blob: 83bd6195d6cd13f81502f28e0fbf473927c6ccdf [file] [log] [blame] [edit]
// Copyright 2014 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package sha3
// Tests include all the ShortMsgKATs provided by the Keccak team at
// https://github.com/gvanas/KeccakCodePackage
//
// They only include the zero-bit case of the bitwise testvectors
// published by NIST in the draft of FIPS-202.
import (
"bytes"
"compress/flate"
"encoding/hex"
"encoding/json"
"fmt"
"hash"
"math/rand"
"os"
"strings"
"testing"
)
const (
testString = "brekeccakkeccak koax koax"
katFilename = "testdata/keccakKats.json.deflate"
)
// testDigests contains functions returning hash.Hash instances
// with output-length equal to the KAT length for SHA-3, Keccak
// and SHAKE instances.
var testDigests = map[string]func() hash.Hash{
"SHA3-224": New224,
"SHA3-256": New256,
"SHA3-384": New384,
"SHA3-512": New512,
"Keccak-256": NewLegacyKeccak256,
"Keccak-512": NewLegacyKeccak512,
}
// testShakes contains functions that return sha3.ShakeHash instances for
// with output-length equal to the KAT length.
var testShakes = map[string]struct {
constructor func(N []byte, S []byte) ShakeHash
defAlgoName string
defCustomStr string
}{
// NewCShake without customization produces same result as SHAKE
"SHAKE128": {NewCShake128, "", ""},
"SHAKE256": {NewCShake256, "", ""},
"cSHAKE128": {NewCShake128, "CSHAKE128", "CustomStrign"},
"cSHAKE256": {NewCShake256, "CSHAKE256", "CustomStrign"},
}
// decodeHex converts a hex-encoded string into a raw byte string.
func decodeHex(s string) []byte {
b, err := hex.DecodeString(s)
if err != nil {
panic(err)
}
return b
}
// structs used to marshal JSON test-cases.
type KeccakKats struct {
Kats map[string][]struct {
Digest string `json:"digest"`
Length int64 `json:"length"`
Message string `json:"message"`
// Defined only for cSHAKE
N string `json:"N"`
S string `json:"S"`
}
}
func testUnalignedAndGeneric(t *testing.T, testf func(impl string)) {
xorInOrig, copyOutOrig := xorIn, copyOut
xorIn, copyOut = xorInGeneric, copyOutGeneric
testf("generic")
if xorImplementationUnaligned != "generic" {
xorIn, copyOut = xorInUnaligned, copyOutUnaligned
testf("unaligned")
}
xorIn, copyOut = xorInOrig, copyOutOrig
}
// TestKeccakKats tests the SHA-3 and Shake implementations against all the
// ShortMsgKATs from https://github.com/gvanas/KeccakCodePackage
// (The testvectors are stored in keccakKats.json.deflate due to their length.)
func TestKeccakKats(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
// Read the KATs.
deflated, err := os.Open(katFilename)
if err != nil {
t.Errorf("error opening %s: %s", katFilename, err)
}
file := flate.NewReader(deflated)
dec := json.NewDecoder(file)
var katSet KeccakKats
err = dec.Decode(&katSet)
if err != nil {
t.Errorf("error decoding KATs: %s", err)
}
for algo, function := range testDigests {
d := function()
for _, kat := range katSet.Kats[algo] {
d.Reset()
in, err := hex.DecodeString(kat.Message)
if err != nil {
t.Errorf("error decoding KAT: %s", err)
}
d.Write(in[:kat.Length/8])
got := strings.ToUpper(hex.EncodeToString(d.Sum(nil)))
if got != kat.Digest {
t.Errorf("function=%s, implementation=%s, length=%d\nmessage:\n %s\ngot:\n %s\nwanted:\n %s",
algo, impl, kat.Length, kat.Message, got, kat.Digest)
t.Logf("wanted %+v", kat)
t.FailNow()
}
continue
}
}
for algo, v := range testShakes {
for _, kat := range katSet.Kats[algo] {
N, err := hex.DecodeString(kat.N)
if err != nil {
t.Errorf("error decoding KAT: %s", err)
}
S, err := hex.DecodeString(kat.S)
if err != nil {
t.Errorf("error decoding KAT: %s", err)
}
d := v.constructor(N, S)
in, err := hex.DecodeString(kat.Message)
if err != nil {
t.Errorf("error decoding KAT: %s", err)
}
d.Write(in[:kat.Length/8])
out := make([]byte, len(kat.Digest)/2)
d.Read(out)
got := strings.ToUpper(hex.EncodeToString(out))
if got != kat.Digest {
t.Errorf("function=%s, implementation=%s, length=%d N:%s\n S:%s\nmessage:\n %s \ngot:\n %s\nwanted:\n %s",
algo, impl, kat.Length, kat.N, kat.S, kat.Message, got, kat.Digest)
t.Logf("wanted %+v", kat)
t.FailNow()
}
continue
}
}
})
}
// TestKeccak does a basic test of the non-standardized Keccak hash functions.
