blob: 2119c70de90a81b04588a9c527b2eb32a575e026 [file] [log] [blame]
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vulncheck
import (
"context"
"fmt"
"go/token"
"sync"
"golang.org/x/tools/go/callgraph"
"golang.org/x/tools/go/packages"
"golang.org/x/tools/go/ssa"
"golang.org/x/vuln/internal/client"
"golang.org/x/vuln/internal/govulncheck"
"golang.org/x/vuln/internal/osv"
)
// Source detects vulnerabilities in packages. The result will contain:
//
// 1) An ImportGraph related to an import of a package with some known
// vulnerabilities.
//
// 2) A RequireGraph related to a require of a module with a package that has
// some known vulnerabilities.
//
// 3) A CallGraph leading to the use of a known vulnerable function or method.
func Source(ctx context.Context, pkgs []*packages.Package, cfg *govulncheck.Config, client *client.Client, graph *PackageGraph) (_ *Result, err error) {
// buildSSA builds a whole program that assumes all packages use the same FileSet.
// Check all packages in pkgs are using the same FileSet.
// TODO(https://go.dev/issue/59729): take FileSet out of Package and
// let Source take a single FileSet. That will make the enforcement
// clearer from the API level.
var fset *token.FileSet
for _, p := range pkgs {
if fset == nil {
fset = p.Fset
} else {
if fset != p.Fset {
return nil, fmt.Errorf("[]*Package must have created with the same FileSet")
}
}
}
ctx, cancel := context.WithCancel(ctx)
defer cancel()
// If we are building the callgraph, build ssa and the callgraph in parallel
// with fetching vulnerabilities. If the vulns set is empty, return without
// waiting for SSA construction or callgraph to finish.
var (
wg sync.WaitGroup // guards entries, cg, and buildErr
entries []*ssa.Function
cg *callgraph.Graph
buildErr error
)
if cfg.ScanLevel.WantSymbols() {
wg.Add(1)
go func() {
defer wg.Done()
prog, ssaPkgs := buildSSA(pkgs, fset)
entries = entryPoints(ssaPkgs)
cg, buildErr = callGraph(ctx, prog, entries)
}()
}
mods := extractModules(pkgs)
mv, err := FetchVulnerabilities(ctx, client, mods)
if err != nil {
return nil, err
}
modVulns := moduleVulnerabilities(mv)
modVulns = modVulns.filter("", "")
result := &Result{}
vulnPkgModSlice(pkgs, modVulns, result)
// Return result immediately if not in symbol mode or
// if there are no vulnerable packages.
if !cfg.ScanLevel.WantSymbols() || len(result.EntryPackages) == 0 {
return result, nil
}
wg.Wait() // wait for build to finish
if buildErr != nil {
return nil, err
}
vulnCallGraphSlice(entries, modVulns, cg, result, graph)
return result, nil
}
// vulnPkgModSlice computes the slice of pkgs imports and requires graph
// leading to imports/requires of vulnerable packages/modules in modVulns
// and stores the computed slices to result.
func vulnPkgModSlice(pkgs []*packages.Package, modVulns moduleVulnerabilities, result *Result) {
// analyzedPkgs contains information on packages analyzed thus far.
// If a package is mapped to false, this means it has been visited
// but it does not lead to a vulnerable imports. Otherwise, a
// visited package is mapped to true.
analyzedPkgs := make(map[*packages.Package]bool)
for _, pkg := range pkgs {
// Top level packages that lead to vulnerable imports are
// stored as result.EntryPackages graph entry points.
if vulnerable := vulnImportSlice(pkg, modVulns, result, analyzedPkgs); vulnerable {
result.EntryPackages = append(result.EntryPackages, pkg)
}
}
}
// vulnImportSlice checks if pkg has some vulnerabilities or transitively imports
// a package with known vulnerabilities. If that is the case, populates result.Imports
// graph with this reachability information and returns the result.Imports package
// node for pkg. Otherwise, returns nil.
