blob: 07ac080e5955ada8e0ad7109589934ffe5039ace [file] [log] [blame]
Adam Langley929dedf2012-06-14 13:36:13 -04001// Copyright 2012 The Go Authors. All rights reserved.
2// Use of this source code is governed by a BSD-style
3// license that can be found in the LICENSE file.
4
5// Package otr implements the Off The Record protocol as specified in
6// http://www.cypherpunks.ca/otr/Protocol-v2-3.1.0.html
David Symonds1fbbd622014-12-09 13:38:15 +11007package otr // import "golang.org/x/crypto/otr"
Adam Langley929dedf2012-06-14 13:36:13 -04008
9import (
10 "bytes"
11 "crypto/aes"
12 "crypto/cipher"
13 "crypto/dsa"
14 "crypto/hmac"
15 "crypto/rand"
16 "crypto/sha1"
17 "crypto/sha256"
18 "crypto/subtle"
19 "encoding/base64"
20 "encoding/hex"
21 "errors"
22 "hash"
23 "io"
24 "math/big"
25 "strconv"
26)
27
28// SecurityChange describes a change in the security state of a Conversation.
29type SecurityChange int
30
31const (
32 NoChange SecurityChange = iota
33 // NewKeys indicates that a key exchange has completed. This occurs
34 // when a conversation first becomes encrypted, and when the keys are
35 // renegotiated within an encrypted conversation.
36 NewKeys
37 // SMPSecretNeeded indicates that the peer has started an
38 // authentication and that we need to supply a secret. Call SMPQuestion
39 // to get the optional, human readable challenge and then Authenticate
40 // to supply the matching secret.
41 SMPSecretNeeded
42 // SMPComplete indicates that an authentication completed. The identity
43 // of the peer has now been confirmed.
44 SMPComplete
45 // SMPFailed indicates that an authentication failed.
46 SMPFailed
47 // ConversationEnded indicates that the peer ended the secure
48 // conversation.
49 ConversationEnded
50)
51
52// QueryMessage can be sent to a peer to start an OTR conversation.
Adam Langley327f4562012-07-24 19:21:47 -040053var QueryMessage = "?OTRv2?"
54
55// ErrorPrefix can be used to make an OTR error by appending an error message
56// to it.
57var ErrorPrefix = "?OTR Error:"
Adam Langley929dedf2012-06-14 13:36:13 -040058
59var (
60 fragmentPartSeparator = []byte(",")
61 fragmentPrefix = []byte("?OTR,")
62 msgPrefix = []byte("?OTR:")
63 queryMarker = []byte("?OTR")
64)
65
66// isQuery attempts to parse an OTR query from msg and returns the greatest
67// common version, or 0 if msg is not an OTR query.
68func isQuery(msg []byte) (greatestCommonVersion int) {
69 pos := bytes.Index(msg, queryMarker)
70 if pos == -1 {
71 return 0
72 }
73 for i, c := range msg[pos+len(queryMarker):] {
74 if i == 0 {
75 if c == '?' {
76 // Indicates support for version 1, but we don't
77 // implement that.
78 continue
79 }
80
81 if c != 'v' {
82 // Invalid message
83 return 0
84 }
85
86 continue
87 }
88
89 if c == '?' {
90 // End of message
91 return
92 }
93
94 if c == ' ' || c == '\t' {
95 // Probably an invalid message
96 return 0
97 }
98
99 if c == '2' {
100 greatestCommonVersion = 2
101 }
102 }
103
104 return 0
105}
106
107const (
108 statePlaintext = iota
109 stateEncrypted
110 stateFinished
111)
112
113const (
114 authStateNone = iota
115 authStateAwaitingDHKey
116 authStateAwaitingRevealSig
117 authStateAwaitingSig
118)
119
120const (
121 msgTypeDHCommit = 2
122 msgTypeData = 3
123 msgTypeDHKey = 10
124 msgTypeRevealSig = 17
125 msgTypeSig = 18
126)
127
128const (
129 // If the requested fragment size is less than this, it will be ignored.
130 minFragmentSize = 18
131 // Messages are padded to a multiple of this number of bytes.
132 paddingGranularity = 256
133 // The number of bytes in a Diffie-Hellman private value (320-bits).
134 dhPrivateBytes = 40
135 // The number of bytes needed to represent an element of the DSA
136 // subgroup (160-bits).
137 dsaSubgroupBytes = 20
138 // The number of bytes of the MAC that are sent on the wire (160-bits).
139 macPrefixBytes = 20
140)
141
142// These are the global, common group parameters for OTR.
143var (
144 p *big.Int // group prime
145 g *big.Int // group generator
146 q *big.Int // group order
147 pMinus2 *big.Int
148)
149
150func init() {
151 p, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", 16)
152 q, _ = new(big.Int).SetString("7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68948127044533E63A0105DF531D89CD9128A5043CC71A026EF7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6F71C35FDAD44CFD2D74F9208BE258FF324943328F6722D9EE1003E5C50B1DF82CC6D241B0E2AE9CD348B1FD47E9267AFC1B2AE91EE51D6CB0E3179AB1042A95DCF6A9483B84B4B36B3861AA7255E4C0278BA36046511B993FFFFFFFFFFFFFFFF", 16)
153 g = new(big.Int).SetInt64(2)
154 pMinus2 = new(big.Int).Sub(p, g)
155}
156
157// Conversation represents a relation with a peer. The zero value is a valid
158// Conversation, although PrivateKey must be set.
159//
160// When communicating with a peer, all inbound messages should be passed to
161// Conversation.Receive and all outbound messages to Conversation.Send. The
162// Conversation will take care of maintaining the encryption state and
163// negotiating encryption as needed.
164type Conversation struct {
165 // PrivateKey contains the private key to use to sign key exchanges.
166 PrivateKey *PrivateKey
167
168 // Rand can be set to override the entropy source. Otherwise,
169 // crypto/rand will be used.
170 Rand io.Reader
171 // If FragmentSize is set, all messages produced by Receive and Send
172 // will be fragmented into messages of, at most, this number of bytes.
173 FragmentSize int
174
175 // Once Receive has returned NewKeys once, the following fields are
176 // valid.
