| // Copyright 2010 The Go Authors. All rights reserved. | 
 | // Use of this source code is governed by a BSD-style | 
 | // license that can be found in the LICENSE file. | 
 |  | 
 | package math | 
 |  | 
 | /* | 
 | 	Bessel function of the first and second kinds of order n. | 
 | */ | 
 |  | 
 | // The original C code and the long comment below are | 
 | // from FreeBSD's /usr/src/lib/msun/src/e_jn.c and | 
 | // came with this notice. The go code is a simplified | 
 | // version of the original C. | 
 | // | 
 | // ==================================================== | 
 | // Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. | 
 | // | 
 | // Developed at SunPro, a Sun Microsystems, Inc. business. | 
 | // Permission to use, copy, modify, and distribute this | 
 | // software is freely granted, provided that this notice | 
 | // is preserved. | 
 | // ==================================================== | 
 | // | 
 | // __ieee754_jn(n, x), __ieee754_yn(n, x) | 
 | // floating point Bessel's function of the 1st and 2nd kind | 
 | // of order n | 
 | // | 
 | // Special cases: | 
 | //      y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; | 
 | //      y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. | 
 | // Note 2. About jn(n,x), yn(n,x) | 
 | //      For n=0, j0(x) is called, | 
 | //      for n=1, j1(x) is called, | 
 | //      for n<x, forward recursion is used starting | 
 | //      from values of j0(x) and j1(x). | 
 | //      for n>x, a continued fraction approximation to | 
 | //      j(n,x)/j(n-1,x) is evaluated and then backward | 
 | //      recursion is used starting from a supposed value | 
 | //      for j(n,x). The resulting value of j(0,x) is | 
 | //      compared with the actual value to correct the | 
 | //      supposed value of j(n,x). | 
 | // | 
 | //      yn(n,x) is similar in all respects, except | 
 | //      that forward recursion is used for all | 
 | //      values of n>1. | 
 |  | 
 | // Jn returns the order-n Bessel function of the first kind. | 
 | // | 
 | // Special cases are: | 
 | //	Jn(n, ±Inf) = 0 | 
 | //	Jn(n, NaN) = NaN | 
 | func Jn(n int, x float64) float64 { | 
 | 	const ( | 
 | 		TwoM29 = 1.0 / (1 << 29) // 2**-29 0x3e10000000000000 | 
 | 		Two302 = 1 << 302        // 2**302 0x52D0000000000000 | 
 | 	) | 
 | 	// special cases | 
 | 	switch { | 
 | 	case IsNaN(x): | 
 | 		return x | 
 | 	case IsInf(x, 0): | 
 | 		return 0 | 
 | 	} | 
 | 	// J(-n, x) = (-1)**n * J(n, x), J(n, -x) = (-1)**n * J(n, x) | 
 | 	// Thus, J(-n, x) = J(n, -x) | 
 |  | 
 | 	if n == 0 { | 
 | 		return J0(x) | 
 | 	} | 
 | 	if x == 0 { | 
 | 		return 0 | 
 | 	} | 
 | 	if n < 0 { | 
 | 		n, x = -n, -x | 
 | 	} | 
 | 	if n == 1 { | 
 | 		return J1(x) | 
 | 	} | 
 | 	sign := false | 
 | 	if x < 0 { | 
 | 		x = -x | 
 | 		if n&1 == 1 { | 
 | 			sign = true // odd n and negative x | 
 | 		} | 
 | 	} | 
 | 	var b float64 | 
 | 	if float64(n) <= x { | 
 | 		// Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) | 
 | 		if x >= Two302 { // x > 2**302 | 
 |  | 
 | 			// (x >> n**2) | 
