| // Copyright 2014 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package sha3 |
| |
| // Tests include all the ShortMsgKATs provided by the Keccak team at |
| // https://github.com/gvanas/KeccakCodePackage |
| // |
| // They only include the zero-bit case of the bitwise testvectors |
| // published by NIST in the draft of FIPS-202. |
| |
| import ( |
| "bytes" |
| "compress/flate" |
| "encoding/hex" |
| "encoding/json" |
| "fmt" |
| "hash" |
| "math/rand" |
| "os" |
| "strings" |
| "testing" |
| ) |
| |
| const ( |
| testString = "brekeccakkeccak koax koax" |
| katFilename = "testdata/keccakKats.json.deflate" |
| ) |
| |
| // testDigests contains functions returning hash.Hash instances |
| // with output-length equal to the KAT length for SHA-3, Keccak |
| // and SHAKE instances. |
| var testDigests = map[string]func() hash.Hash{ |
| "SHA3-224": New224, |
| "SHA3-256": New256, |
| "SHA3-384": New384, |
| "SHA3-512": New512, |
| "Keccak-256": NewLegacyKeccak256, |
| "Keccak-512": NewLegacyKeccak512, |
| } |
| |
| // testShakes contains functions that return sha3.ShakeHash instances for |
| // with output-length equal to the KAT length. |
| var testShakes = map[string]struct { |
| constructor func(N []byte, S []byte) ShakeHash |
| defAlgoName string |
| defCustomStr string |
| }{ |
| // NewCShake without customization produces same result as SHAKE |
| "SHAKE128": {NewCShake128, "", ""}, |
| "SHAKE256": {NewCShake256, "", ""}, |
| "cSHAKE128": {NewCShake128, "CSHAKE128", "CustomStrign"}, |
| "cSHAKE256": {NewCShake256, "CSHAKE256", "CustomStrign"}, |
| } |
| |
| // decodeHex converts a hex-encoded string into a raw byte string. |
| func decodeHex(s string) []byte { |
| b, err := hex.DecodeString(s) |
| if err != nil { |
| panic(err) |
| } |
| return b |
| } |
| |
| // structs used to marshal JSON test-cases. |
| type KeccakKats struct { |
| Kats map[string][]struct { |
| Digest string `json:"digest"` |
| Length int64 `json:"length"` |
| Message string `json:"message"` |
| |
| // Defined only for cSHAKE |
| N string `json:"N"` |
| S string `json:"S"` |
| } |
| } |
| |
| func testUnalignedAndGeneric(t *testing.T, testf func(impl string)) { |
| xorInOrig, copyOutOrig := xorIn, copyOut |
| xorIn, copyOut = xorInGeneric, copyOutGeneric |
| testf("generic") |
| if xorImplementationUnaligned != "generic" { |
| xorIn, copyOut = xorInUnaligned, copyOutUnaligned |
| testf("unaligned") |
| } |
| xorIn, copyOut = xorInOrig, copyOutOrig |
| } |
| |
| // TestKeccakKats tests the SHA-3 and Shake implementations against all the |
| // ShortMsgKATs from https://github.com/gvanas/KeccakCodePackage |
| // (The testvectors are stored in keccakKats.json.deflate due to their length.) |
| func TestKeccakKats(t *testing.T) { |
| testUnalignedAndGeneric(t, func(impl string) { |
| // Read the KATs. |
| deflated, err := os.Open(katFilename) |
| if err != nil { |
| t.Errorf("error opening %s: %s", katFilename, err) |
| } |
| file := flate.NewReader(deflated) |
| dec := json.NewDecoder(file) |
| var katSet KeccakKats |
