| // Copyright 2011 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package s2k implements the various OpenPGP string-to-key transforms as |
| // specified in RFC 4800 section 3.7.1. |
| package s2k // import "golang.org/x/crypto/openpgp/s2k" |
| |
| import ( |
| "crypto" |
| "hash" |
| "io" |
| "strconv" |
| |
| "golang.org/x/crypto/openpgp/errors" |
| ) |
| |
| // Config collects configuration parameters for s2k key-stretching |
| // transformatioms. A nil *Config is valid and results in all default |
| // values. Currently, Config is used only by the Serialize function in |
| // this package. |
| type Config struct { |
| // Hash is the default hash function to be used. If |
| // nil, SHA1 is used. |
| Hash crypto.Hash |
| // S2KCount is only used for symmetric encryption. It |
| // determines the strength of the passphrase stretching when |
| // the said passphrase is hashed to produce a key. S2KCount |
| // should be between 1024 and 65011712, inclusive. If Config |
| // is nil or S2KCount is 0, the value 65536 used. Not all |
| // values in the above range can be represented. S2KCount will |
| // be rounded up to the next representable value if it cannot |
| // be encoded exactly. When set, it is strongly encrouraged to |
| // use a value that is at least 65536. See RFC 4880 Section |
| // 3.7.1.3. |
| S2KCount int |
| } |
| |
| func (c *Config) hash() crypto.Hash { |
| if c == nil || uint(c.Hash) == 0 { |
| // SHA1 is the historical default in this package. |
| return crypto.SHA1 |
| } |
| |
| return c.Hash |
| } |
| |
| func (c *Config) encodedCount() uint8 { |
| if c == nil || c.S2KCount == 0 { |
| return 96 // The common case. Correspoding to 65536 |
| } |
| |
| i := c.S2KCount |
| switch { |
| // Behave like GPG. Should we make 65536 the lowest value used? |
| case i < 1024: |
| i = 1024 |
| case i > 65011712: |
| i = 65011712 |
| } |
| |
| return encodeCount(i) |
| } |
| |
| // encodeCount converts an iterative "count" in the range 1024 to |
| // 65011712, inclusive, to an encoded count. The return value is the |
| // octet that is actually stored in the GPG file. encodeCount panics |
| // if i is not in the above range (encodedCount above takes care to |
| // pass i in the correct range). See RFC 4880 Section 3.7.7.1. |
| func encodeCount(i int) uint8 { |
| if i < 1024 || i > 65011712 { |
| panic("count arg i outside the required range") |
| } |
| |
| for encoded := 0; encoded < 256; encoded++ { |
| count := decodeCount(uint8(encoded)) |
| if count >= i { |
| return uint8(encoded) |
| } |
| } |
| |
| return 255 |
| } |
| |
| // decodeCount returns the s2k mode 3 iterative "count" corresponding to |
| // the encoded octet c. |
| func decodeCount(c uint8) int { |
| return (16 + int(c&15)) << (uint32(c>>4) + 6) |
| } |
| |
| // Simple writes to out the result of computing the Simple S2K function (RFC |
| // 4880, section 3.7.1.1) using the given hash and input passphrase. |
| func Simple(out []byte, h hash.Hash, in []byte) { |
| Salted(out, h, in, nil) |
| } |
| |
| var zero [1]byte |
| |
| // Salted writes to out the result of computing the Salted S2K function (RFC |
| // 4880, section 3.7.1.2) using the given hash, input passphrase and salt. |
| func Salted(out []byte, h hash.Hash, in []byte, salt []byte) { |
| done := 0 |
| var digest []byte |
| |
| for i := 0; done < len(out); i++ { |
| h.Reset() |
| for j := 0; j < i; j++ { |
| h.Write(zero[:]) |
| } |
| h.Write(salt) |
| h.Write(in) |
| digest = h.Sum(digest[:0]) |
| n := copy(out[done:], digest) |
| done += n |
| } |
| } |
| |
| // Iterated writes to out the result of computing the Iterated and Salted S2K |
| // function (RFC 4880, section 3.7.1.3) using the given hash, input passphrase, |
| // salt and iteration count. |
| func Iterated(out []byte, h hash.Hash, in []byte, salt []byte, count int) { |
| combined := make([]byte, len(in)+len(salt)) |
| copy(combined, salt) |