func vulnImportSlice(pkg *packages.Package, modVulns moduleVulnerabilities, result *Result, analyzed map[*packages.Package]bool) bool {
if vulnerable, ok := analyzed[pkg]; ok {
return vulnerable
}
analyzed[pkg] = false
// Recursively compute which direct dependencies lead to an import of
// a vulnerable package and remember the nodes of such dependencies.
transitiveVulnerable := false
for _, imp := range pkg.Imports {
if impVulnerable := vulnImportSlice(imp, modVulns, result, analyzed); impVulnerable {
transitiveVulnerable = true
}
}
// Check if pkg has known vulnerabilities.
vulns := modVulns.vulnsForPackage(pkg.PkgPath)
// If pkg is not vulnerable nor it transitively leads
// to vulnerabilities, jump out.
if !transitiveVulnerable && len(vulns) == 0 {
return false
}
// Create Vuln entry for each symbol of known OSV entries for pkg.
for _, osv := range vulns {
for _, affected := range osv.Affected {
for _, p := range affected.EcosystemSpecific.Packages {
if p.Path != pkg.PkgPath {
continue
}
symbols := p.Symbols
if len(symbols) == 0 {
symbols = allSymbols(pkg.Types)
}
for _, symbol := range symbols {
vuln := &Vuln{
OSV: osv,
Symbol: symbol,
ImportSink: pkg,
}
result.Vulns = append(result.Vulns, vuln)
}
}
}
}
analyzed[pkg] = true
return true
}
// vulnCallGraphSlice checks if known vulnerabilities are transitively reachable from sources
// via call graph cg. If so, populates result.Calls graph with this reachability information.
func vulnCallGraphSlice(sources []*ssa.Function, modVulns moduleVulnerabilities, cg *callgraph.Graph, result *Result, graph *PackageGraph) {
sinksWithVulns := vulnFuncs(cg, modVulns)
// Compute call graph backwards reachable
// from vulnerable functions and methods.
var sinks []*callgraph.Node
for n := range sinksWithVulns {
sinks = append(sinks, n)
}
bcg := callGraphSlice(sinks, false)
// Interesect backwards call graph with forward
// reachable graph to remove redundant edges.
var filteredSources []*callgraph.Node
for _, e := range sources {
if n, ok := bcg.Nodes[e]; ok {
filteredSources = append(filteredSources, n)
}
}
fcg := callGraphSlice(filteredSources, true)
// Get the sinks that are in fact reachable from entry points.
filteredSinks := make(map[*callgraph.Node][]*osv.Entry)
for n, vs := range sinksWithVulns {
if fn, ok := fcg.Nodes[n.Func]; ok {
filteredSinks[fn] = vs
}
}
// Transform the resulting call graph slice into
// vulncheck representation and store it to result.
vulnCallGraph(filteredSources, filteredSinks, result, graph)
}
// callGraphSlice computes a slice of callgraph beginning at starts
// in the direction (forward/backward) controlled by forward flag.
func callGraphSlice(starts []*callgraph.Node, forward bool) *callgraph.Graph {
g := &callgraph.Graph{Nodes: make(map[*ssa.Function]*callgraph.Node)}
visited := make(map[*callgraph.Node]bool)
var visit func(*callgraph.Node)
visit = func(n *callgraph.Node) {
if visited[n] {
return
}
visited[n] = true
var edges []*callgraph.Edge
if forward {
edges = n.Out
} else {
edges = n.In
}
for _, edge := range edges {
nCallee := g.CreateNode(edge.Callee.Func)
nCaller := g.CreateNode(edge.Caller.Func)
callgraph.AddEdge(nCaller, edge.Site, nCallee)
if forward {
visit(edge.Callee)
} else {
visit(edge.Caller)
}
}
}
for _, s := range starts {
visit(s)
}
return g
}
// vulnCallGraph creates vulnerability call graph from sources -> sinks reachability info.