| err = dec.Decode(&katSet) |
| if err != nil { |
| t.Errorf("error decoding KATs: %s", err) |
| } |
| |
| for algo, function := range testDigests { |
| d := function() |
| for _, kat := range katSet.Kats[algo] { |
| d.Reset() |
| in, err := hex.DecodeString(kat.Message) |
| if err != nil { |
| t.Errorf("error decoding KAT: %s", err) |
| } |
| d.Write(in[:kat.Length/8]) |
| got := strings.ToUpper(hex.EncodeToString(d.Sum(nil))) |
| if got != kat.Digest { |
| t.Errorf("function=%s, implementation=%s, length=%d\nmessage:\n %s\ngot:\n %s\nwanted:\n %s", |
| algo, impl, kat.Length, kat.Message, got, kat.Digest) |
| t.Logf("wanted %+v", kat) |
| t.FailNow() |
| } |
| continue |
| } |
| } |
| |
| for algo, v := range testShakes { |
| for _, kat := range katSet.Kats[algo] { |
| N, err := hex.DecodeString(kat.N) |
| if err != nil { |
| t.Errorf("error decoding KAT: %s", err) |
| } |
| |
| S, err := hex.DecodeString(kat.S) |
| if err != nil { |
| t.Errorf("error decoding KAT: %s", err) |
| } |
| d := v.constructor(N, S) |
| in, err := hex.DecodeString(kat.Message) |
| if err != nil { |
| t.Errorf("error decoding KAT: %s", err) |
| } |
| |
| d.Write(in[:kat.Length/8]) |
| out := make([]byte, len(kat.Digest)/2) |
| d.Read(out) |
| got := strings.ToUpper(hex.EncodeToString(out)) |
| if got != kat.Digest { |
| t.Errorf("function=%s, implementation=%s, length=%d N:%s\n S:%s\nmessage:\n %s \ngot:\n %s\nwanted:\n %s", |
| algo, impl, kat.Length, kat.N, kat.S, kat.Message, got, kat.Digest) |
| t.Logf("wanted %+v", kat) |
| t.FailNow() |
| } |
| continue |
| } |
| } |
| }) |
| } |
| |
| // TestKeccak does a basic test of the non-standardized Keccak hash functions. |
| func TestKeccak(t *testing.T) { |
| tests := []struct { |
| fn func() hash.Hash |
| data []byte |
| want string |
| }{ |
| { |
| NewLegacyKeccak256, |
| []byte("abc"), |
| "4e03657aea45a94fc7d47ba826c8d667c0d1e6e33a64a036ec44f58fa12d6c45", |
| }, |
| { |
| NewLegacyKeccak512, |
| []byte("abc"), |
| "18587dc2ea106b9a1563e32b3312421ca164c7f1f07bc922a9c83d77cea3a1e5d0c69910739025372dc14ac9642629379540c17e2a65b19d77aa511a9d00bb96", |
| }, |
| } |
| |
| for _, u := range tests { |
| h := u.fn() |
| h.Write(u.data) |
| got := h.Sum(nil) |
| want := decodeHex(u.want) |
| if !bytes.Equal(got, want) { |
| t.Errorf("unexpected hash for size %d: got '%x' want '%s'", h.Size()*8, got, u.want) |
| } |
| } |
| } |
| |
| // TestUnalignedWrite tests that writing data in an arbitrary pattern with |
| // small input buffers. |
| func TestUnalignedWrite(t *testing.T) { |
| testUnalignedAndGeneric(t, func(impl string) { |
| buf := sequentialBytes(0x10000) |
| for alg, df := range testDigests { |
| d := df() |
| d.Reset() |
| d.Write(buf) |
| want := d.Sum(nil) |
| d.Reset() |
| for i := 0; i < len(buf); { |
| // Cycle through offsets which make a 137 byte sequence. |
| // Because 137 is prime this sequence should exercise all corner cases. |
| offsets := [17]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1} |
| for _, j := range offsets { |
