| // Copyright 2016 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package chacha20 implements the ChaCha20 and XChaCha20 encryption algorithms |
| // as specified in RFC 8439 and draft-irtf-cfrg-xchacha-01. |
| package chacha20 |
| |
| import ( |
| "crypto/cipher" |
| "encoding/binary" |
| "errors" |
| "math/bits" |
| |
| "golang.org/x/crypto/internal/subtle" |
| ) |
| |
| const ( |
| // KeySize is the size of the key used by this cipher, in bytes. |
| KeySize = 32 |
| |
| // NonceSize is the size of the nonce used with the standard variant of this |
| // cipher, in bytes. |
| // |
| // Note that this is too short to be safely generated at random if the same |
| // key is reused more than 2³² times. |
| NonceSize = 12 |
| |
| // NonceSizeX is the size of the nonce used with the XChaCha20 variant of |
| // this cipher, in bytes. |
| NonceSizeX = 24 |
| ) |
| |
| // Cipher is a stateful instance of ChaCha20 or XChaCha20 using a particular key |
| // and nonce. A *Cipher implements the cipher.Stream interface. |
| type Cipher struct { |
| // The ChaCha20 state is 16 words: 4 constant, 8 of key, 1 of counter |
| // (incremented after each block), and 3 of nonce. |
| key [8]uint32 |
| counter uint32 |
| nonce [3]uint32 |
| |
| // The last len bytes of buf are leftover key stream bytes from the previous |
| // XORKeyStream invocation. The size of buf depends on how many blocks are |
| // computed at a time by xorKeyStreamBlocks. |
| buf [bufSize]byte |
| len int |
| |
| // overflow is set when the counter overflowed, no more blocks can be |
| // generated, and the next XORKeyStream call should panic. |
| overflow bool |
| |
| // The counter-independent results of the first round are cached after they |
| // are computed the first time. |
| precompDone bool |
| p1, p5, p9, p13 uint32 |
| p2, p6, p10, p14 uint32 |
| p3, p7, p11, p15 uint32 |
| } |
| |
| var _ cipher.Stream = (*Cipher)(nil) |
| |
| // NewUnauthenticatedCipher creates a new ChaCha20 stream cipher with the given |
| // 32 bytes key and a 12 or 24 bytes nonce. If a nonce of 24 bytes is provided, |
| // the XChaCha20 construction will be used. It returns an error if key or nonce |
| // have any other length. |
| // |
| // Note that ChaCha20, like all stream ciphers, is not authenticated and allows |
| // attackers to silently tamper with the plaintext. For this reason, it is more |
| // appropriate as a building block than as a standalone encryption mechanism. |
| // Instead, consider using package golang.org/x/crypto/chacha20poly1305. |
| func NewUnauthenticatedCipher(key, nonce []byte) (*Cipher, error) { |
| // This function is split into a wrapper so that the Cipher allocation will |
| // be inlined, and depending on how the caller uses the return value, won't |
| // escape to the heap. |
| c := &Cipher{} |
| return newUnauthenticatedCipher(c, key, nonce) |
| } |
| |
| func newUnauthenticatedCipher(c *Cipher, key, nonce []byte) (*Cipher, error) { |
| if len(key) != KeySize { |
| return nil, errors.New("chacha20: wrong key size") |
| } |
| if len(nonce) == NonceSizeX { |
| // XChaCha20 uses the ChaCha20 core to mix 16 bytes of the nonce into a |
| // derived key, allowing it to operate on a nonce of 24 bytes. See |
| // draft-irtf-cfrg-xchacha-01, Section 2.3. |
| key, _ = HChaCha20(key, nonce[0:16]) |
| cNonce := make([]byte, NonceSize) |
| copy(cNonce[4:12], nonce[16:24]) |
| nonce = cNonce |
| } else if len(nonce) != NonceSize { |
| return nil, errors.New("chacha20: wrong nonce size") |
| } |
| |
| key, nonce = key[:KeySize], nonce[:NonceSize] // bounds check elimination hint |
| c.key = [8]uint32{ |
| binary.LittleEndian.Uint32(key[0:4]), |
| binary.LittleEndian.Uint32(key[4:8]), |
| binary.LittleEndian.Uint32(key[8:12]), |
| binary.LittleEndian.Uint32(key[12:16]), |
