| // Derived from Inferno utils/6l/l.h and related files. |
| // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/l.h |
| // |
| // Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved. |
| // Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net) |
| // Portions Copyright © 1997-1999 Vita Nuova Limited |
| // Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com) |
| // Portions Copyright © 2004,2006 Bruce Ellis |
| // Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net) |
| // Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others |
| // Portions Copyright © 2009 The Go Authors. All rights reserved. |
| // |
| // Permission is hereby granted, free of charge, to any person obtaining a copy |
| // of this software and associated documentation files (the "Software"), to deal |
| // in the Software without restriction, including without limitation the rights |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| // copies of the Software, and to permit persons to whom the Software is |
| // furnished to do so, subject to the following conditions: |
| // |
| // The above copyright notice and this permission notice shall be included in |
| // all copies or substantial portions of the Software. |
| // |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| // THE SOFTWARE. |
| |
| package obj |
| |
| import ( |
| "bufio" |
| "cmd/internal/sys" |
| "fmt" |
| ) |
| |
| // An Addr is an argument to an instruction. |
| // The general forms and their encodings are: |
| // |
| // sym±offset(symkind)(reg)(index*scale) |
| // Memory reference at address &sym(symkind) + offset + reg + index*scale. |
| // Any of sym(symkind), ±offset, (reg), (index*scale), and *scale can be omitted. |
| // If (reg) and *scale are both omitted, the resulting expression (index) is parsed as (reg). |
| // To force a parsing as index*scale, write (index*1). |
| // Encoding: |
| // type = TYPE_MEM |
| // name = symkind (NAME_AUTO, ...) or 0 (NAME_NONE) |
| // sym = sym |
| // offset = ±offset |
| // reg = reg (REG_*) |
| // index = index (REG_*) |
| // scale = scale (1, 2, 4, 8) |
| // |
| // $<mem> |
| // Effective address of memory reference <mem>, defined above. |
| // Encoding: same as memory reference, but type = TYPE_ADDR. |
| // |
| // $<±integer value> |
| // This is a special case of $<mem>, in which only ±offset is present. |
| // It has a separate type for easy recognition. |
| // Encoding: |
| // type = TYPE_CONST |
| // offset = ±integer value |
| // |
| // *<mem> |
| // Indirect reference through memory reference <mem>, defined above. |
| // Only used on x86 for CALL/JMP *sym(SB), which calls/jumps to a function |
| // pointer stored in the data word sym(SB), not a function named sym(SB). |
| // Encoding: same as above, but type = TYPE_INDIR. |
| // |
| // $*$<mem> |
| // No longer used. |
| // On machines with actual SB registers, $*$<mem> forced the |
| // instruction encoding to use a full 32-bit constant, never a |
| // reference relative to SB. |
| // |
| // $<floating point literal> |
| // Floating point constant value. |
| // Encoding: |
| // type = TYPE_FCONST |
| // val = floating point value |
| // |
| // $<string literal, up to 8 chars> |
| // String literal value (raw bytes used for DATA instruction). |
| // Encoding: |
| // type = TYPE_SCONST |
| // val = string |
| // |
| // <register name> |
| // Any register: integer, floating point, control, segment, and so on. |
| // If looking for specific register kind, must check type and reg value range. |
| // Encoding: |
| // type = TYPE_REG |
| // reg = reg (REG_*) |
| // |
| // x(PC) |
| // Encoding: |
| // type = TYPE_BRANCH |
| // val = Prog* reference OR ELSE offset = target pc (branch takes priority) |
| // |
| // $±x-±y |
| // Final argument to TEXT, specifying local frame size x and argument size y. |
| // In this form, x and y are integer literals only, not arbitrary expressions. |
