blob: 1b473088e0dd1bac1f911ec6c145681cb2097a3d [file] [log] [blame]
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package vulncheck
import (
"bytes"
"context"
"go/token"
"go/types"
"sort"
"strings"
"golang.org/x/tools/go/callgraph"
"golang.org/x/tools/go/callgraph/cha"
"golang.org/x/tools/go/callgraph/vta"
"golang.org/x/tools/go/packages"
"golang.org/x/tools/go/ssa/ssautil"
"golang.org/x/tools/go/types/typeutil"
"golang.org/x/vuln/internal"
"golang.org/x/vuln/internal/osv"
"golang.org/x/vuln/internal/semver"
"golang.org/x/tools/go/ssa"
)
// buildSSA creates an ssa representation for pkgs. Returns
// the ssa program encapsulating the packages and top level
// ssa packages corresponding to pkgs.
func buildSSA(pkgs []*packages.Package, fset *token.FileSet) (*ssa.Program, []*ssa.Package) {
prog := ssa.NewProgram(fset, ssa.InstantiateGenerics)
imports := make(map[*packages.Package]*ssa.Package)
var createImports func(map[string]*packages.Package)
createImports = func(pkgs map[string]*packages.Package) {
for _, p := range pkgs {
if _, ok := imports[p]; !ok {
i := prog.CreatePackage(p.Types, p.Syntax, p.TypesInfo, true)
imports[p] = i
createImports(p.Imports)
}
}
}
for _, tp := range pkgs {
createImports(tp.Imports)
}
var ssaPkgs []*ssa.Package
for _, tp := range pkgs {
if sp, ok := imports[tp]; ok {
ssaPkgs = append(ssaPkgs, sp)
} else {
sp := prog.CreatePackage(tp.Types, tp.Syntax, tp.TypesInfo, false)
ssaPkgs = append(ssaPkgs, sp)
}
}
prog.Build()
return prog, ssaPkgs
}
// callGraph builds a call graph of prog based on VTA analysis.
func callGraph(ctx context.Context, prog *ssa.Program, entries []*ssa.Function) (*callgraph.Graph, error) {
entrySlice := make(map[*ssa.Function]bool)
for _, e := range entries {
entrySlice[e] = true
}
if err := ctx.Err(); err != nil { // cancelled?
return nil, err
}
initial := cha.CallGraph(prog)
allFuncs := ssautil.AllFunctions(prog)
fslice := forwardSlice(entrySlice, initial)
// Keep only actually linked functions.
pruneSet(fslice, allFuncs)
if err := ctx.Err(); err != nil { // cancelled?
return nil, err
}
vtaCg := vta.CallGraph(fslice, initial)
// Repeat the process once more, this time using
// the produced VTA call graph as the base graph.
fslice = forwardSlice(entrySlice, vtaCg)
pruneSet(fslice, allFuncs)
if err := ctx.Err(); err != nil { // cancelled?
return nil, err
}
cg := vta.CallGraph(fslice, vtaCg)
cg.DeleteSyntheticNodes()
return cg, nil
}
// dbTypeFormat formats the name of t according how types
// are encoded in vulnerability database:
// - pointer designation * is skipped
// - full path prefix is skipped as well
func dbTypeFormat(t types.Type) string {
switch tt := t.(type) {
case *types.Pointer:
return dbTypeFormat(tt.Elem())
case *types.Named:
return tt.Obj().Name()
default:
return types.TypeString(t, func(p *types.Package) string { return "" })
}
}
// dbFuncName computes a function name consistent with the namings used in vulnerability
// databases. Effectively, a qualified name of a function local to its enclosing package.
// If a receiver is a pointer, this information is not encoded in the resulting name. If
// a function has type argument/parameter, this information is omitted. The name of
// anonymous functions is simply "". The function names are unique subject to the enclosing
// package, but not globally.
//
// Examples:
//
// func (a A) foo (...) {...} -> A.foo
// func foo(...) {...} -> foo
// func (b *B) bar (...) {...} -> B.bar
// func (c C[T]) do(...) {...} -> C.do
func dbFuncName(f *ssa.Function) string {
selectBound := func(f *ssa.Function) types.Type {
// If f is a "bound" function introduced by ssa for a given type, return the type.