| binary.LittleEndian.Uint32(key[16:20]), |
| binary.LittleEndian.Uint32(key[20:24]), |
| binary.LittleEndian.Uint32(key[24:28]), |
| binary.LittleEndian.Uint32(key[28:32]), |
| } |
| c.nonce = [3]uint32{ |
| binary.LittleEndian.Uint32(nonce[0:4]), |
| binary.LittleEndian.Uint32(nonce[4:8]), |
| binary.LittleEndian.Uint32(nonce[8:12]), |
| } |
| return c, nil |
| } |
| |
| // The constant first 4 words of the ChaCha20 state. |
| const ( |
| j0 uint32 = 0x61707865 // expa |
| j1 uint32 = 0x3320646e // nd 3 |
| j2 uint32 = 0x79622d32 // 2-by |
| j3 uint32 = 0x6b206574 // te k |
| ) |
| |
| const blockSize = 64 |
| |
| // quarterRound is the core of ChaCha20. It shuffles the bits of 4 state words. |
| // It's executed 4 times for each of the 20 ChaCha20 rounds, operating on all 16 |
| // words each round, in columnar or diagonal groups of 4 at a time. |
| func quarterRound(a, b, c, d uint32) (uint32, uint32, uint32, uint32) { |
| a += b |
| d ^= a |
| d = bits.RotateLeft32(d, 16) |
| c += d |
| b ^= c |
| b = bits.RotateLeft32(b, 12) |
| a += b |
| d ^= a |
| d = bits.RotateLeft32(d, 8) |
| c += d |
| b ^= c |
| b = bits.RotateLeft32(b, 7) |
| return a, b, c, d |
| } |
| |
| // SetCounter sets the Cipher counter. The next invocation of XORKeyStream will |
| // behave as if (64 * counter) bytes had been encrypted so far. |
| // |
| // To prevent accidental counter reuse, SetCounter panics if counter is less |
| // than the current value. |
| // |
| // Note that the execution time of XORKeyStream is not independent of the |
| // counter value. |
| func (s *Cipher) SetCounter(counter uint32) { |
| // Internally, s may buffer multiple blocks, which complicates this |
| // implementation slightly. When checking whether the counter has rolled |
| // back, we must use both s.counter and s.len to determine how many blocks |
| // we have already output. |
| outputCounter := s.counter - uint32(s.len)/blockSize |
| if s.overflow || counter < outputCounter { |
| panic("chacha20: SetCounter attempted to rollback counter") |
| } |
| |
| // In the general case, we set the new counter value and reset s.len to 0, |
| // causing the next call to XORKeyStream to refill the buffer. However, if |
| // we're advancing within the existing buffer, we can save work by simply |
| // setting s.len. |
| if counter < s.counter { |
| s.len = int(s.counter-counter) * blockSize |
| } else { |
| s.counter = counter |
| s.len = 0 |
| } |
| } |
| |
| // XORKeyStream XORs each byte in the given slice with a byte from the |
| // cipher's key stream. Dst and src must overlap entirely or not at all. |
| // |
| // If len(dst) < len(src), XORKeyStream will panic. It is acceptable |
| // to pass a dst bigger than src, and in that case, XORKeyStream will |
| // only update dst[:len(src)] and will not touch the rest of dst. |
| // |
| // Multiple calls to XORKeyStream behave as if the concatenation of |
| // the src buffers was passed in a single run. That is, Cipher |
| // maintains state and does not reset at each XORKeyStream call. |
| func (s *Cipher) XORKeyStream(dst, src []byte) { |
| if len(src) == 0 { |
| return |
| } |
| if len(dst) < len(src) { |
| panic("chacha20: output smaller than input") |
| } |
| dst = dst[:len(src)] |
| if subtle.InexactOverlap(dst, src) { |
| panic("chacha20: invalid buffer overlap") |
| } |
| |
| // First, drain any remaining key stream from a previous XORKeyStream. |
| if s.len != 0 { |
| keyStream := s.buf[bufSize-s.len:] |
| if len(src) < len(keyStream) { |
| keyStream = keyStream[:len(src)] |
| } |
| _ = src[len(keyStream)-1] // bounds check elimination hint |
| for i, b := range keyStream { |
| dst[i] = src[i] ^ b |
| } |
| s.len -= len(keyStream) |
| dst, src = dst[len(keyStream):], src[len(keyStream):] |
| } |
| if len(src) == 0 { |
| return |