177 SSID [8]byte
178 TheirPublicKey PublicKey
179
180 state, authState int
181
182 r [16]byte
183 x, y *big.Int
184 gx, gy *big.Int
185 gxBytes []byte
186 digest [sha256.Size]byte
187
188 revealKeys, sigKeys akeKeys
189
190 myKeyId uint32
191 myCurrentDHPub *big.Int
192 myCurrentDHPriv *big.Int
193 myLastDHPub *big.Int
194 myLastDHPriv *big.Int
195
196 theirKeyId uint32
197 theirCurrentDHPub *big.Int
198 theirLastDHPub *big.Int
199
200 keySlots [4]keySlot
201
202 myCounter [8]byte
203 theirLastCtr [8]byte
204 oldMACs []byte
205
206 k, n int // fragment state
207 frag []byte
208
209 smp smpState
210}
211
212// A keySlot contains key material for a specific (their keyid, my keyid) pair.
213type keySlot struct {
214 // used is true if this slot is valid. If false, it's free for reuse.
215 used bool
216 theirKeyId uint32
217 myKeyId uint32
218 sendAESKey, recvAESKey []byte
219 sendMACKey, recvMACKey []byte
220 theirLastCtr [8]byte
221}
222
223// akeKeys are generated during key exchange. There's one set for the reveal
224// signature message and another for the signature message. In the protocol
225// spec the latter are indicated with a prime mark.
226type akeKeys struct {
227 c [16]byte
228 m1, m2 [32]byte
229}
230
231func (c *Conversation) rand() io.Reader {
232 if c.Rand != nil {
233 return c.Rand
234 }
235 return rand.Reader
236}
237
238func (c *Conversation) randMPI(buf []byte) *big.Int {
239 _, err := io.ReadFull(c.rand(), buf)
240 if err != nil {
241 panic("otr: short read from random source")
242 }
243
244 return new(big.Int).SetBytes(buf)
245}
246
247// tlv represents the type-length value from the protocol.
248type tlv struct {
249 typ, length uint16
250 data []byte
251}
252
253const (
254 tlvTypePadding = 0
255 tlvTypeDisconnected = 1
256 tlvTypeSMP1 = 2
257 tlvTypeSMP2 = 3
258 tlvTypeSMP3 = 4
259 tlvTypeSMP4 = 5
260 tlvTypeSMPAbort = 6
261 tlvTypeSMP1WithQuestion = 7
262)
263
264// Receive handles a message from a peer. It returns a human readable message,
265// an indicator of whether that message was encrypted, a hint about the
266// encryption state and zero or more messages to send back to the peer.
267// These messages do not need to be passed to Send before transmission.
268func (c *Conversation) Receive(in []byte) (out []byte, encrypted bool, change SecurityChange, toSend [][]byte, err error) {
269 if bytes.HasPrefix(in, fragmentPrefix) {
270 in, err = c.processFragment(in)
271 if in == nil || err != nil {
272 return
273 }
274 }
275
276 if bytes.HasPrefix(in, msgPrefix) && in[len(in)-1] == '.' {
277 in = in[len(msgPrefix) : len(in)-1]
278 } else if version := isQuery(in); version > 0 {
279 c.authState = authStateAwaitingDHKey
Frithjof Schulzea3c60502013-09-22 15:38:36 -0400280 c.myKeyId = 0
Adam Langley929dedf2012-06-14 13:36:13 -0400281 toSend = c.encode(c.generateDHCommit())
282 return
283 } else {
284 // plaintext message
285 out = in
286 return
287 }
288
289 msg := make([]byte, base64.StdEncoding.DecodedLen(len(in)))
290 msgLen, err := base64.StdEncoding.Decode(msg, in)
291 if err != nil {
292 err = errors.New("otr: invalid base64 encoding in message")
293 return
294 }
295 msg = msg[:msgLen]
296
297 // The first two bytes are the protocol version (2)
298 if len(msg) < 3 || msg[0] != 0 || msg[1] != 2 {
299 err = errors.New("otr: invalid OTR message")
300 return
301 }
302
303 msgType := int(msg[2])
304 msg = msg[3:]
305
306 switch msgType {
307 case msgTypeDHCommit:
308 switch c.authState {
309 case authStateNone:
310 c.authState = authStateAwaitingRevealSig
311 if err = c.processDHCommit(msg); err != nil {
312 return
313 }
Frithjof Schulzea3c60502013-09-22 15:38:36 -0400314 c.myKeyId = 0
Adam Langley929dedf2012-06-14 13:36:13 -0400315 toSend = c.encode(c.generateDHKey())
316 return
317 case authStateAwaitingDHKey:
318 // This is a 'SYN-crossing'. The greater digest wins.
319 var cmp int
320 if cmp, err = c.compareToDHCommit(msg); err != nil {
321 return
322 }
323 if cmp > 0 {
324 // We win. Retransmit DH commit.
325 toSend = c.encode(c.serializeDHCommit())
326 return
327 } else {
328 // They win. We forget about our DH commit.