 | 			//          Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) | 
 | 			//          Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) | 
 | 			//          Let s=sin(x), c=cos(x), | 
 | 			//              xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then | 
 | 			// | 
 | 			//                 n    sin(xn)*sqt2    cos(xn)*sqt2 | 
 | 			//              ---------------------------------- | 
 | 			//                 0     s-c             c+s | 
 | 			//                 1    -s-c            -c+s | 
 | 			//                 2    -s+c            -c-s | 
 | 			//                 3     s+c             c-s | 
 |  | 
 | 			var temp float64 | 
 | 			switch s, c := Sincos(x); n & 3 { | 
 | 			case 0: | 
 | 				temp = c + s | 
 | 			case 1: | 
 | 				temp = -c + s | 
 | 			case 2: | 
 | 				temp = -c - s | 
 | 			case 3: | 
 | 				temp = c - s | 
 | 			} | 
 | 			b = (1 / SqrtPi) * temp / Sqrt(x) | 
 | 		} else { | 
 | 			b = J1(x) | 
 | 			for i, a := 1, J0(x); i < n; i++ { | 
 | 				a, b = b, b*(float64(i+i)/x)-a // avoid underflow | 
 | 			} | 
 | 		} | 
 | 	} else { | 
 | 		if x < TwoM29 { // x < 2**-29 | 
 | 			// x is tiny, return the first Taylor expansion of J(n,x) | 
 | 			// J(n,x) = 1/n!*(x/2)**n  - ... | 
 |  | 
 | 			if n > 33 { // underflow | 
 | 				b = 0 | 
 | 			} else { | 
 | 				temp := x * 0.5 | 
 | 				b = temp | 
 | 				a := 1.0 | 
 | 				for i := 2; i <= n; i++ { | 
 | 					a *= float64(i) // a = n! | 
 | 					b *= temp       // b = (x/2)**n | 
 | 				} | 
 | 				b /= a | 
 | 			} | 
 | 		} else { | 
 | 			// use backward recurrence | 
 | 			//                      x      x**2      x**2 | 
 | 			//  J(n,x)/J(n-1,x) =  ----   ------   ------   ..... | 
 | 			//                      2n  - 2(n+1) - 2(n+2) | 
 | 			// | 
 | 			//                      1      1        1 | 
 | 			//  (for large x)   =  ----  ------   ------   ..... | 
 | 			//                      2n   2(n+1)   2(n+2) | 
 | 			//                      -- - ------ - ------ - | 
 | 			//                       x     x         x | 
 | 			// | 
 | 			// Let w = 2n/x and h=2/x, then the above quotient | 
 | 			// is equal to the continued fraction: | 
 | 			//                  1 | 
 | 			//      = ----------------------- | 
 | 			//                     1 | 
 | 			//         w - ----------------- | 
 | 			//                        1 | 
 | 			//              w+h - --------- | 
 | 			//                     w+2h - ... | 
 | 			// | 
 | 			// To determine how many terms needed, let | 
 | 			// Q(0) = w, Q(1) = w(w+h) - 1, | 
 | 			// Q(k) = (w+k*h)*Q(k-1) - Q(k-2), | 
 | 			// When Q(k) > 1e4	good for single | 
 | 			// When Q(k) > 1e9	good for double | 
 | 			// When Q(k) > 1e17	good for quadruple | 
 |  | 
 | 			// determine k | 
 | 			w := float64(n+n) / x | 
 | 			h := 2 / x | 
 | 			q0 := w | 
 | 			z := w + h | 
 | 			q1 := w*z - 1 | 
 | 			k := 1 | 
 | 			for q1 < 1e9 { | 
 | 				k++ | 
 | 				z += h | 
 | 				q0, q1 = q1, z*q1-q0 | 
 | 			} | 
 | 			m := n + n | 
 | 			t := 0.0 | 
 | 			for i := 2 * (n + k); i >= m; i -= 2 { | 
 | 				t = 1 / (float64(i)/x - t) | 