| } |
| |
| // If we'd need to let the counter overflow and keep generating output, |
| // panic immediately. If instead we'd only reach the last block, remember |
| // not to generate any more output after the buffer is drained. |
| numBlocks := (uint64(len(src)) + blockSize - 1) / blockSize |
| if s.overflow || uint64(s.counter)+numBlocks > 1<<32 { |
| panic("chacha20: counter overflow") |
| } else if uint64(s.counter)+numBlocks == 1<<32 { |
| s.overflow = true |
| } |
| |
| // xorKeyStreamBlocks implementations expect input lengths that are a |
| // multiple of bufSize. Platform-specific ones process multiple blocks at a |
| // time, so have bufSizes that are a multiple of blockSize. |
| |
| full := len(src) - len(src)%bufSize |
| if full > 0 { |
| s.xorKeyStreamBlocks(dst[:full], src[:full]) |
| } |
| dst, src = dst[full:], src[full:] |
| |
| // If using a multi-block xorKeyStreamBlocks would overflow, use the generic |
| // one that does one block at a time. |
| const blocksPerBuf = bufSize / blockSize |
| if uint64(s.counter)+blocksPerBuf > 1<<32 { |
| s.buf = [bufSize]byte{} |
| numBlocks := (len(src) + blockSize - 1) / blockSize |
| buf := s.buf[bufSize-numBlocks*blockSize:] |
| copy(buf, src) |
| s.xorKeyStreamBlocksGeneric(buf, buf) |
| s.len = len(buf) - copy(dst, buf) |
| return |
| } |
| |
| // If we have a partial (multi-)block, pad it for xorKeyStreamBlocks, and |
| // keep the leftover keystream for the next XORKeyStream invocation. |
| if len(src) > 0 { |
| s.buf = [bufSize]byte{} |
| copy(s.buf[:], src) |
| s.xorKeyStreamBlocks(s.buf[:], s.buf[:]) |
| s.len = bufSize - copy(dst, s.buf[:]) |
| } |
| } |
| |
| func (s *Cipher) xorKeyStreamBlocksGeneric(dst, src []byte) { |
| if len(dst) != len(src) || len(dst)%blockSize != 0 { |
| panic("chacha20: internal error: wrong dst and/or src length") |
| } |
| |
| // To generate each block of key stream, the initial cipher state |
| // (represented below) is passed through 20 rounds of shuffling, |
| // alternatively applying quarterRounds by columns (like 1, 5, 9, 13) |
| // or by diagonals (like 1, 6, 11, 12). |
| // |
| // 0:cccccccc 1:cccccccc 2:cccccccc 3:cccccccc |
| // 4:kkkkkkkk 5:kkkkkkkk 6:kkkkkkkk 7:kkkkkkkk |
| // 8:kkkkkkkk 9:kkkkkkkk 10:kkkkkkkk 11:kkkkkkkk |
| // 12:bbbbbbbb 13:nnnnnnnn 14:nnnnnnnn 15:nnnnnnnn |
| // |
| // c=constant k=key b=blockcount n=nonce |
| var ( |
| c0, c1, c2, c3 = j0, j1, j2, j3 |
| c4, c5, c6, c7 = s.key[0], s.key[1], s.key[2], s.key[3] |
| c8, c9, c10, c11 = s.key[4], s.key[5], s.key[6], s.key[7] |
| _, c13, c14, c15 = s.counter, s.nonce[0], s.nonce[1], s.nonce[2] |
| ) |
| |
| // Three quarters of the first round don't depend on the counter, so we can |
| // calculate them here, and reuse them for multiple blocks in the loop, and |
| // for future XORKeyStream invocations. |
| if !s.precompDone { |
| s.p1, s.p5, s.p9, s.p13 = quarterRound(c1, c5, c9, c13) |
| s.p2, s.p6, s.p10, s.p14 = quarterRound(c2, c6, c10, c14) |
| s.p3, s.p7, s.p11, s.p15 = quarterRound(c3, c7, c11, c15) |
| s.precompDone = true |
| } |
| |
| // A condition of len(src) > 0 would be sufficient, but this also |
| // acts as a bounds check elimination hint. |
| for len(src) >= 64 && len(dst) >= 64 { |
| // The remainder of the first column round. |
| fcr0, fcr4, fcr8, fcr12 := quarterRound(c0, c4, c8, s.counter) |
| |
| // The second diagonal round. |
| x0, x5, x10, x15 := quarterRound(fcr0, s.p5, s.p10, s.p15) |
| x1, x6, x11, x12 := quarterRound(s.p1, s.p6, s.p11, fcr12) |
| x2, x7, x8, x13 := quarterRound(s.p2, s.p7, fcr8, s.p13) |
| x3, x4, x9, x14 := quarterRound(s.p3, fcr4, s.p9, s.p14) |
| |
| // The remaining 18 rounds. |
| for i := 0; i < 9; i++ { |
| // Column round. |
| x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12) |