329 c.authState = authStateAwaitingRevealSig
330 if err = c.processDHCommit(msg); err != nil {
331 return
332 }
Frithjof Schulzea3c60502013-09-22 15:38:36 -0400333 c.myKeyId = 0
Adam Langley929dedf2012-06-14 13:36:13 -0400334 toSend = c.encode(c.generateDHKey())
335 return
336 }
337 case authStateAwaitingRevealSig:
338 if err = c.processDHCommit(msg); err != nil {
339 return
340 }
341 toSend = c.encode(c.serializeDHKey())
342 case authStateAwaitingSig:
343 if err = c.processDHCommit(msg); err != nil {
344 return
345 }
Frithjof Schulzea3c60502013-09-22 15:38:36 -0400346 c.myKeyId = 0
Adam Langley929dedf2012-06-14 13:36:13 -0400347 toSend = c.encode(c.generateDHKey())
348 c.authState = authStateAwaitingRevealSig
349 default:
350 panic("bad state")
351 }
352 case msgTypeDHKey:
353 switch c.authState {
354 case authStateAwaitingDHKey:
355 var isSame bool
356 if isSame, err = c.processDHKey(msg); err != nil {
357 return
358 }
359 if isSame {
360 err = errors.New("otr: unexpected duplicate DH key")
361 return
362 }
363 toSend = c.encode(c.generateRevealSig())
364 c.authState = authStateAwaitingSig
365 case authStateAwaitingSig:
366 var isSame bool
367 if isSame, err = c.processDHKey(msg); err != nil {
368 return
369 }
370 if isSame {
371 toSend = c.encode(c.serializeDHKey())
372 }
373 }
374 case msgTypeRevealSig:
375 if c.authState != authStateAwaitingRevealSig {
376 return
377 }
378 if err = c.processRevealSig(msg); err != nil {
379 return
380 }
381 toSend = c.encode(c.generateSig())
382 c.authState = authStateNone
383 c.state = stateEncrypted
384 change = NewKeys
385 case msgTypeSig:
386 if c.authState != authStateAwaitingSig {
387 return
388 }
389 if err = c.processSig(msg); err != nil {
390 return
391 }
392 c.authState = authStateNone
393 c.state = stateEncrypted
394 change = NewKeys
395 case msgTypeData:
396 if c.state != stateEncrypted {
397 err = errors.New("otr: encrypted message received without encrypted session established")
398 return
399 }
400 var tlvs []tlv
401 out, tlvs, err = c.processData(msg)
402 encrypted = true
403
404 EachTLV:
405 for _, inTLV := range tlvs {
406 switch inTLV.typ {
407 case tlvTypeDisconnected:
408 change = ConversationEnded
Adam Langley327f4562012-07-24 19:21:47 -0400409 c.state = stateFinished
Adam Langley929dedf2012-06-14 13:36:13 -0400410 break EachTLV
411 case tlvTypeSMP1, tlvTypeSMP2, tlvTypeSMP3, tlvTypeSMP4, tlvTypeSMPAbort, tlvTypeSMP1WithQuestion:
412 var reply tlv
413 var complete bool
414 reply, complete, err = c.processSMP(inTLV)
415 if err == smpSecretMissingError {
416 err = nil
417 change = SMPSecretNeeded
418 c.smp.saved = &inTLV
419 return
420 } else if err == smpFailureError {
421 err = nil
422 change = SMPFailed
423 return
424 }
425 if complete {
426 change = SMPComplete
427 }
428 if reply.typ != 0 {
429 toSend = c.encode(c.generateData(nil, &reply))
430 }
431 break EachTLV
432 default:
433 // skip unknown TLVs
434 }
435 }
436 default:
437 err = errors.New("otr: unknown message type " + strconv.Itoa(msgType))
438 }
439
440 return
441}
442
443// Send takes a human readable message from the local user, possibly encrypts
444// it and returns zero one or more messages to send to the peer.
445func (c *Conversation) Send(msg []byte) ([][]byte, error) {
446 switch c.state {
447 case statePlaintext:
448 return [][]byte{msg}, nil
449 case stateEncrypted:
450 return c.encode(c.generateData(msg, nil)), nil
451 case stateFinished:
452 return nil, errors.New("otr: cannot send message because secure conversation has finished")
453 }
454
455 return nil, errors.New("otr: cannot send message in current state")
456}
457
458// SMPQuestion returns the human readable challenge question from the peer.
459// It's only valid after Receive has returned SMPSecretNeeded.
460func (c *Conversation) SMPQuestion() string {
461 return c.smp.question
462}
463
464// Authenticate begins an authentication with the peer. Authentication involves
465// an optional challenge message and a shared secret. The authentication
466// proceeds until either Receive returns SMPComplete, SMPSecretNeeded (which
467// indicates that a new authentication is happening and thus this one was
468// aborted) or SMPFailed.
469func (c *Conversation) Authenticate(question string, mutualSecret []byte) (toSend [][]byte, err error) {
470 if c.state != stateEncrypted {
471 err = errors.New("otr: can't authenticate a peer without a secure conversation established")
472 return
473 }
474
475 if c.smp.saved != nil {
476 c.calcSMPSecret(mutualSecret, false /* they started it */)
477
478 var out tlv
479 var complete bool
480 out, complete, err = c.processSMP(*c.smp.saved)
481 if complete {
482 panic("SMP completed on the first message")
483 }
484 c.smp.saved = nil
485 if out.typ != 0 {
486 toSend = c.encode(c.generateData(nil, &out))
487 }
488 return
489 }
490
491 c.calcSMPSecret(mutualSecret, true /* we started it */)
492 outs := c.startSMP(question)
493 for _, out := range outs {
494 toSend = append(toSend, c.encode(c.generateData(nil, &out))...)
495 }
496 return
497}
498
Adam Langley327f4562012-07-24 19:21:47 -0400499// End ends a secure conversation by generating a termination message for
500// the peer and switches to unencrypted communication.
501func (c *Conversation) End() (toSend [][]byte) {
502 switch c.state {
503 case statePlaintext:
504 return nil
505 case stateEncrypted:
506 c.state = statePlaintext
507 return c.encode(c.generateData(nil, &tlv{typ: tlvTypeDisconnected}))
508 case stateFinished:
509 c.state = statePlaintext
510 return nil
511 }
512 panic("unreachable")
513}
514
Adam Langleyc9c0e062012-10-17 14:58:16 -0400515// IsEncrypted returns true if a message passed to Send would be encrypted
516// before transmission. This result remains valid until the next call to
517// Receive or End, which may change the state of the Conversation.
518func (c *Conversation) IsEncrypted() bool {
519 return c.state == stateEncrypted
520}
521
Adam Langley929dedf2012-06-14 13:36:13 -0400522var fragmentError = errors.New("otr: invalid OTR fragment")
523
524// processFragment processes a fragmented OTR message and possibly returns a
525// complete message. Fragmented messages look like "?OTR,k,n,msg," where k is
526// the fragment number (starting from 1), n is the number of fragments in this
527// message and msg is a substring of the base64 encoded message.
528func (c *Conversation) processFragment(in []byte) (out []byte, err error) {
529 in = in[len(fragmentPrefix):] // remove "?OTR,"
530 parts := bytes.Split(in, fragmentPartSeparator)
531 if len(parts) != 4 || len(parts[3]) != 0 {
532 return nil, fragmentError
533 }
534
535 k, err := strconv.Atoi(string(parts[0]))
536 if err != nil {
537 return nil, fragmentError
538 }
539
540 n, err := strconv.Atoi(string(parts[1]))
541 if err != nil {
542 return nil, fragmentError
543 }
544
545 if k < 1 || n < 1 || k > n {
546 return nil, fragmentError
547 }
548
549 if k == 1 {
550 c.frag = append(c.frag[:0], parts[2]...)
551 c.k, c.n = k, n
552 } else if n == c.n && k == c.k+1 {
553 c.frag = append(c.frag, parts[2]...)