| // This avoids parsing ambiguities due to the use of - as a separator. |
| // The ± are optional. |
| // If the final argument to TEXT omits the -±y, the encoding should still |
| // use TYPE_TEXTSIZE (not TYPE_CONST), with u.argsize = ArgsSizeUnknown. |
| // Encoding: |
| // type = TYPE_TEXTSIZE |
| // offset = x |
| // val = int32(y) |
| // |
| // reg<<shift, reg>>shift, reg->shift, reg@>shift |
| // Shifted register value, for ARM and ARM64. |
| // In this form, reg must be a register and shift can be a register or an integer constant. |
| // Encoding: |
| // type = TYPE_SHIFT |
| // On ARM: |
| // offset = (reg&15) | shifttype<<5 | count |
| // shifttype = 0, 1, 2, 3 for <<, >>, ->, @> |
| // count = (reg&15)<<8 | 1<<4 for a register shift count, (n&31)<<7 for an integer constant. |
| // On ARM64: |
| // offset = (reg&31)<<16 | shifttype<<22 | (count&63)<<10 |
| // shifttype = 0, 1, 2 for <<, >>, -> |
| // |
| // (reg, reg) |
| // A destination register pair. When used as the last argument of an instruction, |
| // this form makes clear that both registers are destinations. |
| // Encoding: |
| // type = TYPE_REGREG |
| // reg = first register |
| // offset = second register |
| // |
| // [reg, reg, reg-reg] |
| // Register list for ARM. |
| // Encoding: |
| // type = TYPE_REGLIST |
| // offset = bit mask of registers in list; R0 is low bit. |
| // |
| // reg, reg |
| // Register pair for ARM. |
| // TYPE_REGREG2 |
| // |
| // (reg+reg) |
| // Register pair for PPC64. |
| // Encoding: |
| // type = TYPE_MEM |
| // reg = first register |
| // index = second register |
| // scale = 1 |
| // |
| type Addr struct { |
| Reg int16 |
| Index int16 |
| Scale int16 // Sometimes holds a register. |
| Type AddrType |
| Name int8 |
| Class int8 |
| Offset int64 |
| Sym *LSym |
| |
| // argument value: |
| // for TYPE_SCONST, a string |
| // for TYPE_FCONST, a float64 |
| // for TYPE_BRANCH, a *Prog (optional) |
| // for TYPE_TEXTSIZE, an int32 (optional) |
| Val interface{} |
| |
| Node interface{} // for use by compiler |
| } |
| |
| type AddrType uint8 |
| |
| const ( |
| NAME_NONE = 0 + iota |
| NAME_EXTERN |
| NAME_STATIC |
| NAME_AUTO |
| NAME_PARAM |
| // A reference to name@GOT(SB) is a reference to the entry in the global offset |
| // table for 'name'. |
| NAME_GOTREF |
| ) |
| |
| const ( |
| TYPE_NONE AddrType = 0 |
| |
| TYPE_BRANCH AddrType = 5 + iota |
| TYPE_TEXTSIZE |
| TYPE_MEM |
| TYPE_CONST |
| TYPE_FCONST |
| TYPE_SCONST |
| TYPE_REG |
| TYPE_ADDR |
| TYPE_SHIFT |
| TYPE_REGREG |
| TYPE_REGREG2 |
| TYPE_INDIR |
| TYPE_REGLIST |
| ) |
| |
| // Prog describes a single machine instruction. |
| // |
| // The general instruction form is: |
| // |
| // As.Scond From, Reg, From3, To, RegTo2 |
| // |
| // where As is an opcode and the others are arguments: |
| // From, Reg, From3 are sources, and To, RegTo2 are destinations. |
| // Usually, not all arguments are present. |
| // For example, MOVL R1, R2 encodes using only As=MOVL, From=R1, To=R2. |
| // The Scond field holds additional condition bits for systems (like arm) |
| // that have generalized conditional execution. |
| // |
| // Jump instructions use the Pcond field to point to the target instruction, |
| // which must be in the same linked list as the jump instruction. |
| // |
| // The Progs for a given function are arranged in a list linked through the Link field. |
| // |
| // Each Prog is charged to a specific source line in the debug information, |
| // specified by Lineno, an index into the line history (see LineHist). |
| // Every Prog has a Ctxt field that defines various context, including the current LineHist. |
| // Progs should be allocated using ctxt.NewProg(), not new(Prog). |
| // |
| // The other fields not yet mentioned are for use by the back ends and should |
| // be left zeroed by creators of Prog lists. |