| if v := len(buf) - i; v < j { |
| j = v |
| } |
| d.Write(buf[i : i+j]) |
| i += j |
| } |
| } |
| got := d.Sum(nil) |
| if !bytes.Equal(got, want) { |
| t.Errorf("Unaligned writes, implementation=%s, alg=%s\ngot %q, want %q", impl, alg, got, want) |
| } |
| } |
| |
| // Same for SHAKE |
| for alg, df := range testShakes { |
| want := make([]byte, 16) |
| got := make([]byte, 16) |
| d := df.constructor([]byte(df.defAlgoName), []byte(df.defCustomStr)) |
| |
| d.Reset() |
| d.Write(buf) |
| d.Read(want) |
| d.Reset() |
| for i := 0; i < len(buf); { |
| // Cycle through offsets which make a 137 byte sequence. |
| // Because 137 is prime this sequence should exercise all corner cases. |
| offsets := [17]int{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 1} |
| for _, j := range offsets { |
| if v := len(buf) - i; v < j { |
| j = v |
| } |
| d.Write(buf[i : i+j]) |
| i += j |
| } |
| } |
| d.Read(got) |
| if !bytes.Equal(got, want) { |
| t.Errorf("Unaligned writes, implementation=%s, alg=%s\ngot %q, want %q", impl, alg, got, want) |
| } |
| } |
| }) |
| } |
| |
| // TestAppend checks that appending works when reallocation is necessary. |
| func TestAppend(t *testing.T) { |
| testUnalignedAndGeneric(t, func(impl string) { |
| d := New224() |
| |
| for capacity := 2; capacity <= 66; capacity += 64 { |
| // The first time around the loop, Sum will have to reallocate. |
| // The second time, it will not. |
| buf := make([]byte, 2, capacity) |
| d.Reset() |
| d.Write([]byte{0xcc}) |
| buf = d.Sum(buf) |
| expected := "0000DF70ADC49B2E76EEE3A6931B93FA41841C3AF2CDF5B32A18B5478C39" |
| if got := strings.ToUpper(hex.EncodeToString(buf)); got != expected { |
| t.Errorf("got %s, want %s", got, expected) |
| } |
| } |
| }) |
| } |
| |
| // TestAppendNoRealloc tests that appending works when no reallocation is necessary. |
| func TestAppendNoRealloc(t *testing.T) { |
| testUnalignedAndGeneric(t, func(impl string) { |
| buf := make([]byte, 1, 200) |
| d := New224() |
| d.Write([]byte{0xcc}) |
| buf = d.Sum(buf) |
| expected := "00DF70ADC49B2E76EEE3A6931B93FA41841C3AF2CDF5B32A18B5478C39" |
| if got := strings.ToUpper(hex.EncodeToString(buf)); got != expected { |
| t.Errorf("%s: got %s, want %s", impl, got, expected) |
| } |
| }) |
| } |
| |
| // TestSqueezing checks that squeezing the full output a single time produces |
| // the same output as repeatedly squeezing the instance. |
| func TestSqueezing(t *testing.T) { |
| testUnalignedAndGeneric(t, func(impl string) { |
| for algo, v := range testShakes { |
| d0 := v.constructor([]byte(v.defAlgoName), []byte(v.defCustomStr)) |
| d0.Write([]byte(testString)) |
| ref := make([]byte, 32) |
| d0.Read(ref) |
| |
| d1 := v.constructor([]byte(v.defAlgoName), []byte(v.defCustomStr)) |
| d1.Write([]byte(testString)) |
| var multiple []byte |
| for range ref { |
| one := make([]byte, 1) |
| d1.Read(one) |
| multiple = append(multiple, one...) |
| } |
| if !bytes.Equal(ref, multiple) { |
| t.Errorf("%s (%s): squeezing %d bytes one at a time failed", algo, impl, len(ref)) |