554 c.k++
555 } else {
556 c.frag = c.frag[:0]
557 c.n, c.k = 0, 0
558 }
559
560 if c.n > 0 && c.k == c.n {
561 c.n, c.k = 0, 0
562 return c.frag, nil
563 }
564
565 return nil, nil
566}
567
568func (c *Conversation) generateDHCommit() []byte {
569 _, err := io.ReadFull(c.rand(), c.r[:])
570 if err != nil {
571 panic("otr: short read from random source")
572 }
573
574 var xBytes [dhPrivateBytes]byte
575 c.x = c.randMPI(xBytes[:])
576 c.gx = new(big.Int).Exp(g, c.x, p)
577 c.gy = nil
578 c.gxBytes = appendMPI(nil, c.gx)
579
580 h := sha256.New()
581 h.Write(c.gxBytes)
582 h.Sum(c.digest[:0])
583
584 aesCipher, err := aes.NewCipher(c.r[:])
585 if err != nil {
586 panic(err.Error())
587 }
588
589 var iv [aes.BlockSize]byte
590 ctr := cipher.NewCTR(aesCipher, iv[:])
591 ctr.XORKeyStream(c.gxBytes, c.gxBytes)
592
593 return c.serializeDHCommit()
594}
595
596func (c *Conversation) serializeDHCommit() []byte {
597 var ret []byte
598 ret = appendU16(ret, 2) // protocol version
599 ret = append(ret, msgTypeDHCommit)
600 ret = appendData(ret, c.gxBytes)
601 ret = appendData(ret, c.digest[:])
602 return ret
603}
604
605func (c *Conversation) processDHCommit(in []byte) error {
606 var ok1, ok2 bool
607 c.gxBytes, in, ok1 = getData(in)
608 digest, in, ok2 := getData(in)
609 if !ok1 || !ok2 || len(in) > 0 {
610 return errors.New("otr: corrupt DH commit message")
611 }
612 copy(c.digest[:], digest)
613 return nil
614}
615
616func (c *Conversation) compareToDHCommit(in []byte) (int, error) {
617 _, in, ok1 := getData(in)
618 digest, in, ok2 := getData(in)
619 if !ok1 || !ok2 || len(in) > 0 {
620 return 0, errors.New("otr: corrupt DH commit message")
621 }
622 return bytes.Compare(c.digest[:], digest), nil
623}
624
625func (c *Conversation) generateDHKey() []byte {
626 var yBytes [dhPrivateBytes]byte
627 c.y = c.randMPI(yBytes[:])
628 c.gy = new(big.Int).Exp(g, c.y, p)
629 return c.serializeDHKey()
630}
631
632func (c *Conversation) serializeDHKey() []byte {
633 var ret []byte
634 ret = appendU16(ret, 2) // protocol version
635 ret = append(ret, msgTypeDHKey)
636 ret = appendMPI(ret, c.gy)
637 return ret
638}
639
640func (c *Conversation) processDHKey(in []byte) (isSame bool, err error) {
641 gy, in, ok := getMPI(in)
642 if !ok {
643 err = errors.New("otr: corrupt DH key message")
644 return
645 }
646 if gy.Cmp(g) < 0 || gy.Cmp(pMinus2) > 0 {
647 err = errors.New("otr: DH value out of range")
648 return
649 }
650 if c.gy != nil {
651 isSame = c.gy.Cmp(gy) == 0
652 return
653 }
654 c.gy = gy
655 return
656}
657
658func (c *Conversation) generateEncryptedSignature(keys *akeKeys, xFirst bool) ([]byte, []byte) {
659 var xb []byte
660 xb = c.PrivateKey.PublicKey.Serialize(xb)
661
662 var verifyData []byte
663 if xFirst {
664 verifyData = appendMPI(verifyData, c.gx)
665 verifyData = appendMPI(verifyData, c.gy)
666 } else {
667 verifyData = appendMPI(verifyData, c.gy)
668 verifyData = appendMPI(verifyData, c.gx)
669 }
670 verifyData = append(verifyData, xb...)
671 verifyData = appendU32(verifyData, c.myKeyId)
672
673 mac := hmac.New(sha256.New, keys.m1[:])
674 mac.Write(verifyData)
675 mb := mac.Sum(nil)
676
677 xb = appendU32(xb, c.myKeyId)
678 xb = append(xb, c.PrivateKey.Sign(c.rand(), mb)...)
679
680 aesCipher, err := aes.NewCipher(keys.c[:])
681 if err != nil {
682 panic(err.Error())
683 }
684 var iv [aes.BlockSize]byte
685 ctr := cipher.NewCTR(aesCipher, iv[:])
686 ctr.XORKeyStream(xb, xb)
687
688 mac = hmac.New(sha256.New, keys.m2[:])
689 encryptedSig := appendData(nil, xb)
690 mac.Write(encryptedSig)
691
692 return encryptedSig, mac.Sum(nil)
693}
694
695func (c *Conversation) generateRevealSig() []byte {
696 s := new(big.Int).Exp(c.gy, c.x, p)
697 c.calcAKEKeys(s)
698 c.myKeyId++
699
700 encryptedSig, mac := c.generateEncryptedSignature(&c.revealKeys, true /* gx comes first */)
701
702 c.myCurrentDHPub = c.gx
703 c.myCurrentDHPriv = c.x
704 c.rotateDHKeys()
705 incCounter(&c.myCounter)
706
707 var ret []byte
708 ret = appendU16(ret, 2)
709 ret = append(ret, msgTypeRevealSig)
710 ret = appendData(ret, c.r[:])
711 ret = append(ret, encryptedSig...)
712 ret = append(ret, mac[:20]...)