| type Prog struct { |
| Ctxt *Link // linker context |
| Link *Prog // next Prog in linked list |
| From Addr // first source operand |
| From3 *Addr // third source operand (second is Reg below) |
| To Addr // destination operand (second is RegTo2 below) |
| Pcond *Prog // target of conditional jump |
| Opt interface{} // available to optimization passes to hold per-Prog state |
| Forwd *Prog // for x86 back end |
| Rel *Prog // for x86, arm back ends |
| Pc int64 // for back ends or assembler: virtual or actual program counter, depending on phase |
| Lineno int32 // line number of this instruction |
| Spadj int32 // effect of instruction on stack pointer (increment or decrement amount) |
| As As // assembler opcode |
| Reg int16 // 2nd source operand |
| RegTo2 int16 // 2nd destination operand |
| Mark uint16 // bitmask of arch-specific items |
| Optab uint16 // arch-specific opcode index |
| Scond uint8 // condition bits for conditional instruction (e.g., on ARM) |
| Back uint8 // for x86 back end: backwards branch state |
| Ft uint8 // for x86 back end: type index of Prog.From |
| Tt uint8 // for x86 back end: type index of Prog.To |
| Isize uint8 // for x86 back end: size of the instruction in bytes |
| Mode int8 // for x86 back end: 32- or 64-bit mode |
| } |
| |
| // From3Type returns From3.Type, or TYPE_NONE when From3 is nil. |
| func (p *Prog) From3Type() AddrType { |
| if p.From3 == nil { |
| return TYPE_NONE |
| } |
| return p.From3.Type |
| } |
| |
| // From3Offset returns From3.Offset, or 0 when From3 is nil. |
| func (p *Prog) From3Offset() int64 { |
| if p.From3 == nil { |
| return 0 |
| } |
| return p.From3.Offset |
| } |
| |
| // An As denotes an assembler opcode. |
| // There are some portable opcodes, declared here in package obj, |
| // that are common to all architectures. |
| // However, the majority of opcodes are arch-specific |
| // and are declared in their respective architecture's subpackage. |
| type As int16 |
| |
| // These are the portable opcodes. |
| const ( |
| AXXX As = iota |
| ACALL |
| ADUFFCOPY |
| ADUFFZERO |
| AEND |
| AFUNCDATA |
| AJMP |
| ANOP |
| APCDATA |
| ARET |
| ATEXT |
| ATYPE |
| AUNDEF |
| AUSEFIELD |
| AVARDEF |
| AVARKILL |
| AVARLIVE |
| A_ARCHSPECIFIC |
| ) |
| |
| // Each architecture is allotted a distinct subspace of opcode values |
| // for declaring its arch-specific opcodes. |
| // Within this subspace, the first arch-specific opcode should be |
| // at offset A_ARCHSPECIFIC. |
| // |
| // Subspaces are aligned to a power of two so opcodes can be masked |
| // with AMask and used as compact array indices. |
| const ( |
| ABase386 = (1 + iota) << 10 |
| ABaseARM |
| ABaseAMD64 |
| ABasePPC64 |
| ABaseARM64 |
| ABaseMIPS |
| ABaseS390X |
| |
| AllowedOpCodes = 1 << 10 // The number of opcodes available for any given architecture. |
| AMask = AllowedOpCodes - 1 // AND with this to use the opcode as an array index. |
| ) |
| |
| // An LSym is the sort of symbol that is written to an object file. |
| type LSym struct { |
| Name string |
| Type SymKind |
| Version int16 |
| Attribute |
| |
| RefIdx int // Index of this symbol in the symbol reference list. |
| Args int32 |
| Locals int32 |
| Size int64 |
| Gotype *LSym |
| Autom *Auto |
| Text *Prog |
| Pcln *Pcln |
| P []byte |
| R []Reloc |
| } |
| |
| // Attribute is a set of symbol attributes. |
| type Attribute int16 |
| |
| const ( |
| AttrDuplicateOK Attribute = 1 << iota |
| AttrCFunc |
| AttrNoSplit |
| AttrLeaf |
| AttrSeenGlobl |
| AttrOnList |
| |
| // MakeTypelink means that the type should have an entry in the typelink table. |
| AttrMakeTypelink |
| |
| // ReflectMethod means the function may call reflect.Type.Method or |
| // reflect.Type.MethodByName. Matching is imprecise (as reflect.Type |
| // can be used through a custom interface), so ReflectMethod may be |