 | 			} | 
 | 			a := t | 
 | 			b = 1 | 
 | 			//  estimate log((2/x)**n*n!) = n*log(2/x)+n*ln(n) | 
 | 			//  Hence, if n*(log(2n/x)) > ... | 
 | 			//  single 8.8722839355e+01 | 
 | 			//  double 7.09782712893383973096e+02 | 
 | 			//  long double 1.1356523406294143949491931077970765006170e+04 | 
 | 			//  then recurrent value may overflow and the result is | 
 | 			//  likely underflow to zero | 
 |  | 
 | 			tmp := float64(n) | 
 | 			v := 2 / x | 
 | 			tmp = tmp * Log(Abs(v*tmp)) | 
 | 			if tmp < 7.09782712893383973096e+02 { | 
 | 				for i := n - 1; i > 0; i-- { | 
 | 					di := float64(i + i) | 
 | 					a, b = b, b*di/x-a | 
 | 				} | 
 | 			} else { | 
 | 				for i := n - 1; i > 0; i-- { | 
 | 					di := float64(i + i) | 
 | 					a, b = b, b*di/x-a | 
 | 					// scale b to avoid spurious overflow | 
 | 					if b > 1e100 { | 
 | 						a /= b | 
 | 						t /= b | 
 | 						b = 1 | 
 | 					} | 
 | 				} | 
 | 			} | 
 | 			b = t * J0(x) / b | 
 | 		} | 
 | 	} | 
 | 	if sign { | 
 | 		return -b | 
 | 	} | 
 | 	return b | 
 | } | 
 |  | 
 | // Yn returns the order-n Bessel function of the second kind. | 
 | // | 
 | // Special cases are: | 
 | //	Yn(n, +Inf) = 0 | 
 | //	Yn(n ≥ 0, 0) = -Inf | 
 | //	Yn(n < 0, 0) = +Inf if n is odd, -Inf if n is even | 
 | //	Yn(n, x < 0) = NaN | 
 | //	Yn(n, NaN) = NaN | 
 | func Yn(n int, x float64) float64 { | 
 | 	const Two302 = 1 << 302 // 2**302 0x52D0000000000000 | 
 | 	// special cases | 
 | 	switch { | 
 | 	case x < 0 || IsNaN(x): | 
 | 		return NaN() | 
 | 	case IsInf(x, 1): | 
 | 		return 0 | 
 | 	} | 
 |  | 
 | 	if n == 0 { | 
 | 		return Y0(x) | 
 | 	} | 
 | 	if x == 0 { | 
 | 		if n < 0 && n&1 == 1 { | 
 | 			return Inf(1) | 
 | 		} | 
 | 		return Inf(-1) | 
 | 	} | 
 | 	sign := false | 
 | 	if n < 0 { | 
 | 		n = -n | 
 | 		if n&1 == 1 { | 
 | 			sign = true // sign true if n < 0 && |n| odd | 
 | 		} | 
 | 	} | 
 | 	if n == 1 { | 
 | 		if sign { | 
 | 			return -Y1(x) | 
 | 		} | 
 | 		return Y1(x) | 
 | 	} | 
 | 	var b float64 | 
 | 	if x >= Two302 { // x > 2**302 | 
 | 		// (x >> n**2) | 
 | 		//	    Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) | 
 | 		//	    Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) | 
 | 		//	    Let s=sin(x), c=cos(x), | 
 | 		//		xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then | 
 | 		// | 
 | 		//		   n	sin(xn)*sqt2	cos(xn)*sqt2 | 
 | 		//		---------------------------------- | 
 | 		//		   0	 s-c		 c+s | 
 | 		//		   1	-s-c 		-c+s | 
 | 		//		   2	-s+c		-c-s | 
 | 		//		   3	 s+c		 c-s | 
 |  | 
 | 		var temp float64 | 
 | 		switch s, c := Sincos(x); n & 3 { | 
 | 		case 0: | 
 | 			temp = s - c | 
 | 		case 1: | 
 | 			temp = -s - c | 
 | 		case 2: | 
 | 			temp = -s + c | 
 | 		case 3: | 
 | 			temp = s + c | 
 | 		} | 
 | 		b = (1 / SqrtPi) * temp / Sqrt(x) | 
 | 	} else { | 
 | 		a := Y0(x) | 
 | 		b = Y1(x) | 
 | 		// quit if b is -inf | 
 | 		for i := 1; i < n && !IsInf(b, -1); i++ { | 
 | 			a, b = b, (float64(i+i)/x)*b-a | 
 | 		} | 
 | 	} | 
 | 	if sign { | 
 | 		return -b | 
 | 	} | 
 | 	return b | 
 | } |