713 return ret
714}
715
716func (c *Conversation) processEncryptedSig(encryptedSig, theirMAC []byte, keys *akeKeys, xFirst bool) error {
717 mac := hmac.New(sha256.New, keys.m2[:])
718 mac.Write(appendData(nil, encryptedSig))
719 myMAC := mac.Sum(nil)[:20]
720
721 if len(myMAC) != len(theirMAC) || subtle.ConstantTimeCompare(myMAC, theirMAC) == 0 {
722 return errors.New("bad signature MAC in encrypted signature")
723 }
724
725 aesCipher, err := aes.NewCipher(keys.c[:])
726 if err != nil {
727 panic(err.Error())
728 }
729 var iv [aes.BlockSize]byte
730 ctr := cipher.NewCTR(aesCipher, iv[:])
731 ctr.XORKeyStream(encryptedSig, encryptedSig)
732
733 sig := encryptedSig
734 sig, ok1 := c.TheirPublicKey.Parse(sig)
735 keyId, sig, ok2 := getU32(sig)
736 if !ok1 || !ok2 {
737 return errors.New("otr: corrupt encrypted signature")
738 }
739
740 var verifyData []byte
741 if xFirst {
742 verifyData = appendMPI(verifyData, c.gx)
743 verifyData = appendMPI(verifyData, c.gy)
744 } else {
745 verifyData = appendMPI(verifyData, c.gy)
746 verifyData = appendMPI(verifyData, c.gx)
747 }
748 verifyData = c.TheirPublicKey.Serialize(verifyData)
749 verifyData = appendU32(verifyData, keyId)
750
751 mac = hmac.New(sha256.New, keys.m1[:])
752 mac.Write(verifyData)
753 mb := mac.Sum(nil)
754
755 sig, ok1 = c.TheirPublicKey.Verify(mb, sig)
756 if !ok1 {
757 return errors.New("bad signature in encrypted signature")
758 }
759 if len(sig) > 0 {
760 return errors.New("corrupt encrypted signature")
761 }
762
763 c.theirKeyId = keyId
764 zero(c.theirLastCtr[:])
765 return nil
766}
767
768func (c *Conversation) processRevealSig(in []byte) error {
769 r, in, ok1 := getData(in)
770 encryptedSig, in, ok2 := getData(in)
771 theirMAC := in
772 if !ok1 || !ok2 || len(theirMAC) != 20 {
773 return errors.New("otr: corrupt reveal signature message")
774 }
775
776 aesCipher, err := aes.NewCipher(r)
777 if err != nil {
778 return errors.New("otr: cannot create AES cipher from reveal signature message: " + err.Error())
779 }
780 var iv [aes.BlockSize]byte
781 ctr := cipher.NewCTR(aesCipher, iv[:])
782 ctr.XORKeyStream(c.gxBytes, c.gxBytes)
783 h := sha256.New()
784 h.Write(c.gxBytes)
785 digest := h.Sum(nil)
786 if len(digest) != len(c.digest) || subtle.ConstantTimeCompare(digest, c.digest[:]) == 0 {
787 return errors.New("otr: bad commit MAC in reveal signature message")
788 }
789 var rest []byte
790 c.gx, rest, ok1 = getMPI(c.gxBytes)
791 if !ok1 || len(rest) > 0 {
792 return errors.New("otr: gx corrupt after decryption")
793 }
794 if c.gx.Cmp(g) < 0 || c.gx.Cmp(pMinus2) > 0 {
795 return errors.New("otr: DH value out of range")
796 }
797 s := new(big.Int).Exp(c.gx, c.y, p)
798 c.calcAKEKeys(s)
799
800 if err := c.processEncryptedSig(encryptedSig, theirMAC, &c.revealKeys, true /* gx comes first */); err != nil {
801 return errors.New("otr: in reveal signature message: " + err.Error())
802 }
803
804 c.theirCurrentDHPub = c.gx
805 c.theirLastDHPub = nil
806
807 return nil
808}
809
810func (c *Conversation) generateSig() []byte {
811 c.myKeyId++
812
813 encryptedSig, mac := c.generateEncryptedSignature(&c.sigKeys, false /* gy comes first */)
814
815 c.myCurrentDHPub = c.gy
816 c.myCurrentDHPriv = c.y
817 c.rotateDHKeys()
818 incCounter(&c.myCounter)
819
820 var ret []byte
821 ret = appendU16(ret, 2)
822 ret = append(ret, msgTypeSig)
823 ret = append(ret, encryptedSig...)
824 ret = append(ret, mac[:macPrefixBytes]...)
825 return ret
826}
827
828func (c *Conversation) processSig(in []byte) error {
829 encryptedSig, in, ok1 := getData(in)
830 theirMAC := in
831 if !ok1 || len(theirMAC) != macPrefixBytes {
832 return errors.New("otr: corrupt signature message")
833 }
834
835 if err := c.processEncryptedSig(encryptedSig, theirMAC, &c.sigKeys, false /* gy comes first */); err != nil {
836 return errors.New("otr: in signature message: " + err.Error())
837 }
838
839 c.theirCurrentDHPub = c.gy
840 c.theirLastDHPub = nil
841
842 return nil
843}
844
845func (c *Conversation) rotateDHKeys() {
846 // evict slots using our retired key id
847 for i := range c.keySlots {
848 slot := &c.keySlots[i]
849 if slot.used && slot.myKeyId == c.myKeyId-1 {
850 slot.used = false
851 c.oldMACs = append(c.oldMACs, slot.sendMACKey...)
852 c.oldMACs = append(c.oldMACs, slot.recvMACKey...)
853 }
854 }
855
856 c.myLastDHPriv = c.myCurrentDHPriv
857 c.myLastDHPub = c.myCurrentDHPub
858
859 var xBytes [dhPrivateBytes]byte
860 c.myCurrentDHPriv = c.randMPI(xBytes[:])
861 c.myCurrentDHPub = new(big.Int).Exp(g, c.myCurrentDHPriv, p)
862 c.myKeyId++
863}
864
865func (c *Conversation) processData(in []byte) (out []byte, tlvs []tlv, err error) {
866 origIn := in
867 flags, in, ok1 := getU8(in)
868 theirKeyId, in, ok2 := getU32(in)
869 myKeyId, in, ok3 := getU32(in)
870 y, in, ok4 := getMPI(in)
871 counter, in, ok5 := getNBytes(in, 8)
872 encrypted, in, ok6 := getData(in)
873 macedData := origIn[:len(origIn)-len(in)]
874 theirMAC, in, ok7 := getNBytes(in, macPrefixBytes)
875 _, in, ok8 := getData(in)
876 if !ok1 || !ok2 || !ok3 || !ok4 || !ok5 || !ok6 || !ok7 || !ok8 || len(in) > 0 {
877 err = errors.New("otr: corrupt data message")
878 return
879 }
880
881 ignoreErrors := flags&1 != 0
882
883 slot, err := c.calcDataKeys(myKeyId, theirKeyId)
884 if err != nil {
885 if ignoreErrors {
886 err = nil
887 }
888 return
889 }
890
891 mac := hmac.New(sha1.New, slot.recvMACKey)
892 mac.Write([]byte{0, 2, 3})
893 mac.Write(macedData)
894 myMAC := mac.Sum(nil)
895 if len(myMAC) != len(theirMAC) || subtle.ConstantTimeCompare(myMAC, theirMAC) == 0 {
896 if !ignoreErrors {
897 err = errors.New("otr: bad MAC on data message")
898 }
899 return
900 }
901
902 if bytes.Compare(counter, slot.theirLastCtr[:]) <= 0 {
903 err = errors.New("otr: counter regressed")
904 return
905 }
906 copy(slot.theirLastCtr[:], counter)
907
908 var iv [aes.BlockSize]byte
909 copy(iv[:], counter)
910 aesCipher, err := aes.NewCipher(slot.recvAESKey)
911 if err != nil {
912 panic(err.Error())
913 }
914 ctr := cipher.NewCTR(aesCipher, iv[:])
915 ctr.XORKeyStream(encrypted, encrypted)
916 decrypted := encrypted
917
918 if myKeyId == c.myKeyId {
919 c.rotateDHKeys()
920 }
921 if theirKeyId == c.theirKeyId {
922 // evict slots using their retired key id
923 for i := range c.keySlots {
924 slot := &c.keySlots[i]
925 if slot.used && slot.theirKeyId == theirKeyId-1 {
926 slot.used = false
927 c.oldMACs = append(c.oldMACs, slot.sendMACKey...)