| // set in some cases when the reflect package is not called. |
| // |
| // Used by the linker to determine what methods can be pruned. |
| AttrReflectMethod |
| |
| // Local means make the symbol local even when compiling Go code to reference Go |
| // symbols in other shared libraries, as in this mode symbols are global by |
| // default. "local" here means in the sense of the dynamic linker, i.e. not |
| // visible outside of the module (shared library or executable) that contains its |
| // definition. (When not compiling to support Go shared libraries, all symbols are |
| // local in this sense unless there is a cgo_export_* directive). |
| AttrLocal |
| ) |
| |
| func (a Attribute) DuplicateOK() bool { return a&AttrDuplicateOK != 0 } |
| func (a Attribute) MakeTypelink() bool { return a&AttrMakeTypelink != 0 } |
| func (a Attribute) CFunc() bool { return a&AttrCFunc != 0 } |
| func (a Attribute) NoSplit() bool { return a&AttrNoSplit != 0 } |
| func (a Attribute) Leaf() bool { return a&AttrLeaf != 0 } |
| func (a Attribute) SeenGlobl() bool { return a&AttrSeenGlobl != 0 } |
| func (a Attribute) OnList() bool { return a&AttrOnList != 0 } |
| func (a Attribute) ReflectMethod() bool { return a&AttrReflectMethod != 0 } |
| func (a Attribute) Local() bool { return a&AttrLocal != 0 } |
| |
| func (a *Attribute) Set(flag Attribute, value bool) { |
| if value { |
| *a |= flag |
| } else { |
| *a &^= flag |
| } |
| } |
| |
| // The compiler needs LSym to satisfy fmt.Stringer, because it stores |
| // an LSym in ssa.ExternSymbol. |
| func (s *LSym) String() string { |
| return s.Name |
| } |
| |
| type Pcln struct { |
| Pcsp Pcdata |
| Pcfile Pcdata |
| Pcline Pcdata |
| Pcdata []Pcdata |
| Funcdata []*LSym |
| Funcdataoff []int64 |
| File []*LSym |
| Lastfile *LSym |
| Lastindex int |
| } |
| |
| // A SymKind describes the kind of memory represented by a symbol. |
| type SymKind int16 |
| |
| // Defined SymKind values. |
| // |
| // TODO(rsc): Give idiomatic Go names. |
| // TODO(rsc): Reduce the number of symbol types in the object files. |
| //go:generate stringer -type=SymKind |
| const ( |
| Sxxx SymKind = iota |
| STEXT |
| SELFRXSECT |
| |
| // Read-only sections. |
| STYPE |
| SSTRING |
| SGOSTRING |
| SGOFUNC |
| SGCBITS |
| SRODATA |
| SFUNCTAB |
| |
| SELFROSECT |
| SMACHOPLT |
| |
| // Read-only sections with relocations. |
| // |
| // Types STYPE-SFUNCTAB above are written to the .rodata section by default. |
| // When linking a shared object, some conceptually "read only" types need to |
| // be written to by relocations and putting them in a section called |
| // ".rodata" interacts poorly with the system linkers. The GNU linkers |
| // support this situation by arranging for sections of the name |
| // ".data.rel.ro.XXX" to be mprotected read only by the dynamic linker after |
| // relocations have applied, so when the Go linker is creating a shared |
| // object it checks all objects of the above types and bumps any object that |
| // has a relocation to it to the corresponding type below, which are then |
| // written to sections with appropriate magic names. |
| STYPERELRO |
| SSTRINGRELRO |
| SGOSTRINGRELRO |
| SGOFUNCRELRO |
| SGCBITSRELRO |
| SRODATARELRO |
| SFUNCTABRELRO |
| |
| // Part of .data.rel.ro if it exists, otherwise part of .rodata. |
| STYPELINK |
| SITABLINK |
| SSYMTAB |
| SPCLNTAB |
| |
| // Writable sections. |
| SELFSECT |
| SMACHO |
| SMACHOGOT |
| SWINDOWS |
| SELFGOT |
| SNOPTRDATA |
| SINITARR |
| SDATA |
| SBSS |
| SNOPTRBSS |
| STLSBSS |
| SXREF |
| SMACHOSYMSTR |
| SMACHOSYMTAB |
| SMACHOINDIRECTPLT |
| SMACHOINDIRECTGOT |
| SFILE |
| SFILEPATH |
| SCONST |
| SDYNIMPORT |
| SHOSTOBJ |
| SDWARFSECT |
| SDWARFINFO |
| SSUB = SymKind(1 << 8) |
| SMASK = SymKind(SSUB - 1) |
| SHIDDEN = SymKind(1 << 9) |
| SCONTAINER = SymKind(1 << 10) // has a sub-symbol |
| ) |
| |
