |
| return (BitVector){masksize*8, mask}; |
| } |
| |
| void |
| runtime·unrollgcproginplace_m(void) |
| { |
| uintptr size, size0, pos, off; |
| byte *arena_start, *prog, *bitp, shift; |
| Type *typ; |
| void *v; |
| |
| v = g->m->ptrarg[0]; |
| typ = g->m->ptrarg[1]; |
| size = g->m->scalararg[0]; |
| size0 = g->m->scalararg[1]; |
| g->m->ptrarg[0] = nil; |
| g->m->ptrarg[1] = nil; |
| |
| pos = 0; |
| prog = (byte*)typ->gc[1]; |
| while(pos != size0) |
| unrollgcprog1(v, prog, &pos, true, true); |
| // Mark first word as bitAllocated. |
| arena_start = runtime·mheap.arena_start; |
| off = (uintptr*)v - (uintptr*)arena_start; |
| bitp = arena_start - off/wordsPerBitmapByte - 1; |
| shift = (off % wordsPerBitmapByte) * gcBits; |
| *bitp |= bitBoundary<<shift; |
| // Mark word after last as BitsDead. |
| if(size0 < size) { |
| off = (uintptr*)((byte*)v + size0) - (uintptr*)arena_start; |
| bitp = arena_start - off/wordsPerBitmapByte - 1; |
| shift = (off % wordsPerBitmapByte) * gcBits; |
| *bitp &= ~(bitPtrMask<<shift) | ((uintptr)BitsDead<<(shift+2)); |
| } |
| } |
| |
| // Unrolls GC program in typ->gc[1] into typ->gc[0] |
| void |
| runtime·unrollgcprog_m(void) |
| { |
| static Mutex lock; |
| Type *typ; |
| byte *mask, *prog; |
| uintptr pos; |
| uint32 x; |
| |
| typ = g->m->ptrarg[0]; |
| g->m->ptrarg[0] = nil; |
| |
| runtime·lock(&lock); |
| mask = (byte*)typ->gc[0]; |
| if(mask[0] == 0) { |
| pos = 8; // skip the unroll flag |
| prog = (byte*)typ->gc[1]; |
| prog = unrollgcprog1(mask, prog, &pos, false, true); |
| if(prog[0] != insEnd) |
| runtime·throw("unrollgcprog: program does not end with insEnd"); |
| if(((typ->size/PtrSize)%2) != 0) { |
| // repeat the program twice |
| prog = (byte*)typ->gc[1]; |
| unrollgcprog1(mask, prog, &pos, false, true); |
| } |
| // atomic way to say mask[0] = 1 |
| x = ((uint32*)mask)[0]; |
| runtime·atomicstore((uint32*)mask, x|1); |
| } |
| runtime·unlock(&lock); |
| } |
| |
| // mark the span of memory at v as having n blocks of the given size. |
| // if leftover is true, there is left over space at the end of the span. |
| void |
| runtime·markspan(void *v, uintptr size, uintptr n, bool leftover) |
| { |
| uintptr i, off, step; |
| byte *b; |
| |
| if((byte*)v+size*n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) |
| runtime·throw("markspan: bad pointer"); |
| |
| // Find bits of the beginning of the span. |
| off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset |
| b = runtime·mheap.arena_start - off/wordsPerBitmapByte - 1; |
| if((off%wordsPerBitmapByte) != 0) |
| runtime·throw("markspan: unaligned length"); |
| |
| // Okay to use non-atomic ops here, because we control |
| // the entire span, and each bitmap byte has bits for only |
| // one span, so no other goroutines are changing these bitmap words. |
| |
| if(size == PtrSize) { |
| // Possible only on 64-bits (minimal size class is 8 bytes). |
| // Poor man's memset(0x11). |
| if(0x11 != ((bitBoundary+BitsDead)<<gcBits) + (bitBoundary+BitsDead)) |
| runtime·throw("markspan: bad bits"); |
| if((n%(wordsPerBitmapByte*PtrSize)) != 0) |
| runtime·throw("markspan: unaligned length"); |
| b = b - n/wordsPerBitmapByte + 1; // find first byte |
| if(((uintptr)b%PtrSize) != 0) |
| runtime·throw("markspan: unaligned pointer"); |
| for(i = 0; i != n; i += wordsPerBitmapByte*PtrSize, b += PtrSize) |
| *(uintptr*)b = (uintptr)0x1111111111111111ULL; // bitBoundary+BitsDead |
| return; |
| } |
| |
| if(leftover) |
| n++; // mark a boundary just past end of last block too |
| step = size/(PtrSize*wordsPerBitmapByte); |
| for(i = 0; i != n; i++, b -= step) |
| *b = bitBoundary|(BitsDead<<2); |
| } |
| |
| // unmark the span of memory at v of length n bytes. |
| void |
| runtime·unmarkspan(void *v, uintptr n) |
| { |
| uintptr off; |
| byte *b; |
| |
| if((byte*)v+n > (byte*)runtime·mheap.arena_used || (byte*)v < runtime·mheap.arena_start) |
| runtime·throw("markspan: bad pointer"); |
| |
| off = (uintptr*)v - (uintptr*)runtime·mheap.arena_start; // word offset |
| if((off % (PtrSize*wordsPerBitmapByte)) != 0) |
| runtime·throw("markspan: unaligned pointer"); |
