| // Copyright 2012 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package bn256 |
| |
| import ( |
| "math/big" |
| ) |
| |
| // curvePoint implements the elliptic curve y²=x³+3. Points are kept in |
| // Jacobian form and t=z² when valid. G₁ is the set of points of this curve on |
| // GF(p). |
| type curvePoint struct { |
| x, y, z, t *big.Int |
| } |
| |
| var curveB = new(big.Int).SetInt64(3) |
| |
| // curveGen is the generator of G₁. |
| var curveGen = &curvePoint{ |
| new(big.Int).SetInt64(1), |
| new(big.Int).SetInt64(-2), |
| new(big.Int).SetInt64(1), |
| new(big.Int).SetInt64(1), |
| } |
| |
| func newCurvePoint(pool *bnPool) *curvePoint { |
| return &curvePoint{ |
| pool.Get(), |
| pool.Get(), |
| pool.Get(), |
| pool.Get(), |
| } |
| } |
| |
| func (c *curvePoint) String() string { |
| c.MakeAffine(new(bnPool)) |
| return "(" + c.x.String() + ", " + c.y.String() + ")" |
| } |
| |
| func (c *curvePoint) Put(pool *bnPool) { |
| pool.Put(c.x) |
| pool.Put(c.y) |
| pool.Put(c.z) |
| pool.Put(c.t) |
| } |
| |
| func (c *curvePoint) Set(a *curvePoint) { |
| c.x.Set(a.x) |
| c.y.Set(a.y) |
| c.z.Set(a.z) |
| c.t.Set(a.t) |
| } |
| |
| // IsOnCurve returns true iff c is on the curve where c must be in affine form. |
| func (c *curvePoint) IsOnCurve() bool { |
| yy := new(big.Int).Mul(c.y, c.y) |
| xxx := new(big.Int).Mul(c.x, c.x) |
| xxx.Mul(xxx, c.x) |
| yy.Sub(yy, xxx) |
| yy.Sub(yy, curveB) |
| if yy.Sign() < 0 || yy.Cmp(p) >= 0 { |
| yy.Mod(yy, p) |
| } |
| return yy.Sign() == 0 |
| } |
| |
| func (c *curvePoint) SetInfinity() { |
| c.z.SetInt64(0) |
| } |
| |
| func (c *curvePoint) IsInfinity() bool { |
| return c.z.Sign() == 0 |
| } |
| |
| func (c *curvePoint) Add(a, b *curvePoint, pool *bnPool) { |
| if a.IsInfinity() { |
| c.Set(b) |
| return |
| } |
| if b.IsInfinity() { |
| c.Set(a) |
| return |
| } |
| |
| // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/addition/add-2007-bl.op3 |
| |
| // Normalize the points by replacing a = [x1:y1:z1] and b = [x2:y2:z2] |
| // by [u1:s1:z1·z2] and [u2:s2:z1·z2] |
| // where u1 = x1·z2², s1 = y1·z2³ and u1 = x2·z1², s2 = y2·z1³ |
| z1z1 := pool.Get().Mul(a.z, a.z) |
| z1z1.Mod(z1z1, p) |
| z2z2 := pool.Get().Mul(b.z, b.z) |
| z2z2.Mod(z2z2, p) |
| u1 := pool.Get().Mul(a.x, z2z2) |
| u1.Mod(u1, p) |
| u2 := pool.Get().Mul(b.x, z1z1) |
| u2.Mod(u2, p) |
| |
| t := pool.Get().Mul(b.z, z2z2) |
| t.Mod(t, p) |
| s1 := pool.Get().Mul(a.y, t) |
| s1.Mod(s1, p) |
| |
| t.Mul(a.z, z1z1) |
| t.Mod(t, p) |
| s2 := pool.Get().Mul(b.y, t) |
| s2.Mod(s2, p) |
| |
| // Compute x = (2h)²(s²-u1-u2) |
| // where s = (s2-s1)/(u2-u1) is the slope of the line through |
| // (u1,s1) and (u2,s2). The extra factor 2h = 2(u2-u1) comes from the value of z below. |
| // This is also: |
| // 4(s2-s1)² - 4h²(u1+u2) = 4(s2-s1)² - 4h³ - 4h²(2u1) |
| // = r² - j - 2v |
| // with the notations below. |
| h := pool.Get().Sub(u2, u1) |
| xEqual := h.Sign() == 0 |
| |
| t.Add(h, h) |
| // i = 4h² |
| i := pool.Get().Mul(t, t) |
| i.Mod(i, p) |
| // j = 4h³ |
| j := pool.Get().Mul(h, i) |