| // ReadOnly are the symbol kinds that form read-only sections. In some |
| // cases, if they will require relocations, they are transformed into |
| // rel-ro sections using RelROMap. |
| var ReadOnly = []SymKind{ |
| STYPE, |
| SSTRING, |
| SGOSTRING, |
| SGOFUNC, |
| SGCBITS, |
| SRODATA, |
| SFUNCTAB, |
| } |
| |
| // RelROMap describes the transformation of read-only symbols to rel-ro |
| // symbols. |
| var RelROMap = map[SymKind]SymKind{ |
| STYPE: STYPERELRO, |
| SSTRING: SSTRINGRELRO, |
| SGOSTRING: SGOSTRINGRELRO, |
| SGOFUNC: SGOFUNCRELRO, |
| SGCBITS: SGCBITSRELRO, |
| SRODATA: SRODATARELRO, |
| SFUNCTAB: SFUNCTABRELRO, |
| } |
| |
| type Reloc struct { |
| Off int32 |
| Siz uint8 |
| Type RelocType |
| Add int64 |
| Sym *LSym |
| } |
| |
| type RelocType int32 |
| |
| //go:generate stringer -type=RelocType |
| const ( |
| R_ADDR RelocType = 1 + iota |
| // R_ADDRPOWER relocates a pair of "D-form" instructions (instructions with 16-bit |
| // immediates in the low half of the instruction word), usually addis followed by |
| // another add or a load, inserting the "high adjusted" 16 bits of the address of |
| // the referenced symbol into the immediate field of the first instruction and the |
| // low 16 bits into that of the second instruction. |
| R_ADDRPOWER |
| // R_ADDRARM64 relocates an adrp, add pair to compute the address of the |
| // referenced symbol. |
| R_ADDRARM64 |
| // R_ADDRMIPS (only used on mips/mips64) resolves to the low 16 bits of an external |
| // address, by encoding it into the instruction. |
| R_ADDRMIPS |
| // R_ADDROFF resolves to a 32-bit offset from the beginning of the section |
| // holding the data being relocated to the referenced symbol. |
| R_ADDROFF |
| // R_WEAKADDROFF resolves just like R_ADDROFF but is a weak relocation. |
| // A weak relocation does not make the symbol it refers to reachable, |
| // and is only honored by the linker if the symbol is in some other way |
| // reachable. |
| R_WEAKADDROFF |
| R_SIZE |
| R_CALL |
| R_CALLARM |
| R_CALLARM64 |
| R_CALLIND |
| R_CALLPOWER |
| // R_CALLMIPS (only used on mips64) resolves to non-PC-relative target address |
| // of a CALL (JAL) instruction, by encoding the address into the instruction. |
| R_CALLMIPS |
| R_CONST |
| R_PCREL |
| // R_TLS_LE, used on 386, amd64, and ARM, resolves to the offset of the |
| // thread-local symbol from the thread local base and is used to implement the |
| // "local exec" model for tls access (r.Sym is not set on intel platforms but is |
| // set to a TLS symbol -- runtime.tlsg -- in the linker when externally linking). |
| R_TLS_LE |
| // R_TLS_IE, used 386, amd64, and ARM resolves to the PC-relative offset to a GOT |
| // slot containing the offset from the thread-local symbol from the thread local |
| // base and is used to implemented the "initial exec" model for tls access (r.Sym |
| // is not set on intel platforms but is set to a TLS symbol -- runtime.tlsg -- in |
| // the linker when externally linking). |
| R_TLS_IE |
| R_GOTOFF |
| R_PLT0 |
| R_PLT1 |
| R_PLT2 |
| R_USEFIELD |
| // R_USETYPE resolves to an *rtype, but no relocation is created. The |
| // linker uses this as a signal that the pointed-to type information |
| // should be linked into the final binary, even if there are no other |
| // direct references. (This is used for types reachable by reflection.) |
| R_USETYPE |
| // R_METHODOFF resolves to a 32-bit offset from the beginning of the section |
| // holding the data being relocated to the referenced symbol. |
| // It is a variant of R_ADDROFF used when linking from the uncommonType of a |
| // *rtype, and may be set to zero by the linker if it determines the method |
| // text is unreachable by the linked program. |
| R_METHODOFF |
| R_POWER_TOC |
| R_GOTPCREL |
| // R_JMPMIPS (only used on mips64) resolves to non-PC-relative target address |