func TestKeccak(t *testing.T) {
tests := []struct {
fn func() hash.Hash
data []byte
want string
}{
{
NewLegacyKeccak256,
[]byte("abc"),
"4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45",
},
{
NewLegacyKeccak512,
[]byte("abc"),
"18587dc2ea106b9a1563e32b3312421ca164c7f1f07bc922a9c83d77cea3a1e5d0c69910739025372dc14ac9642629379540c17e2a65b19d77aa511a9d00bb96",
},
}
for _, u := range tests {
h := u.fn()
h.Write(u.data)
got := h.Sum(nil)
want := decodeHex(u.want)
if !bytes.Equal(got, want) {
t.Errorf("unexpected hash for size %d: got '%x' want '%s'", h.Size()*8, got, u.want)
}
}
}
// TestUnalignedWrite tests that writing data in an arbitrary pattern with
// small input buffers.
func TestUnalignedWrite(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
buf := sequentialBytes(0x10000)
for alg, df := range testDigests {
d := df()
d.Reset()
d.Write(buf)
want := d.Sum(nil)
d.Reset()
for i := 0; i < len(buf); {
// Cycle through offsets which make a 137 byte sequence.
// Because 137 is prime this sequence should exercise all corner cases.
offsets := [17]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1}
for _, j := range offsets {
if v := len(buf) - i; v < j {
j = v
}
d.Write(buf[i : i+j])
i += j
}
}
got := d.Sum(nil)
if !bytes.Equal(got, want) {
t.Errorf("Unaligned writes, implementation=%s, alg=%s\ngot %q, want %q", impl, alg, got, want)
}
}
// Same for SHAKE
for alg, df := range testShakes {
want := make([]byte, 16)
got := make([]byte, 16)
d := df.constructor([]byte(df.defAlgoName), []byte(df.defCustomStr))
d.Reset()
d.Write(buf)
d.Read(want)
d.Reset()
for i := 0; i < len(buf); {
// Cycle through offsets which make a 137 byte sequence.
// Because 137 is prime this sequence should exercise all corner cases.
offsets := [17]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1}
for _, j := range offsets {
if v := len(buf) - i; v < j {
j = v
}
d.Write(buf[i : i+j])
i += j
}
}
d.Read(got)
if !bytes.Equal(got, want) {
t.Errorf("Unaligned writes, implementation=%s, alg=%s\ngot %q, want %q", impl, alg, got, want)
}
}
})
}
// TestAppend checks that appending works when reallocation is necessary.
func TestAppend(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
d := New224()
for capacity := 2; capacity <= 66; capacity += 64 {
// The first time around the loop, Sum will have to reallocate.