| j.Mod(j, p) |
| |
| t.Sub(s2, s1) |
| yEqual := t.Sign() == 0 |
| if xEqual && yEqual { |
| c.Double(a, pool) |
| return |
| } |
| r := pool.Get().Add(t, t) |
| |
| v := pool.Get().Mul(u1, i) |
| v.Mod(v, p) |
| |
| // t4 = 4(s2-s1)² |
| t4 := pool.Get().Mul(r, r) |
| t4.Mod(t4, p) |
| t.Add(v, v) |
| t6 := pool.Get().Sub(t4, j) |
| c.x.Sub(t6, t) |
| |
| // Set y = -(2h)³(s1 + s*(x/4h²-u1)) |
| // This is also |
| // y = - 2·s1·j - (s2-s1)(2x - 2i·u1) = r(v-x) - 2·s1·j |
| t.Sub(v, c.x) // t7 |
| t4.Mul(s1, j) // t8 |
| t4.Mod(t4, p) |
| t6.Add(t4, t4) // t9 |
| t4.Mul(r, t) // t10 |
| t4.Mod(t4, p) |
| c.y.Sub(t4, t6) |
| |
| // Set z = 2(u2-u1)·z1·z2 = 2h·z1·z2 |
| t.Add(a.z, b.z) // t11 |
| t4.Mul(t, t) // t12 |
| t4.Mod(t4, p) |
| t.Sub(t4, z1z1) // t13 |
| t4.Sub(t, z2z2) // t14 |
| c.z.Mul(t4, h) |
| c.z.Mod(c.z, p) |
| |
| pool.Put(z1z1) |
| pool.Put(z2z2) |
| pool.Put(u1) |
| pool.Put(u2) |
| pool.Put(t) |
| pool.Put(s1) |
| pool.Put(s2) |
| pool.Put(h) |
| pool.Put(i) |
| pool.Put(j) |
| pool.Put(r) |
| pool.Put(v) |
| pool.Put(t4) |
| pool.Put(t6) |
| } |
| |
| func (c *curvePoint) Double(a *curvePoint, pool *bnPool) { |
| // See http://hyperelliptic.org/EFD/g1p/auto-code/shortw/jacobian-0/doubling/dbl-2009-l.op3 |
| A := pool.Get().Mul(a.x, a.x) |
| A.Mod(A, p) |
| B := pool.Get().Mul(a.y, a.y) |
| B.Mod(B, p) |
| C := pool.Get().Mul(B, B) |
| C.Mod(C, p) |
| |
| t := pool.Get().Add(a.x, B) |
| t2 := pool.Get().Mul(t, t) |
| t2.Mod(t2, p) |
| t.Sub(t2, A) |
| t2.Sub(t, C) |
| d := pool.Get().Add(t2, t2) |
| t.Add(A, A) |
| e := pool.Get().Add(t, A) |
| f := pool.Get().Mul(e, e) |
| f.Mod(f, p) |
| |
| t.Add(d, d) |
| c.x.Sub(f, t) |
| |
| t.Add(C, C) |
| t2.Add(t, t) |
| t.Add(t2, t2) |
| c.y.Sub(d, c.x) |
| t2.Mul(e, c.y) |
| t2.Mod(t2, p) |
| c.y.Sub(t2, t) |
| |
| t.Mul(a.y, a.z) |
| t.Mod(t, p) |
| c.z.Add(t, t) |
| |
| pool.Put(A) |
| pool.Put(B) |
| pool.Put(C) |
| pool.Put(t) |
| pool.Put(t2) |
| pool.Put(d) |
| pool.Put(e) |
| pool.Put(f) |
| } |
| |
| func (c *curvePoint) Mul(a *curvePoint, scalar *big.Int, pool *bnPool) *curvePoint { |
| sum := newCurvePoint(pool) |
| sum.SetInfinity() |
| t := newCurvePoint(pool) |
| |
| for i := scalar.BitLen(); i >= 0; i-- { |
| t.Double(sum, pool) |
| if scalar.Bit(i) != 0 { |
| sum.Add(t, a, pool) |
| } else { |
| sum.Set(t) |
| } |
| } |
| |
| c.Set(sum) |
| sum.Put(pool) |
| t.Put(pool) |
| return c |
| } |
| |
| func (c *curvePoint) MakeAffine(pool *bnPool) *curvePoint { |
| if words := c.z.Bits(); len(words) == 1 && words[0] == 1 { |
| return c |
| } |
| |
| zInv := pool.Get().ModInverse(c.z, p) |
| t := pool.Get().Mul(c.y, zInv) |
| t.Mod(t, p) |
| zInv2 := pool.Get().Mul(zInv, zInv) |
| zInv2.Mod(zInv2, p) |
| c.y.Mul(t, zInv2) |
| c.y.Mod(c.y, p) |
| t.Mul(c.x, zInv2) |
| t.Mod(t, p) |
| c.x.Set(t) |
| c.z.SetInt64(1) |
| c.t.SetInt64(1) |
| |
| pool.Put(zInv) |
| pool.Put(t) |
| pool.Put(zInv2) |
| |
| return c |
| } |
| |
| func (c *curvePoint) Negative(a *curvePoint) { |
| c.x.Set(a.x) |
| c.y.Neg(a.y) |
| c.z.Set(a.z) |
| c.t.SetInt64(0) |
| } |