| // of a JMP instruction, by encoding the address into the instruction. |
| // The stack nosplit check ignores this since it is not a function call. |
| R_JMPMIPS |
| // R_DWARFREF resolves to the offset of the symbol from its section. |
| R_DWARFREF |
| |
| // Platform dependent relocations. Architectures with fixed width instructions |
| // have the inherent issue that a 32-bit (or 64-bit!) displacement cannot be |
| // stuffed into a 32-bit instruction, so an address needs to be spread across |
| // several instructions, and in turn this requires a sequence of relocations, each |
| // updating a part of an instruction. This leads to relocation codes that are |
| // inherently processor specific. |
| |
| // Arm64. |
| |
| // Set a MOV[NZ] immediate field to bits [15:0] of the offset from the thread |
| // local base to the thread local variable defined by the referenced (thread |
| // local) symbol. Error if the offset does not fit into 16 bits. |
| R_ARM64_TLS_LE |
| |
| // Relocates an ADRP; LD64 instruction sequence to load the offset between |
| // the thread local base and the thread local variable defined by the |
| // referenced (thread local) symbol from the GOT. |
| R_ARM64_TLS_IE |
| |
| // R_ARM64_GOTPCREL relocates an adrp, ld64 pair to compute the address of the GOT |
| // slot of the referenced symbol. |
| R_ARM64_GOTPCREL |
| |
| // PPC64. |
| |
| // R_POWER_TLS_LE is used to implement the "local exec" model for tls |
| // access. It resolves to the offset of the thread-local symbol from the |
| // thread pointer (R13) and inserts this value into the low 16 bits of an |
| // instruction word. |
| R_POWER_TLS_LE |
| |
| // R_POWER_TLS_IE is used to implement the "initial exec" model for tls access. It |
| // relocates a D-form, DS-form instruction sequence like R_ADDRPOWER_DS. It |
| // inserts to the offset of GOT slot for the thread-local symbol from the TOC (the |
| // GOT slot is filled by the dynamic linker with the offset of the thread-local |
| // symbol from the thread pointer (R13)). |
| R_POWER_TLS_IE |
| |
| // R_POWER_TLS marks an X-form instruction such as "MOVD 0(R13)(R31*1), g" as |
| // accessing a particular thread-local symbol. It does not affect code generation |
| // but is used by the system linker when relaxing "initial exec" model code to |
| // "local exec" model code. |
| R_POWER_TLS |
| |
| // R_ADDRPOWER_DS is similar to R_ADDRPOWER above, but assumes the second |
| // instruction is a "DS-form" instruction, which has an immediate field occupying |
| // bits [15:2] of the instruction word. Bits [15:2] of the address of the |
| // relocated symbol are inserted into this field; it is an error if the last two |
| // bits of the address are not 0. |
| R_ADDRPOWER_DS |
| |
| // R_ADDRPOWER_PCREL relocates a D-form, DS-form instruction sequence like |
| // R_ADDRPOWER_DS but inserts the offset of the GOT slot for the referenced symbol |
| // from the TOC rather than the symbol's address. |
| R_ADDRPOWER_GOT |
| |
| // R_ADDRPOWER_PCREL relocates two D-form instructions like R_ADDRPOWER, but |
| // inserts the displacement from the place being relocated to the address of the |
| // the relocated symbol instead of just its address. |
| R_ADDRPOWER_PCREL |
| |
| // R_ADDRPOWER_TOCREL relocates two D-form instructions like R_ADDRPOWER, but |
| // inserts the offset from the TOC to the address of the the relocated symbol |
| // rather than the symbol's address. |
| R_ADDRPOWER_TOCREL |
| |
| // R_ADDRPOWER_TOCREL relocates a D-form, DS-form instruction sequence like |
| // R_ADDRPOWER_DS but inserts the offset from the TOC to the address of the the |
| // relocated symbol rather than the symbol's address. |
| R_ADDRPOWER_TOCREL_DS |
| |
| // R_PCRELDBL relocates s390x 2-byte aligned PC-relative addresses. |
| // TODO(mundaym): remove once variants can be serialized - see issue 14218. |