| } |
| } |
| }) |
| } |
| |
| // sequentialBytes produces a buffer of size consecutive bytes 0x00, 0x01, ..., used for testing. |
| // |
| // The alignment of each slice is intentionally randomized to detect alignment |
| // issues in the implementation. See https://golang.org/issue/37644. |
| // Ideally, the compiler should fuzz the alignment itself. |
| // (See https://golang.org/issue/35128.) |
| func sequentialBytes(size int) []byte { |
| alignmentOffset := rand.Intn(8) |
| result := make([]byte, size+alignmentOffset)[alignmentOffset:] |
| for i := range result { |
| result[i] = byte(i) |
| } |
| return result |
| } |
| |
| func TestReset(t *testing.T) { |
| out1 := make([]byte, 32) |
| out2 := make([]byte, 32) |
| |
| for _, v := range testShakes { |
| // Calculate hash for the first time |
| c := v.constructor(nil, []byte{0x99, 0x98}) |
| c.Write(sequentialBytes(0x100)) |
| c.Read(out1) |
| |
| // Calculate hash again |
| c.Reset() |
| c.Write(sequentialBytes(0x100)) |
| c.Read(out2) |
| |
| if !bytes.Equal(out1, out2) { |
| t.Error("\nExpected:\n", out1, "\ngot:\n", out2) |
| } |
| } |
| } |
| |
| func TestClone(t *testing.T) { |
| out1 := make([]byte, 16) |
| out2 := make([]byte, 16) |
| |
| // Test for sizes smaller and larger than block size. |
| for _, size := range []int{0x1, 0x100} { |
| in := sequentialBytes(size) |
| for _, v := range testShakes { |
| h1 := v.constructor(nil, []byte{0x01}) |
| h1.Write([]byte{0x01}) |
| |
| h2 := h1.Clone() |
| |
| h1.Write(in) |
| h1.Read(out1) |
| |
| h2.Write(in) |
| h2.Read(out2) |
| |
| if !bytes.Equal(out1, out2) { |
| t.Error("\nExpected:\n", hex.EncodeToString(out1), "\ngot:\n", hex.EncodeToString(out2)) |
| } |
| } |
| } |
| } |
| |
| // BenchmarkPermutationFunction measures the speed of the permutation function |
| // with no input data. |
| func BenchmarkPermutationFunction(b *testing.B) { |
| b.SetBytes(int64(200)) |
| var lanes [25]uint64 |
| for i := 0; i < b.N; i++ { |
| keccakF1600(&lanes) |
| } |
| } |
| |
| // benchmarkHash tests the speed to hash num buffers of buflen each. |
| func benchmarkHash(b *testing.B, h hash.Hash, size, num int) { |
| b.StopTimer() |
| h.Reset() |
| data := sequentialBytes(size) |
| b.SetBytes(int64(size * num)) |
| b.StartTimer() |
| |
| var state []byte |
| for i := 0; i < b.N; i++ { |
| for j := 0; j < num; j++ { |
| h.Write(data) |
| } |
| state = h.Sum(state[:0]) |
| } |
| b.StopTimer() |
| h.Reset() |
| } |
| |
| // benchmarkShake is specialized to the Shake instances, which don't |
| // require a copy on reading output. |
| func benchmarkShake(b *testing.B, h ShakeHash, size, num int) { |
| b.StopTimer() |
| h.Reset() |
| data := sequentialBytes(size) |
| d := make([]byte, 32) |
| |
| b.SetBytes(int64(size * num)) |
| b.StartTimer() |
| |
| for i := 0; i < b.N; i++ { |
| h.Reset() |
| for j := 0; j < num; j++ { |
| h.Write(data) |
| } |
| h.Read(d) |
| } |
| } |
| |
| func BenchmarkSha3_512_MTU(b *testing.B) { benchmarkHash(b, New512(), 1350, 1) } |