928 c.oldMACs = append(c.oldMACs, slot.recvMACKey...)
929 }
930 }
931
932 c.theirLastDHPub = c.theirCurrentDHPub
933 c.theirKeyId++
934 c.theirCurrentDHPub = y
935 }
936
937 if nulPos := bytes.IndexByte(decrypted, 0); nulPos >= 0 {
938 out = decrypted[:nulPos]
939 tlvData := decrypted[nulPos+1:]
940 for len(tlvData) > 0 {
941 var t tlv
942 var ok1, ok2, ok3 bool
943
944 t.typ, tlvData, ok1 = getU16(tlvData)
945 t.length, tlvData, ok2 = getU16(tlvData)
946 t.data, tlvData, ok3 = getNBytes(tlvData, int(t.length))
947 if !ok1 || !ok2 || !ok3 {
948 err = errors.New("otr: corrupt tlv data")
949 }
950 tlvs = append(tlvs, t)
951 }
952 } else {
953 out = decrypted
954 }
955
956 return
957}
958
959func (c *Conversation) generateData(msg []byte, extra *tlv) []byte {
960 slot, err := c.calcDataKeys(c.myKeyId-1, c.theirKeyId)
961 if err != nil {
962 panic("otr: failed to generate sending keys: " + err.Error())
963 }
964
965 var plaintext []byte
966 plaintext = append(plaintext, msg...)
967 plaintext = append(plaintext, 0)
968
969 padding := paddingGranularity - ((len(plaintext) + 4) % paddingGranularity)
970 plaintext = appendU16(plaintext, tlvTypePadding)
971 plaintext = appendU16(plaintext, uint16(padding))
972 for i := 0; i < padding; i++ {
973 plaintext = append(plaintext, 0)
974 }
975
976 if extra != nil {
977 plaintext = appendU16(plaintext, extra.typ)
978 plaintext = appendU16(plaintext, uint16(len(extra.data)))
979 plaintext = append(plaintext, extra.data...)
980 }
981
982 encrypted := make([]byte, len(plaintext))
983
984 var iv [aes.BlockSize]byte
985 copy(iv[:], c.myCounter[:])
986 aesCipher, err := aes.NewCipher(slot.sendAESKey)
987 if err != nil {
988 panic(err.Error())
989 }
990 ctr := cipher.NewCTR(aesCipher, iv[:])
991 ctr.XORKeyStream(encrypted, plaintext)
992
993 var ret []byte
994 ret = appendU16(ret, 2)
995 ret = append(ret, msgTypeData)
996 ret = append(ret, 0 /* flags */)
997 ret = appendU32(ret, c.myKeyId-1)
998 ret = appendU32(ret, c.theirKeyId)
999 ret = appendMPI(ret, c.myCurrentDHPub)
1000 ret = append(ret, c.myCounter[:]...)
1001 ret = appendData(ret, encrypted)
1002
1003 mac := hmac.New(sha1.New, slot.sendMACKey)
1004 mac.Write(ret)
1005 ret = append(ret, mac.Sum(nil)[:macPrefixBytes]...)
1006 ret = appendData(ret, c.oldMACs)
1007 c.oldMACs = nil
1008 incCounter(&c.myCounter)
1009
1010 return ret
1011}
1012
1013func incCounter(counter *[8]byte) {
1014 for i := 7; i >= 0; i-- {
1015 counter[i]++
1016 if counter[i] > 0 {
1017 break
1018 }
1019 }
1020}
1021
1022// calcDataKeys computes the keys used to encrypt a data message given the key
1023// IDs.
1024func (c *Conversation) calcDataKeys(myKeyId, theirKeyId uint32) (slot *keySlot, err error) {
1025 // Check for a cache hit.
1026 for i := range c.keySlots {
1027 slot = &c.keySlots[i]
1028 if slot.used && slot.theirKeyId == theirKeyId && slot.myKeyId == myKeyId {
1029 return
1030 }
1031 }
1032
1033 // Find an empty slot to write into.