| x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13) |
| x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14) |
| x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15) |
| |
| // Diagonal round. |
| x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15) |
| x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12) |
| x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13) |
| x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14) |
| } |
| |
| // Add back the initial state to generate the key stream, then |
| // XOR the key stream with the source and write out the result. |
| addXor(dst[0:4], src[0:4], x0, c0) |
| addXor(dst[4:8], src[4:8], x1, c1) |
| addXor(dst[8:12], src[8:12], x2, c2) |
| addXor(dst[12:16], src[12:16], x3, c3) |
| addXor(dst[16:20], src[16:20], x4, c4) |
| addXor(dst[20:24], src[20:24], x5, c5) |
| addXor(dst[24:28], src[24:28], x6, c6) |
| addXor(dst[28:32], src[28:32], x7, c7) |
| addXor(dst[32:36], src[32:36], x8, c8) |
| addXor(dst[36:40], src[36:40], x9, c9) |
| addXor(dst[40:44], src[40:44], x10, c10) |
| addXor(dst[44:48], src[44:48], x11, c11) |
| addXor(dst[48:52], src[48:52], x12, s.counter) |
| addXor(dst[52:56], src[52:56], x13, c13) |
| addXor(dst[56:60], src[56:60], x14, c14) |
| addXor(dst[60:64], src[60:64], x15, c15) |
| |
| s.counter += 1 |
| |
| src, dst = src[blockSize:], dst[blockSize:] |
| } |
| } |
| |
| // HChaCha20 uses the ChaCha20 core to generate a derived key from a 32 bytes |
| // key and a 16 bytes nonce. It returns an error if key or nonce have any other |
| // length. It is used as part of the XChaCha20 construction. |
| func HChaCha20(key, nonce []byte) ([]byte, error) { |
| // This function is split into a wrapper so that the slice allocation will |
| // be inlined, and depending on how the caller uses the return value, won't |
| // escape to the heap. |
| out := make([]byte, 32) |
| return hChaCha20(out, key, nonce) |
| } |
| |
| func hChaCha20(out, key, nonce []byte) ([]byte, error) { |
| if len(key) != KeySize { |
| return nil, errors.New("chacha20: wrong HChaCha20 key size") |
| } |
| if len(nonce) != 16 { |
| return nil, errors.New("chacha20: wrong HChaCha20 nonce size") |
| } |
| |
| x0, x1, x2, x3 := j0, j1, j2, j3 |
| x4 := binary.LittleEndian.Uint32(key[0:4]) |
| x5 := binary.LittleEndian.Uint32(key[4:8]) |
| x6 := binary.LittleEndian.Uint32(key[8:12]) |
| x7 := binary.LittleEndian.Uint32(key[12:16]) |
| x8 := binary.LittleEndian.Uint32(key[16:20]) |
| x9 := binary.LittleEndian.Uint32(key[20:24]) |
| x10 := binary.LittleEndian.Uint32(key[24:28]) |
| x11 := binary.LittleEndian.Uint32(key[28:32]) |
| x12 := binary.LittleEndian.Uint32(nonce[0:4]) |
| x13 := binary.LittleEndian.Uint32(nonce[4:8]) |
| x14 := binary.LittleEndian.Uint32(nonce[8:12]) |
| x15 := binary.LittleEndian.Uint32(nonce[12:16]) |
| |
| for i := 0; i < 10; i++ { |
| // Diagonal round. |
| x0, x4, x8, x12 = quarterRound(x0, x4, x8, x12) |
| x1, x5, x9, x13 = quarterRound(x1, x5, x9, x13) |
| x2, x6, x10, x14 = quarterRound(x2, x6, x10, x14) |
| x3, x7, x11, x15 = quarterRound(x3, x7, x11, x15) |
| |
| // Column round. |
| x0, x5, x10, x15 = quarterRound(x0, x5, x10, x15) |
| x1, x6, x11, x12 = quarterRound(x1, x6, x11, x12) |
| x2, x7, x8, x13 = quarterRound(x2, x7, x8, x13) |
| x3, x4, x9, x14 = quarterRound(x3, x4, x9, x14) |
| } |
| |
| _ = out[31] // bounds check elimination hint |
| binary.LittleEndian.PutUint32(out[0:4], x0) |
| binary.LittleEndian.PutUint32(out[4:8], x1) |
| binary.LittleEndian.PutUint32(out[8:12], x2) |
| binary.LittleEndian.PutUint32(out[12:16], x3) |
| binary.LittleEndian.PutUint32(out[16:20], x12) |
| binary.LittleEndian.PutUint32(out[20:24], x13) |
| binary.LittleEndian.PutUint32(out[24:28], x14) |
| binary.LittleEndian.PutUint32(out[28:32], x15) |
| return out, nil |
| } |