// The second time, it will not.
buf := make([]byte, 2, capacity)
d.Reset()
d.Write([]byte{0xcc})
buf = d.Sum(buf)
expected := "0000DF70ADC49B2E76EEE3A6931B93FA41841C3AF2CDF5B32A18B5478C39"
if got := strings.ToUpper(hex.EncodeToString(buf)); got != expected {
t.Errorf("got %s, want %s", got, expected)
}
}
})
}
// TestAppendNoRealloc tests that appending works when no reallocation is necessary.
func TestAppendNoRealloc(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
buf := make([]byte, 1, 200)
d := New224()
d.Write([]byte{0xcc})
buf = d.Sum(buf)
expected := "00DF70ADC49B2E76EEE3A6931B93FA41841C3AF2CDF5B32A18B5478C39"
if got := strings.ToUpper(hex.EncodeToString(buf)); got != expected {
t.Errorf("%s: got %s, want %s", impl, got, expected)
}
})
}
// TestSqueezing checks that squeezing the full output a single time produces
// the same output as repeatedly squeezing the instance.
func TestSqueezing(t *testing.T) {
testUnalignedAndGeneric(t, func(impl string) {
for algo, v := range testShakes {
d0 := v.constructor([]byte(v.defAlgoName), []byte(v.defCustomStr))
d0.Write([]byte(testString))
ref := make([]byte, 32)
d0.Read(ref)
d1 := v.constructor([]byte(v.defAlgoName), []byte(v.defCustomStr))
d1.Write([]byte(testString))
var multiple []byte
for range ref {
one := make([]byte, 1)
d1.Read(one)
multiple = append(multiple, one...)
}
if !bytes.Equal(ref, multiple) {
t.Errorf("%s (%s): squeezing %d bytes one at a time failed", algo, impl, len(ref))
}
}
})
}
// sequentialBytes produces a buffer of size consecutive bytes 0x00, 0x01, ..., used for testing.
//
// The alignment of each slice is intentionally randomized to detect alignment
// issues in the implementation. See https://golang.org/issue/37644.
// Ideally, the compiler should fuzz the alignment itself.
// (See https://golang.org/issue/35128.)
func sequentialBytes(size int) []byte {
alignmentOffset := rand.Intn(8)
result := make([]byte, size+alignmentOffset)[alignmentOffset:]
for i := range result {
result[i] = byte(i)
}
return result
}
func TestReset(t *testing.T) {
out1 := make([]byte, 32)
out2 := make([]byte, 32)
for _, v := range testShakes {
// Calculate hash for the first time
c := v.constructor(nil, []byte{0x99, 0x98})
c.Write(sequentialBytes(0x100))
c.Read(out1)
// Calculate hash again
c.Reset()
c.Write(sequentialBytes(0x100))
c.Read(out2)
if !bytes.Equal(out1, out2) {
t.Error("\nExpected:\n", out1, "\ngot:\n", out2)
}
}
}
func TestClone(t *testing.T) {
out1 := make([]byte, 16)
out2 := make([]byte, 16)
// Test for sizes smaller and larger than block size.
for _, size := range []int{0x1, 0x100} {
in := sequentialBytes(size)
for _, v := range testShakes {
h1 := v.constructor(nil, []byte{0x01})
h1.Write([]byte{0x01})
h2 := h1.Clone()
h1.Write(in)
h1.Read(out1)
h2.Write(in)
h2.Read(out2)
if !bytes.Equal(out1, out2) {
t.Error("\nExpected:\n", hex.EncodeToString(out1), "\ngot:\n", hex.EncodeToString(out2))
}
}
}
}
// BenchmarkPermutationFunction measures the speed of the permutation function
// with no input data.
func BenchmarkPermutationFunction(b *testing.B) {
b.SetBytes(int64(200))
var lanes [25]uint64
for i := 0; i < b.N; i++ {
keccakF1600(&lanes)
}
}
// benchmarkHash tests the speed to hash num buffers of buflen each.
func benchmarkHash(b *testing.B, h hash.Hash, size, num int) {
b.StopTimer()
h.Reset()
data := sequentialBytes(size)
b.SetBytes(int64(size * num))
b.StartTimer()
var state []byte
for i := 0; i < b.N; i++ {
for j := 0; j < num; j++ {
h.Write(data)
}
state = h.Sum(state[:0])
}
b.StopTimer()
h.Reset()
}
// benchmarkShake is specialized to the Shake instances, which don't
// require a copy on reading output.