| R_PCRELDBL |
| |
| // R_ADDRMIPSU (only used on mips/mips64) resolves to the sign-adjusted "upper" 16 |
| // bits (bit 16-31) of an external address, by encoding it into the instruction. |
| R_ADDRMIPSU |
| // R_ADDRMIPSTLS (only used on mips64) resolves to the low 16 bits of a TLS |
| // address (offset from thread pointer), by encoding it into the instruction. |
| R_ADDRMIPSTLS |
| ) |
| |
| // IsDirectJump returns whether r is a relocation for a direct jump. |
| // A direct jump is a CALL or JMP instruction that takes the target address |
| // as immediate. The address is embedded into the instruction, possibly |
| // with limited width. |
| // An indirect jump is a CALL or JMP instruction that takes the target address |
| // in register or memory. |
| func (r RelocType) IsDirectJump() bool { |
| switch r { |
| case R_CALL, R_CALLARM, R_CALLARM64, R_CALLPOWER, R_CALLMIPS, R_JMPMIPS: |
| return true |
| } |
| return false |
| } |
| |
| type Auto struct { |
| Asym *LSym |
| Link *Auto |
| Aoffset int32 |
| Name int16 |
| Gotype *LSym |
| } |
| |
| // Auto.name |
| const ( |
| A_AUTO = 1 + iota |
| A_PARAM |
| ) |
| |
| type Pcdata struct { |
| P []byte |
| } |
| |
| // symbol version, incremented each time a file is loaded. |
| // version==1 is reserved for savehist. |
| const ( |
| HistVersion = 1 |
| ) |
| |
| // Link holds the context for writing object code from a compiler |
| // to be linker input or for reading that input into the linker. |
| type Link struct { |
| Headtype HeadType |
| Arch *LinkArch |
| Debugasm int32 |
| Debugvlog int32 |
| Debugdivmod int32 |
| Debugpcln int32 |
| Flag_shared bool |
| Flag_dynlink bool |
| Flag_optimize bool |
| Bso *bufio.Writer |
| Pathname string |
| Hash map[SymVer]*LSym |
| LineHist LineHist |
| Imports []string |
| Plists []*Plist |
| Sym_div *LSym |
| Sym_divu *LSym |
| Sym_mod *LSym |
| Sym_modu *LSym |
| Plan9privates *LSym |
| Curp *Prog |
| Printp *Prog |
| Blitrl *Prog |
| Elitrl *Prog |
| Rexflag int |
| Vexflag int |
| Rep int |
| Repn int |
| Lock int |
| Asmode int |
| AsmBuf AsmBuf // instruction buffer for x86 |
| Instoffset int64 |
| Autosize int32 |
| Armsize int32 |
| Pc int64 |
| DiagFunc func(string, ...interface{}) |
| Mode int |
| Cursym *LSym |
| Version int |
| Errors int |
| |
| Framepointer_enabled bool |
| |
| // state for writing objects |
| Text []*LSym |
| Data []*LSym |
| |
| // Cache of Progs |
| allocIdx int |
| progs [10000]Prog |
| } |
| |
| func (ctxt *Link) Diag(format string, args ...interface{}) { |
| ctxt.Errors++ |
| ctxt.DiagFunc(format, args...) |
| } |
| |
| func (ctxt *Link) Logf(format string, args ...interface{}) { |
| fmt.Fprintf(ctxt.Bso, format, args...) |
| ctxt.Bso.Flush() |
| } |
| |
| // The smallest possible offset from the hardware stack pointer to a local |
| // variable on the stack. Architectures that use a link register save its value |
| // on the stack in the function prologue and so always have a pointer between |
| // the hardware stack pointer and the local variable area. |
| func (ctxt *Link) FixedFrameSize() int64 { |
| switch ctxt.Arch.Family { |
| case sys.AMD64, sys.I386: |
| return 0 |
| case sys.PPC64: |
| // PIC code on ppc64le requires 32 bytes of stack, and it's easier to |
| // just use that much stack always on ppc64x. |
| return int64(4 * ctxt.Arch.PtrSize) |
| default: |
| return int64(ctxt.Arch.PtrSize) |
| } |
| } |
| |
| type SymVer struct { |
| Name string |
| Version int // TODO: make int16 to match LSym.Version? |
| } |
| |
| // LinkArch is the definition of a single architecture. |
| type LinkArch struct { |
| *sys.Arch |
| Preprocess func(*Link, *LSym) |
| Assemble func(*Link, *LSym) |
| Follow func(*Link, *LSym) |
| Progedit func(*Link, *Prog) |
| UnaryDst map[As]bool // Instruction takes one operand, a destination. |
| } |
| |
| // HeadType is the executable header type. |