| copy(combined[len(salt):], in) |
| |
| if count < len(combined) { |
| count = len(combined) |
| } |
| |
| done := 0 |
| var digest []byte |
| for i := 0; done < len(out); i++ { |
| h.Reset() |
| for j := 0; j < i; j++ { |
| h.Write(zero[:]) |
| } |
| written := 0 |
| for written < count { |
| if written+len(combined) > count { |
| todo := count - written |
| h.Write(combined[:todo]) |
| written = count |
| } else { |
| h.Write(combined) |
| written += len(combined) |
| } |
| } |
| digest = h.Sum(digest[:0]) |
| n := copy(out[done:], digest) |
| done += n |
| } |
| } |
| |
| // Parse reads a binary specification for a string-to-key transformation from r |
| // and returns a function which performs that transform. |
| func Parse(r io.Reader) (f func(out, in []byte), err error) { |
| var buf [9]byte |
| |
| _, err = io.ReadFull(r, buf[:2]) |
| if err != nil { |
| return |
| } |
| |
| hash, ok := HashIdToHash(buf[1]) |
| if !ok { |
| return nil, errors.UnsupportedError("hash for S2K function: " + strconv.Itoa(int(buf[1]))) |
| } |
| if !hash.Available() { |
| return nil, errors.UnsupportedError("hash not available: " + strconv.Itoa(int(hash))) |
| } |
| h := hash.New() |
| |
| switch buf[0] { |
| case 0: |
| f := func(out, in []byte) { |
| Simple(out, h, in) |
| } |
| return f, nil |
| case 1: |
| _, err = io.ReadFull(r, buf[:8]) |
| if err != nil { |
| return |
| } |
| f := func(out, in []byte) { |
| Salted(out, h, in, buf[:8]) |
| } |
| return f, nil |
| case 3: |
| _, err = io.ReadFull(r, buf[:9]) |
| if err != nil { |
| return |
| } |
| count := decodeCount(buf[8]) |
| f := func(out, in []byte) { |
| Iterated(out, h, in, buf[:8], count) |
| } |
| return f, nil |
| } |
| |
| return nil, errors.UnsupportedError("S2K function") |
| } |
| |
| // Serialize salts and stretches the given passphrase and writes the |
| // resulting key into key. It also serializes an S2K descriptor to |
| // w. The key stretching can be configured with c, which may be |
| // nil. In that case, sensible defaults will be used. |
| func Serialize(w io.Writer, key []byte, rand io.Reader, passphrase []byte, c *Config) error { |
| var buf [11]byte |
| buf[0] = 3 /* iterated and salted */ |
| buf[1], _ = HashToHashId(c.hash()) |
| salt := buf[2:10] |
| if _, err := io.ReadFull(rand, salt); err != nil { |
| return err |
| } |
| encodedCount := c.encodedCount() |
| count := decodeCount(encodedCount) |
| buf[10] = encodedCount |
| if _, err := w.Write(buf[:]); err != nil { |
| return err |
| } |
| |
| Iterated(key, c.hash().New(), passphrase, salt, count) |
| return nil |
| } |
| |
| // hashToHashIdMapping contains pairs relating OpenPGP's hash identifier with |
| // Go's crypto.Hash type. See RFC 4880, section 9.4. |
| var hashToHashIdMapping = []struct { |
| id byte |
| hash crypto.Hash |
| name string |
| }{ |
| {1, crypto.MD5, "MD5"}, |
| {2, crypto.SHA1, "SHA1"}, |
| {3, crypto.RIPEMD160, "RIPEMD160"}, |
| {8, crypto.SHA256, "SHA256"}, |
| {9, crypto.SHA384, "SHA384"}, |
| {10, crypto.SHA512, "SHA512"}, |
| {11, crypto.SHA224, "SHA224"}, |
| } |
| |
| // HashIdToHash returns a crypto.Hash which corresponds to the given OpenPGP |
| // hash id. |
| func HashIdToHash(id byte) (h crypto.Hash, ok bool) { |
| for _, m := range hashToHashIdMapping { |
| if m.id == id { |
| return m.hash, true |
| } |
| } |
| return 0, false |
| } |
| |
| // HashIdToString returns the name of the hash function corresponding to the |
| // given OpenPGP hash id. |
| func HashIdToString(id byte) (name string, ok bool) { |
| for _, m := range hashToHashIdMapping { |
| if m.id == id { |
| return m.name, true |
| } |
| } |
| |
| return "", false |
| } |
| |
| // HashIdToHash returns an OpenPGP hash id which corresponds the given Hash. |
| func HashToHashId(h crypto.Hash) (id byte, ok bool) { |
| for _, m := range hashToHashIdMapping { |
| if m.hash == h { |
| return m.id, true |
| } |
| } |
| return 0, false |
| } |