| // Copyright 2012 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package bn256 |
| |
| // For details of the algorithms used, see "Multiplication and Squaring on |
| // Pairing-Friendly Fields, Devegili et al. |
| // http://eprint.iacr.org/2006/471.pdf. |
| |
| import ( |
| "math/big" |
| ) |
| |
| // gfP2 implements a field of size p² as a quadratic extension of the base |
| // field where i²=-1. |
| type gfP2 struct { |
| x, y *big.Int // value is xi+y. |
| } |
| |
| func newGFp2(pool *bnPool) *gfP2 { |
| return &gfP2{pool.Get(), pool.Get()} |
| } |
| |
| func (e *gfP2) String() string { |
| x := new(big.Int).Mod(e.x, p) |
| y := new(big.Int).Mod(e.y, p) |
| return "(" + x.String() + "," + y.String() + ")" |
| } |
| |
| func (e *gfP2) Put(pool *bnPool) { |
| pool.Put(e.x) |
| pool.Put(e.y) |
| } |
| |
| func (e *gfP2) Set(a *gfP2) *gfP2 { |
| e.x.Set(a.x) |
| e.y.Set(a.y) |
| return e |
| } |
| |
| func (e *gfP2) SetZero() *gfP2 { |
| e.x.SetInt64(0) |
| e.y.SetInt64(0) |
| return e |
| } |
| |
| func (e *gfP2) SetOne() *gfP2 { |
| e.x.SetInt64(0) |
| e.y.SetInt64(1) |
| return e |
| } |
| |
| func (e *gfP2) Minimal() { |
| if e.x.Sign() < 0 || e.x.Cmp(p) >= 0 { |
| e.x.Mod(e.x, p) |
| } |
| if e.y.Sign() < 0 || e.y.Cmp(p) >= 0 { |
| e.y.Mod(e.y, p) |
| } |
| } |
| |
| func (e *gfP2) IsZero() bool { |
| return e.x.Sign() == 0 && e.y.Sign() == 0 |
| } |
| |
| func (e *gfP2) IsOne() bool { |
| if e.x.Sign() != 0 { |
| return false |
| } |
| words := e.y.Bits() |
| return len(words) == 1 && words[0] == 1 |
| } |
| |
| func (e *gfP2) Conjugate(a *gfP2) *gfP2 { |
| e.y.Set(a.y) |
| e.x.Neg(a.x) |
| return e |
| } |
| |
| func (e *gfP2) Negative(a *gfP2) *gfP2 { |
| e.x.Neg(a.x) |
| e.y.Neg(a.y) |
| return e |
| } |
| |
| func (e *gfP2) Add(a, b *gfP2) *gfP2 { |
| e.x.Add(a.x, b.x) |
| e.y.Add(a.y, b.y) |
| return e |
| } |
| |
| func (e *gfP2) Sub(a, b *gfP2) *gfP2 { |
| e.x.Sub(a.x, b.x) |
| e.y.Sub(a.y, b.y) |
| return e |
| } |
| |
| func (e *gfP2) Double(a *gfP2) *gfP2 { |
| e.x.Lsh(a.x, 1) |
| e.y.Lsh(a.y, 1) |
| return e |
| } |
| |
| func (c *gfP2) Exp(a *gfP2, power *big.Int, pool *bnPool) *gfP2 { |
| sum := newGFp2(pool) |
| sum.SetOne() |
| t := newGFp2(pool) |
| |
| for i := power.BitLen() - 1; i >= 0; i-- { |
| t.Square(sum, pool) |
| if power.Bit(i) != 0 { |
| sum.Mul(t, a, pool) |
| } else { |
| sum.Set(t) |
| } |
| } |
| |
| c.Set(sum) |
| |
| sum.Put(pool) |
| t.Put(pool) |
| |
| return c |
| } |
| |
| // See "Multiplication and Squaring in Pairing-Friendly Fields", |
| // http://eprint.iacr.org/2006/471.pdf |
| func (e *gfP2) Mul(a, b *gfP2, pool *bnPool) *gfP2 { |
| tx := pool.Get().Mul(a.x, b.y) |
| t := pool.Get().Mul(b.x, a.y) |
| tx.Add(tx, t) |
| tx.Mod(tx, p) |
| |
| ty := pool.Get().Mul(a.y, b.y) |
| t.Mul(a.x, b.x) |
| ty.Sub(ty, t) |
| e.y.Mod(ty, p) |
| e.x.Set(tx) |
| |
| pool.Put(tx) |
| pool.Put(ty) |
| pool.Put(t) |
| |
| return e |
| } |
| |
| func (e *gfP2) MulScalar(a *gfP2, b *big.Int) *gfP2 { |
| e.x.Mul(a.x, b) |
| e.y.Mul(a.y, b) |
| return e |
| } |
| |
| // MulXi sets e=ξa where ξ=i+3 and then returns e. |
| func (e *gfP2) MulXi(a *gfP2, pool *bnPool) *gfP2 { |
| // (xi+y)(i+3) = (3x+y)i+(3y-x) |
| tx := pool.Get().Lsh(a.x, 1) |
| tx.Add(tx, a.x) |
| tx.Add(tx, a.y) |
| |
| ty := pool.Get().Lsh(a.y, 1) |
| ty.Add(ty, a.y) |
| ty.Sub(ty, a.x) |
| |
| e.x.Set(tx) |
| e.y.Set(ty) |
| |
| pool.Put(tx) |
| pool.Put(ty) |
| |
| return e |
| } |
| |
| func (e *gfP2) Square(a *gfP2, pool *bnPool) *gfP2 { |
| // Complex squaring algorithm: |
| // (xi+b)² = (x+y)(y-x) + 2*i*x*y |
| t1 := pool.Get().Sub(a.y, a.x) |
| t2 := pool.Get().Add(a.x, a.y) |
| ty := pool.Get().Mul(t1, t2) |
| ty.Mod(ty, p) |
| |
| t1.Mul(a.x, a.y) |
| t1.Lsh(t1, 1) |
| |
| e.x.Mod(t1, p) |
| e.y.Set(ty) |
| |
| pool.Put(t1) |
| pool.Put(t2) |
| pool.Put(ty) |
| |
| return e |
| } |
| |
| func (e *gfP2) Invert(a *gfP2, pool *bnPool) *gfP2 { |
| // See "Implementing cryptographic pairings", M. Scott, section 3.2. |
| // ftp://136.206.11.249/pub/crypto/pairings.pdf |
| t := pool.Get() |
| t.Mul(a.y, a.y) |
| t2 := pool.Get() |
| t2.Mul(a.x, a.x) |
| t.Add(t, t2) |
| |
| inv := pool.Get() |
| inv.ModInverse(t, p) |
| |
| e.x.Neg(a.x) |
| e.x.Mul(e.x, inv) |
| e.x.Mod(e.x, p) |
| |
| e.y.Mul(a.y, inv) |
| e.y.Mod(e.y, p) |
| |
| pool.Put(t) |
| pool.Put(t2) |
| pool.Put(inv) |
| |
| return e |
| } |