| func BenchmarkSha3_384_MTU(b *testing.B) { benchmarkHash(b, New384(), 1350, 1) } |
| func BenchmarkSha3_256_MTU(b *testing.B) { benchmarkHash(b, New256(), 1350, 1) } |
| func BenchmarkSha3_224_MTU(b *testing.B) { benchmarkHash(b, New224(), 1350, 1) } |
| |
| func BenchmarkShake128_MTU(b *testing.B) { benchmarkShake(b, NewShake128(), 1350, 1) } |
| func BenchmarkShake256_MTU(b *testing.B) { benchmarkShake(b, NewShake256(), 1350, 1) } |
| func BenchmarkShake256_16x(b *testing.B) { benchmarkShake(b, NewShake256(), 16, 1024) } |
| func BenchmarkShake256_1MiB(b *testing.B) { benchmarkShake(b, NewShake256(), 1024, 1024) } |
| |
| func BenchmarkSha3_512_1MiB(b *testing.B) { benchmarkHash(b, New512(), 1024, 1024) } |
| |
| func Example_sum() { |
| buf := []byte("some data to hash") |
| // A hash needs to be 64 bytes long to have 256-bit collision resistance. |
| h := make([]byte, 64) |
| // Compute a 64-byte hash of buf and put it in h. |
| ShakeSum256(h, buf) |
| fmt.Printf("%x\n", h) |
| // Output: 0f65fe41fc353e52c55667bb9e2b27bfcc8476f2c413e9437d272ee3194a4e3146d05ec04a25d16b8f577c19b82d16b1424c3e022e783d2b4da98de3658d363d |
| } |
| |
| func Example_mac() { |
| k := []byte("this is a secret key; you should generate a strong random key that's at least 32 bytes long") |
| buf := []byte("and this is some data to authenticate") |
| // A MAC with 32 bytes of output has 256-bit security strength -- if you use at least a 32-byte-long key. |
| h := make([]byte, 32) |
| d := NewShake256() |
| // Write the key into the hash. |
| d.Write(k) |
| // Now write the data. |
| d.Write(buf) |
| // Read 32 bytes of output from the hash into h. |
| d.Read(h) |
| fmt.Printf("%x\n", h) |
| // Output: 78de2974bd2711d5549ffd32b753ef0f5fa80a0db2556db60f0987eb8a9218ff |
| } |
| |
| func ExampleNewCShake256() { |
| out := make([]byte, 32) |
| msg := []byte("The quick brown fox jumps over the lazy dog") |
| |
| // Example 1: Simple cshake |
| c1 := NewCShake256([]byte("NAME"), []byte("Partition1")) |
| c1.Write(msg) |
| c1.Read(out) |
| fmt.Println(hex.EncodeToString(out)) |
| |
| // Example 2: Different customization string produces different digest |
| c1 = NewCShake256([]byte("NAME"), []byte("Partition2")) |
| c1.Write(msg) |
| c1.Read(out) |
| fmt.Println(hex.EncodeToString(out)) |
| |
| // Example 3: Longer output length produces longer digest |
| out = make([]byte, 64) |
| c1 = NewCShake256([]byte("NAME"), []byte("Partition1")) |
| c1.Write(msg) |
| c1.Read(out) |
| fmt.Println(hex.EncodeToString(out)) |
| |
| // Example 4: Next read produces different result |
| c1.Read(out) |
| fmt.Println(hex.EncodeToString(out)) |
| |
| // Output: |
| //a90a4c6ca9af2156eba43dc8398279e6b60dcd56fb21837afe6c308fd4ceb05b |
| //a8db03e71f3e4da5c4eee9d28333cdd355f51cef3c567e59be5beb4ecdbb28f0 |
| //a90a4c6ca9af2156eba43dc8398279e6b60dcd56fb21837afe6c308fd4ceb05b9dd98c6ee866ca7dc5a39d53e960f400bcd5a19c8a2d6ec6459f63696543a0d8 |
| //85e73a72228d08b46515553ca3a29d47df3047e5d84b12d6c2c63e579f4fd1105716b7838e92e981863907f434bfd4443c9e56ea09da998d2f9b47db71988109 |
| } |