| type HeadType uint8 |
| |
| const ( |
| Hunknown HeadType = iota |
| Hdarwin |
| Hdragonfly |
| Hfreebsd |
| Hlinux |
| Hnacl |
| Hnetbsd |
| Hopenbsd |
| Hplan9 |
| Hsolaris |
| Hwindows |
| Hwindowsgui |
| ) |
| |
| func (h *HeadType) Set(s string) error { |
| switch s { |
| case "darwin": |
| *h = Hdarwin |
| case "dragonfly": |
| *h = Hdragonfly |
| case "freebsd": |
| *h = Hfreebsd |
| case "linux", "android": |
| *h = Hlinux |
| case "nacl": |
| *h = Hnacl |
| case "netbsd": |
| *h = Hnetbsd |
| case "openbsd": |
| *h = Hopenbsd |
| case "plan9": |
| *h = Hplan9 |
| case "solaris": |
| *h = Hsolaris |
| case "windows": |
| *h = Hwindows |
| case "windowsgui": |
| *h = Hwindowsgui |
| default: |
| return fmt.Errorf("invalid headtype: %q", s) |
| } |
| return nil |
| } |
| |
| func (h *HeadType) String() string { |
| switch *h { |
| case Hdarwin: |
| return "darwin" |
| case Hdragonfly: |
| return "dragonfly" |
| case Hfreebsd: |
| return "freebsd" |
| case Hlinux: |
| return "linux" |
| case Hnacl: |
| return "nacl" |
| case Hnetbsd: |
| return "netbsd" |
| case Hopenbsd: |
| return "openbsd" |
| case Hplan9: |
| return "plan9" |
| case Hsolaris: |
| return "solaris" |
| case Hwindows: |
| return "windows" |
| case Hwindowsgui: |
| return "windowsgui" |
| } |
| return fmt.Sprintf("HeadType(%d)", *h) |
| } |
| |
| // AsmBuf is a simple buffer to assemble variable-length x86 instructions into. |
| type AsmBuf struct { |
| buf [100]byte |
| off int |
| } |
| |
| // Put1 appends one byte to the end of the buffer. |
| func (a *AsmBuf) Put1(x byte) { |
| a.buf[a.off] = x |
| a.off++ |
| } |
| |
| // Put2 appends two bytes to the end of the buffer. |
| func (a *AsmBuf) Put2(x, y byte) { |
| a.buf[a.off+0] = x |
| a.buf[a.off+1] = y |
| a.off += 2 |
| } |
| |
| // Put3 appends three bytes to the end of the buffer. |
| func (a *AsmBuf) Put3(x, y, z byte) { |
| a.buf[a.off+0] = x |
| a.buf[a.off+1] = y |
| a.buf[a.off+2] = z |
| a.off += 3 |
| } |
| |
| // Put4 appends four bytes to the end of the buffer. |
| func (a *AsmBuf) Put4(x, y, z, w byte) { |
| a.buf[a.off+0] = x |
| a.buf[a.off+1] = y |
| a.buf[a.off+2] = z |
| a.buf[a.off+3] = w |
| a.off += 4 |
| } |
| |
| // PutInt16 writes v into the buffer using little-endian encoding. |
| func (a *AsmBuf) PutInt16(v int16) { |
| a.buf[a.off+0] = byte(v) |
| a.buf[a.off+1] = byte(v >> 8) |
| a.off += 2 |
| } |
| |
| // PutInt32 writes v into the buffer using little-endian encoding. |
| func (a *AsmBuf) PutInt32(v int32) { |
| a.buf[a.off+0] = byte(v) |
| a.buf[a.off+1] = byte(v >> 8) |
| a.buf[a.off+2] = byte(v >> 16) |
| a.buf[a.off+3] = byte(v >> 24) |
| a.off += 4 |
| } |
| |
| // PutInt64 writes v into the buffer using little-endian encoding. |
| func (a *AsmBuf) PutInt64(v int64) { |
| a.buf[a.off+0] = byte(v) |
| a.buf[a.off+1] = byte(v >> 8) |
| a.buf[a.off+2] = byte(v >> 16) |
| a.buf[a.off+3] = byte(v >> 24) |
| a.buf[a.off+4] = byte(v >> 32) |
| a.buf[a.off+5] = byte(v >> 40) |
| a.buf[a.off+6] = byte(v >> 48) |
| a.buf[a.off+7] = byte(v >> 56) |
| a.off += 8 |
| } |
| |
| // Put copies b into the buffer. |
| func (a *AsmBuf) Put(b []byte) { |
| copy(a.buf[a.off:], b) |
| a.off += len(b) |
| } |
| |
| // Insert inserts b at offset i. |
| func (a *AsmBuf) Insert(i int, b byte) { |
| a.off++ |
| copy(a.buf[i+1:a.off], a.buf[i:a.off-1]) |
| a.buf[i] = b |
| } |
| |
| // Last returns the byte at the end of the buffer. |
| func (a *AsmBuf) Last() byte { return a.buf[a.off-1] } |
| |
| // Len returns the length of the buffer. |
| func (a *AsmBuf) Len() int { return a.off } |
| |
| // Bytes returns the contents of the buffer. |
| func (a *AsmBuf) Bytes() []byte { return a.buf[:a.off] } |
| |
| // Reset empties the buffer. |
| func (a *AsmBuf) Reset() { a.off = 0 } |
| |
| // Peek returns the byte at offset i. |
| func (a *AsmBuf) Peek(i int) byte { return a.buf[i] } |