func vulnCallGraph(sources []*callgraph.Node, sinks map[*callgraph.Node][]*osv.Entry, result *Result, graph *PackageGraph) {
nodes := make(map[*ssa.Function]*FuncNode)
// First create entries and sinks and store relevant information.
for _, s := range sources {
fn := createNode(nodes, s.Func, graph)
result.EntryFunctions = append(result.EntryFunctions, fn)
}
for s, vulns := range sinks {
f := s.Func
funNode := createNode(nodes, s.Func, graph)
// Populate CallSink field for each detected vuln symbol.
for _, osv := range vulns {
if vulnMatchesPackage(osv, funNode.Package.PkgPath) {
addCallSinkForVuln(funNode, osv, dbFuncName(f), funNode.Package.PkgPath, result)
}
}
}
visited := make(map[*callgraph.Node]bool)
var visit func(*callgraph.Node)
visit = func(n *callgraph.Node) {
if visited[n] {
return
}
visited[n] = true
for _, edge := range n.In {
nCallee := createNode(nodes, edge.Callee.Func, graph)
nCaller := createNode(nodes, edge.Caller.Func, graph)
call := edge.Site
cs := &CallSite{
Parent: nCaller,
Name: call.Common().Value.Name(),
RecvType: callRecvType(call),
Resolved: resolved(call),
Pos: instrPosition(call),
}
nCallee.CallSites = append(nCallee.CallSites, cs)
visit(edge.Caller)
}
}
for s := range sinks {
visit(s)
}
}
// vulnFuncs returns vulnerability information for vulnerable functions in cg.
func vulnFuncs(cg *callgraph.Graph, modVulns moduleVulnerabilities) map[*callgraph.Node][]*osv.Entry {
m := make(map[*callgraph.Node][]*osv.Entry)
for f, n := range cg.Nodes {
vulns := modVulns.vulnsForSymbol(pkgPath(f), dbFuncName(f))
if len(vulns) > 0 {
m[n] = vulns
}
}
return m
}
// pkgPath returns the path of the f's enclosing package, if any.
// Otherwise, returns "".
func pkgPath(f *ssa.Function) string {
if f.Package() != nil && f.Package().Pkg != nil {
return f.Package().Pkg.Path()
}
return ""
}
func createNode(nodes map[*ssa.Function]*FuncNode, f *ssa.Function, graph *PackageGraph) *FuncNode {
if fn, ok := nodes[f]; ok {
return fn
}
fn := &FuncNode{
Name: f.Name(),
Package: graph.GetPackage(pkgPath(f)),
RecvType: funcRecvType(f),
Pos: funcPosition(f),
}
nodes[f] = fn
return fn
}
// addCallSinkForVuln adds callID as call sink to vuln of result.Vulns
// identified with <osv, symbol, pkg>.
func addCallSinkForVuln(call *FuncNode, osv *osv.Entry, symbol, pkg string, result *Result) {
for _, vuln := range result.Vulns {
if vuln.OSV == osv && vuln.Symbol == symbol && vuln.ImportSink.PkgPath == pkg {
vuln.CallSink = call
return
}
}
}
// extractModules collects modules in `pkgs` up to uniqueness of
// module path and version.
func extractModules(pkgs []*packages.Package) []*packages.Module {
modMap := map[string]*packages.Module{}
seen := map[*packages.Package]bool{}
var extract func(*packages.Package, map[string]*packages.Module)
extract = func(pkg *packages.Package, modMap map[string]*packages.Module) {
if pkg == nil || seen[pkg] {
return
}
if pkg.Module != nil {
if pkg.Module.Replace != nil {
modMap[pkg.Module.Replace.Path] = pkg.Module
} else {
modMap[pkg.Module.Path] = pkg.Module
}
}
seen[pkg] = true
for _, imp := range pkg.Imports {
extract(imp, modMap)
}
}
for _, pkg := range pkgs {
extract(pkg, modMap)
}
modules := []*packages.Module{}
for _, mod := range modMap {
modules = append(modules, mod)
}
return modules
}