func benchmarkShake(b *testing.B, h ShakeHash, size, num int) {
b.StopTimer()
h.Reset()
data := sequentialBytes(size)
d := make([]byte, 32)
b.SetBytes(int64(size * num))
b.StartTimer()
for i := 0; i < b.N; i++ {
h.Reset()
for j := 0; j < num; j++ {
h.Write(data)
}
h.Read(d)
}
}
func BenchmarkSha3_512_MTU(b *testing.B) { benchmarkHash(b, New512(), 1350, 1) }
func BenchmarkSha3_384_MTU(b *testing.B) { benchmarkHash(b, New384(), 1350, 1) }
func BenchmarkSha3_256_MTU(b *testing.B) { benchmarkHash(b, New256(), 1350, 1) }
func BenchmarkSha3_224_MTU(b *testing.B) { benchmarkHash(b, New224(), 1350, 1) }
func BenchmarkShake128_MTU(b *testing.B) { benchmarkShake(b, NewShake128(), 1350, 1) }
func BenchmarkShake256_MTU(b *testing.B) { benchmarkShake(b, NewShake256(), 1350, 1) }
func BenchmarkShake256_16x(b *testing.B) { benchmarkShake(b, NewShake256(), 16, 1024) }
func BenchmarkShake256_1MiB(b *testing.B) { benchmarkShake(b, NewShake256(), 1024, 1024) }
func BenchmarkSha3_512_1MiB(b *testing.B) { benchmarkHash(b, New512(), 1024, 1024) }
func Example_sum() {
buf := []byte("some data to hash")
// A hash needs to be 64 bytes long to have 256-bit collision resistance.
h := make([]byte, 64)
// Compute a 64-byte hash of buf and put it in h.
ShakeSum256(h, buf)
fmt.Printf("%x\n", h)
// Output: 0f65fe41fc353e52c55667bb9e2b27bfcc8476f2c413e9437d272ee3194a4e3146d05ec04a25d16b8f577c19b82d16b1424c3e022e783d2b4da98de3658d363d
}
func Example_mac() {
k := []byte("this is a secret key; you should generate a strong random key that's at least 32 bytes long")
buf := []byte("and this is some data to authenticate")
// A MAC with 32 bytes of output has 256-bit security strength -- if you use at least a 32-byte-long key.
h := make([]byte, 32)
d := NewShake256()
// Write the key into the hash.
d.Write(k)
// Now write the data.
d.Write(buf)
// Read 32 bytes of output from the hash into h.
d.Read(h)
fmt.Printf("%x\n", h)
// Output: 78de2974bd2711d5549ffd32b753ef0f5fa80a0db2556db60f0987eb8a9218ff
}
func ExampleNewCShake256() {
out := make([]byte, 32)
msg := []byte("The quick brown fox jumps over the lazy dog")
// Example 1: Simple cshake
c1 := NewCShake256([]byte("NAME"), []byte("Partition1"))
c1.Write(msg)
c1.Read(out)
fmt.Println(hex.EncodeToString(out))
// Example 2: Different customization string produces different digest
c1 = NewCShake256([]byte("NAME"), []byte("Partition2"))
c1.Write(msg)
c1.Read(out)
fmt.Println(hex.EncodeToString(out))
// Example 3: Longer output length produces longer digest
out = make([]byte, 64)
c1 = NewCShake256([]byte("NAME"), []byte("Partition1"))
c1.Write(msg)
c1.Read(out)
fmt.Println(hex.EncodeToString(out))
// Example 4: Next read produces different result
c1.Read(out)
fmt.Println(hex.EncodeToString(out))
// Output:
//a90a4c6ca9af2156eba43dc8398279e6b60dcd56fb21837afe6c308fd4ceb05b
//a8db03e71f3e4da5c4eee9d28333cdd355f51cef3c567e59be5beb4ecdbb28f0
//a90a4c6ca9af2156eba43dc8398279e6b60dcd56fb21837afe6c308fd4ceb05b9dd98c6ee866ca7dc5a39d53e960f400bcd5a19c8a2d6ec6459f63696543a0d8
//85e73a72228d08b46515553ca3a29d47df3047e5d84b12d6c2c63e579f4fd1105716b7838e92e981863907f434bfd4443c9e56ea09da998d2f9b47db71988109
}