1034 slot = nil
1035 for i := range c.keySlots {
1036 if !c.keySlots[i].used {
1037 slot = &c.keySlots[i]
1038 break
1039 }
1040 }
1041 if slot == nil {
1042 err = errors.New("otr: internal error: no key slots")
1043 return
1044 }
1045
1046 var myPriv, myPub, theirPub *big.Int
1047
1048 if myKeyId == c.myKeyId {
1049 myPriv = c.myCurrentDHPriv
1050 myPub = c.myCurrentDHPub
1051 } else if myKeyId == c.myKeyId-1 {
1052 myPriv = c.myLastDHPriv
1053 myPub = c.myLastDHPub
1054 } else {
1055 err = errors.New("otr: peer requested keyid " + strconv.FormatUint(uint64(myKeyId), 10) + " when I'm on " + strconv.FormatUint(uint64(c.myKeyId), 10))
1056 return
1057 }
1058
1059 if theirKeyId == c.theirKeyId {
1060 theirPub = c.theirCurrentDHPub
1061 } else if theirKeyId == c.theirKeyId-1 && c.theirLastDHPub != nil {
1062 theirPub = c.theirLastDHPub
1063 } else {
1064 err = errors.New("otr: peer requested keyid " + strconv.FormatUint(uint64(myKeyId), 10) + " when they're on " + strconv.FormatUint(uint64(c.myKeyId), 10))
1065 return
1066 }
1067
1068 var sendPrefixByte, recvPrefixByte [1]byte
1069
1070 if myPub.Cmp(theirPub) > 0 {
1071 // we're the high end
1072 sendPrefixByte[0], recvPrefixByte[0] = 1, 2
1073 } else {
1074 // we're the low end
1075 sendPrefixByte[0], recvPrefixByte[0] = 2, 1
1076 }
1077
1078 s := new(big.Int).Exp(theirPub, myPriv, p)
1079 sBytes := appendMPI(nil, s)
1080
1081 h := sha1.New()
1082 h.Write(sendPrefixByte[:])
1083 h.Write(sBytes)
1084 slot.sendAESKey = h.Sum(slot.sendAESKey[:0])[:16]
1085
1086 h.Reset()
1087 h.Write(slot.sendAESKey)
1088 slot.sendMACKey = h.Sum(slot.sendMACKey[:0])
1089
1090 h.Reset()
1091 h.Write(recvPrefixByte[:])
1092 h.Write(sBytes)
1093 slot.recvAESKey = h.Sum(slot.recvAESKey[:0])[:16]
1094
1095 h.Reset()
1096 h.Write(slot.recvAESKey)
1097 slot.recvMACKey = h.Sum(slot.recvMACKey[:0])
1098
1099 zero(slot.theirLastCtr[:])
1100 return
1101}
1102
1103func (c *Conversation) calcAKEKeys(s *big.Int) {
1104 mpi := appendMPI(nil, s)
1105 h := sha256.New()
1106
1107 var cBytes [32]byte
1108 hashWithPrefix(c.SSID[:], 0, mpi, h)
1109
1110 hashWithPrefix(cBytes[:], 1, mpi, h)
1111 copy(c.revealKeys.c[:], cBytes[:16])
1112 copy(c.sigKeys.c[:], cBytes[16:])
1113
1114 hashWithPrefix(c.revealKeys.m1[:], 2, mpi, h)
1115 hashWithPrefix(c.revealKeys.m2[:], 3, mpi, h)
1116 hashWithPrefix(c.sigKeys.m1[:], 4, mpi, h)
1117 hashWithPrefix(c.sigKeys.m2[:], 5, mpi, h)
1118}
1119
1120func hashWithPrefix(out []byte, prefix byte, in []byte, h hash.Hash) {
1121 h.Reset()
1122 var p [1]byte
1123 p[0] = prefix
1124 h.Write(p[:])
1125 h.Write(in)
1126 if len(out) == h.Size() {
1127 h.Sum(out[:0])
1128 } else {
1129 digest := h.Sum(nil)
1130 copy(out, digest)
1131 }
1132}
1133
1134func (c *Conversation) encode(msg []byte) [][]byte {
1135 b64 := make([]byte, base64.StdEncoding.EncodedLen(len(msg))+len(msgPrefix)+1)
1136 base64.StdEncoding.Encode(b64[len(msgPrefix):], msg)
1137 copy(b64, msgPrefix)
1138 b64[len(b64)-1] = '.'
1139
1140 if c.FragmentSize < minFragmentSize || len(b64) <= c.FragmentSize {
1141 // We can encode this in a single fragment.
1142 return [][]byte{b64}
1143 }
1144
1145 // We have to fragment this message.
1146 var ret [][]byte
1147 bytesPerFragment := c.FragmentSize - minFragmentSize
1148 numFragments := (len(b64) + bytesPerFragment) / bytesPerFragment
1149
1150 for i := 0; i < numFragments; i++ {
1151 frag := []byte("?OTR," + strconv.Itoa(i+1) + "," + strconv.Itoa(numFragments) + ",")
1152 todo := bytesPerFragment
1153 if todo > len(b64) {
1154 todo = len(b64)
1155 }
1156 frag = append(frag, b64[:todo]...)
1157 b64 = b64[todo:]
1158 frag = append(frag, ',')
1159 ret = append(ret, frag)
1160 }
1161
1162 return ret
1163}
1164
1165type PublicKey struct {
1166 dsa.PublicKey
1167}
1168
1169func (pk *PublicKey) Parse(in []byte) ([]byte, bool) {
1170 var ok bool
1171 var pubKeyType uint16
1172
1173 if pubKeyType, in, ok = getU16(in); !ok || pubKeyType != 0 {
1174 return nil, false
1175 }
1176 if pk.P, in, ok = getMPI(in); !ok {
1177 return nil, false
1178 }
1179 if pk.Q, in, ok = getMPI(in); !ok {
1180 return nil, false
1181 }
1182 if pk.G, in, ok = getMPI(in); !ok {
1183 return nil, false
1184 }
1185 if pk.Y, in, ok = getMPI(in); !ok {
1186 return nil, false
1187 }
1188
1189 return in, true
1190}
1191
1192func (pk *PublicKey) Serialize(in []byte) []byte {
1193 in = appendU16(in, 0)
1194 in = appendMPI(in, pk.P)
1195 in = appendMPI(in, pk.Q)
1196 in = appendMPI(in, pk.G)
1197 in = appendMPI(in, pk.Y)
1198 return in
1199}
1200
1201// Fingerprint returns the 20-byte, binary fingerprint of the PublicKey.