| b = runtime·mheap.arena_start - off/wordsPerBitmapByte - 1; |
| n /= PtrSize; |
| if(n%(PtrSize*wordsPerBitmapByte) != 0) |
| runtime·throw("unmarkspan: unaligned length"); |
| // Okay to use non-atomic ops here, because we control |
| // the entire span, and each bitmap word has bits for only |
| // one span, so no other goroutines are changing these |
| // bitmap words. |
| n /= wordsPerBitmapByte; |
| runtime·memclr(b - n + 1, n); |
| } |
| |
| void |
| runtime·MHeap_MapBits(MHeap *h) |
| { |
| // Caller has added extra mappings to the arena. |
| // Add extra mappings of bitmap words as needed. |
| // We allocate extra bitmap pieces in chunks of bitmapChunk. |
| enum { |
| bitmapChunk = 8192 |
| }; |
| uintptr n; |
| |
| n = (h->arena_used - h->arena_start) / (PtrSize*wordsPerBitmapByte); |
| n = ROUND(n, bitmapChunk); |
| n = ROUND(n, PhysPageSize); |
| if(h->bitmap_mapped >= n) |
| return; |
| |
| runtime·SysMap(h->arena_start - n, n - h->bitmap_mapped, h->arena_reserved, &mstats.gc_sys); |
| h->bitmap_mapped = n; |
| } |
| |
| static bool |
| getgcmaskcb(Stkframe *frame, void *ctxt) |
| { |
| Stkframe *frame0; |
| |
| frame0 = ctxt; |
| if(frame->sp <= frame0->sp && frame0->sp < frame->varp) { |
| *frame0 = *frame; |
| return false; |
| } |
| return true; |
| } |
| |
| // Returns GC type info for object p for testing. |
| void |
| runtime·getgcmask(byte *p, Type *t, byte **mask, uintptr *len) |
| { |
| Stkframe frame; |
| uintptr i, n, off; |
| byte *base, bits, shift, *b; |
| bool (*cb)(Stkframe*, void*); |
| |
| *mask = nil; |
| *len = 0; |
| |
| // data |
| if(p >= runtime·data && p < runtime·edata) { |
| n = ((PtrType*)t)->elem->size; |
| *len = n/PtrSize; |
| *mask = runtime·mallocgc(*len, nil, FlagNoScan); |
| for(i = 0; i < n; i += PtrSize) { |
| off = (p+i-runtime·data)/PtrSize; |
| bits = (runtime·gcdatamask.bytedata[off/PointersPerByte] >> ((off%PointersPerByte)*BitsPerPointer))&BitsMask; |
| (*mask)[i/PtrSize] = bits; |
| } |
| return; |
| } |
| // bss |
| if(p >= runtime·bss && p < runtime·ebss) { |
| n = ((PtrType*)t)->elem->size; |
| *len = n/PtrSize; |
| *mask = runtime·mallocgc(*len, nil, FlagNoScan); |
| for(i = 0; i < n; i += PtrSize) { |
| off = (p+i-runtime·bss)/PtrSize; |
| bits = (runtime·gcbssmask.bytedata[off/PointersPerByte] >> ((off%PointersPerByte)*BitsPerPointer))&BitsMask; |
| (*mask)[i/PtrSize] = bits; |
| } |
| return; |
| } |
| // heap |
| if(runtime·mlookup(p, &base, &n, nil)) { |
| *len = n/PtrSize; |
| *mask = runtime·mallocgc(*len, nil, FlagNoScan); |
| for(i = 0; i < n; i += PtrSize) { |
| off = (uintptr*)(base+i) - (uintptr*)runtime·mheap.arena_start; |
| b = runtime·mheap.arena_start - off/wordsPerBitmapByte - 1; |
| shift = (off % wordsPerBitmapByte) * gcBits; |
| bits = (*b >> (shift+2))&BitsMask; |
| (*mask)[i/PtrSize] = bits; |
| } |
| return; |
| } |
| // stack |
| frame.fn = nil; |
| frame.sp = (uintptr)p; |
| cb = getgcmaskcb; |
| runtime·gentraceback(g->m->curg->sched.pc, g->m->curg->sched.sp, 0, g->m->curg, 0, nil, 1000, &cb, &frame, 0); |
| if(frame.fn != nil) { |
| Func *f; |
| StackMap *stackmap; |
| BitVector bv; |
| uintptr size; |
| uintptr targetpc; |
| int32 pcdata; |
| |
| f = frame.fn; |
| targetpc = frame.continpc; |
| if(targetpc == 0) |
| return; |
| if(targetpc != f->entry) |
| targetpc--; |
| pcdata = runtime·pcdatavalue(f, PCDATA_StackMapIndex, targetpc); |
| if(pcdata == -1) |
| return; |
| stackmap = runtime·funcdata(f, FUNCDATA_LocalsPointerMaps); |
| if(stackmap == nil || stackmap->n <= 0) |
| return; |
| bv = runtime·stackmapdata(stackmap, pcdata); |
| size = bv.n/BitsPerPointer*PtrSize; |
| n = ((PtrType*)t)->elem->size; |
| *len = n/PtrSize; |
| *mask = runtime·mallocgc(*len, nil, FlagNoScan); |
| for(i = 0; i < n; i += PtrSize) { |
| off = (p+i-(byte*)frame.varp+size)/PtrSize; |
| bits = (bv.bytedata[off*BitsPerPointer/8] >> ((off*BitsPerPointer)%8))&BitsMask; |
| (*mask)[i/PtrSize] = bits; |
| } |
| } |
| } |
| |
| void runtime·gc_unixnanotime(int64 *now); |
| |
| int64 |
| runtime·unixnanotime(void) |
| { |
| int64 now; |
| |
| runtime·gc_unixnanotime(&now); |
| return now; |
| } |