1202func (pk *PublicKey) Fingerprint() []byte {
1203 b := pk.Serialize(nil)
1204 h := sha1.New()
1205 h.Write(b[2:])
1206 return h.Sum(nil)
1207}
1208
1209func (pk *PublicKey) Verify(hashed, sig []byte) ([]byte, bool) {
1210 if len(sig) != 2*dsaSubgroupBytes {
1211 return nil, false
1212 }
1213 r := new(big.Int).SetBytes(sig[:dsaSubgroupBytes])
1214 s := new(big.Int).SetBytes(sig[dsaSubgroupBytes:])
1215 ok := dsa.Verify(&pk.PublicKey, hashed, r, s)
1216 return sig[dsaSubgroupBytes*2:], ok
1217}
1218
1219type PrivateKey struct {
1220 PublicKey
1221 dsa.PrivateKey
1222}
1223
1224func (priv *PrivateKey) Sign(rand io.Reader, hashed []byte) []byte {
1225 r, s, err := dsa.Sign(rand, &priv.PrivateKey, hashed)
1226 if err != nil {
1227 panic(err.Error())
1228 }
1229 rBytes := r.Bytes()
1230 sBytes := s.Bytes()
1231 if len(rBytes) > dsaSubgroupBytes || len(sBytes) > dsaSubgroupBytes {
1232 panic("DSA signature too large")
1233 }
1234
1235 out := make([]byte, 2*dsaSubgroupBytes)
1236 copy(out[dsaSubgroupBytes-len(rBytes):], rBytes)
1237 copy(out[len(out)-len(sBytes):], sBytes)
1238 return out
1239}
1240
1241func (priv *PrivateKey) Serialize(in []byte) []byte {
1242 in = priv.PublicKey.Serialize(in)
1243 in = appendMPI(in, priv.PrivateKey.X)
1244 return in
1245}
1246
1247func (priv *PrivateKey) Parse(in []byte) ([]byte, bool) {
1248 in, ok := priv.PublicKey.Parse(in)
1249 if !ok {
1250 return in, ok
1251 }
1252 priv.PrivateKey.PublicKey = priv.PublicKey.PublicKey
1253 priv.PrivateKey.X, in, ok = getMPI(in)
1254 return in, ok
1255}
1256
1257func (priv *PrivateKey) Generate(rand io.Reader) {
1258 if err := dsa.GenerateParameters(&priv.PrivateKey.PublicKey.Parameters, rand, dsa.L1024N160); err != nil {
1259 panic(err.Error())
1260 }
1261 if err := dsa.GenerateKey(&priv.PrivateKey, rand); err != nil {
1262 panic(err.Error())
1263 }
1264 priv.PublicKey.PublicKey = priv.PrivateKey.PublicKey
1265}
1266
1267func notHex(r rune) bool {
1268 if r >= '0' && r <= '9' ||
1269 r >= 'a' && r <= 'f' ||
1270 r >= 'A' && r <= 'F' {
1271 return false
1272 }
1273
1274 return true
1275}
1276
1277// Import parses the contents of a libotr private key file.
1278func (priv *PrivateKey) Import(in []byte) bool {
1279 mpiStart := []byte(" #")
1280
1281 mpis := make([]*big.Int, 5)
1282
1283 for i := 0; i < len(mpis); i++ {
1284 start := bytes.Index(in, mpiStart)
1285 if start == -1 {
1286 return false
1287 }
1288 in = in[start+len(mpiStart):]
1289 end := bytes.IndexFunc(in, notHex)
1290 if end == -1 {
1291 return false
1292 }
1293 hexBytes := in[:end]
1294 in = in[end:]
1295
1296 if len(hexBytes)&1 != 0 {
1297 return false
1298 }
1299
1300 mpiBytes := make([]byte, len(hexBytes)/2)
1301 if _, err := hex.Decode(mpiBytes, hexBytes); err != nil {
1302 return false
1303 }
1304
1305 mpis[i] = new(big.Int).SetBytes(mpiBytes)
1306 }
1307
1308 priv.PrivateKey.P = mpis[0]
1309 priv.PrivateKey.Q = mpis[1]
1310 priv.PrivateKey.G = mpis[2]
1311 priv.PrivateKey.Y = mpis[3]
1312 priv.PrivateKey.X = mpis[4]
1313 priv.PublicKey.PublicKey = priv.PrivateKey.PublicKey
1314
1315 a := new(big.Int).Exp(priv.PrivateKey.G, priv.PrivateKey.X, priv.PrivateKey.P)
1316 return a.Cmp(priv.PrivateKey.Y) == 0
1317}
1318
1319func getU8(in []byte) (uint8, []byte, bool) {
1320 if len(in) < 1 {
1321 return 0, in, false
1322 }
1323 return in[0], in[1:], true
1324}
1325
1326func getU16(in []byte) (uint16, []byte, bool) {
1327 if len(in) < 2 {
1328 return 0, in, false
1329 }
1330 r := uint16(in[0])<<8 | uint16(in[1])
1331 return r, in[2:], true
1332}
1333
1334func getU32(in []byte) (uint32, []byte, bool) {
1335 if len(in) < 4 {
1336 return 0, in, false
1337 }
1338 r := uint32(in[0])<<24 | uint32(in[1])<<16 | uint32(in[2])<<8 | uint32(in[3])
1339 return r, in[4:], true
1340}
1341
1342func getMPI(in []byte) (*big.Int, []byte, bool) {
1343 l, in, ok := getU32(in)
1344 if !ok || uint32(len(in)) < l {
1345 return nil, in, false
1346 }
1347 r := new(big.Int).SetBytes(in[:l])
1348 return r, in[l:], true
1349}
1350
1351func getData(in []byte) ([]byte, []byte, bool) {
1352 l, in, ok := getU32(in)
1353 if !ok || uint32(len(in)) < l {
1354 return nil, in, false
1355 }
1356 return in[:l], in[l:], true
1357}
1358
1359func getNBytes(in []byte, n int) ([]byte, []byte, bool) {
1360 if len(in) < n {
1361 return nil, in, false
1362 }
1363 return in[:n], in[n:], true
1364}
1365
1366func appendU16(out []byte, v uint16) []byte {
1367 out = append(out, byte(v>>8), byte(v))
1368 return out
1369}
1370
1371func appendU32(out []byte, v uint32) []byte {
1372 out = append(out, byte(v>>24), byte(v>>16), byte(v>>8), byte(v))
1373 return out
1374}
1375
1376func appendData(out, v []byte) []byte {
1377 out = appendU32(out, uint32(len(v)))
1378 out = append(out, v...)
1379 return out
1380}
1381
1382func appendMPI(out []byte, v *big.Int) []byte {
1383 vBytes := v.Bytes()
1384 out = appendU32(out, uint32(len(vBytes)))
1385 out = append(out, vBytes...)
1386 return out
1387}
1388
1389func appendMPIs(out []byte, mpis ...*big.Int) []byte {
1390 for _, mpi := range mpis {
1391 out = appendMPI(out, mpi)
1392 }
1393 return out
1394}
1395
1396func zero(b []byte) {
1397 for i := range b {
1398 b[i] = 0
1399 }
1400}