// When "f" is a "bound" function, it will have 1 free variable of that type within
// the function. This is subject to change when ssa changes.
if len(f.FreeVars) == 1 && strings.HasPrefix(f.Synthetic, "bound ") {
return f.FreeVars[0].Type()
}
return nil
}
selectThunk := func(f *ssa.Function) types.Type {
// If f is a "thunk" function introduced by ssa for a given type, return the type.
// When "f" is a "thunk" function, the first parameter will have that type within
// the function. This is subject to change when ssa changes.
params := f.Signature.Params() // params.Len() == 1 then params != nil.
if strings.HasPrefix(f.Synthetic, "thunk ") && params.Len() >= 1 {
if first := params.At(0); first != nil {
return first.Type()
}
}
return nil
}
var qprefix string
if recv := f.Signature.Recv(); recv != nil {
qprefix = dbTypeFormat(recv.Type())
} else if btype := selectBound(f); btype != nil {
qprefix = dbTypeFormat(btype)
} else if ttype := selectThunk(f); ttype != nil {
qprefix = dbTypeFormat(ttype)
}
if qprefix == "" {
return funcName(f)
}
return qprefix + "." + funcName(f)
}
// funcName returns the name of the ssa function f.
// It is f.Name() without additional type argument
// information in case of generics.
func funcName(f *ssa.Function) string {
n, _, _ := strings.Cut(f.Name(), "[")
return n
}
// memberFuncs returns functions associated with the `member`:
// 1) `member` itself if `member` is a function
// 2) `member` methods if `member` is a type
// 3) empty list otherwise
func memberFuncs(member ssa.Member, prog *ssa.Program) []*ssa.Function {
switch t := member.(type) {
case *ssa.Type:
methods := typeutil.IntuitiveMethodSet(t.Type(), &prog.MethodSets)
var funcs []*ssa.Function
for _, m := range methods {
if f := prog.MethodValue(m); f != nil {
funcs = append(funcs, f)
}
}
return funcs
case *ssa.Function:
return []*ssa.Function{t}
default:
return nil
}
}
// funcPosition gives the position of `f`. Returns empty token.Position
// if no file information on `f` is available.
func funcPosition(f *ssa.Function) *token.Position {
pos := f.Prog.Fset.Position(f.Pos())
return &pos
}
// instrPosition gives the position of `instr`. Returns empty token.Position
// if no file information on `instr` is available.
func instrPosition(instr ssa.Instruction) *token.Position {
pos := instr.Parent().Prog.Fset.Position(instr.Pos())
return &pos
}
func resolved(call ssa.CallInstruction) bool {
if call == nil {
return true
}
return call.Common().StaticCallee() != nil
}
func callRecvType(call ssa.CallInstruction) string {
if !call.Common().IsInvoke() {
return ""
}
buf := new(bytes.Buffer)
types.WriteType(buf, call.Common().Value.Type(), nil)
return buf.String()
}
func funcRecvType(f *ssa.Function) string {
v := f.Signature.Recv()
if v == nil {
return ""
}
buf := new(bytes.Buffer)
types.WriteType(buf, v.Type(), nil)
return buf.String()
}
func FixedVersion(modulePath, version string, affected []osv.Affected) string {
fixed := earliestValidFix(modulePath, version, affected)
// Add "v" prefix if one does not exist. moduleVersionString
// will later on replace it with "go" if needed.
if fixed != "" && !strings.HasPrefix(fixed, "v") {
fixed = "v" + fixed
}
return fixed
}
// earliestValidFix returns the earliest fix for version of modulePath that
// itself is not vulnerable in affected.
//
// Suppose we have a version "v1.0.0" and we use {...} to denote different
// affected regions. Assume for simplicity that all affected apply to the
// same input modulePath.
//
// {[v0.1.0, v0.1.9), [v1.0.0, v2.0.0)} -> v2.0.0
// {[v1.0.0, v1.5.0), [v2.0.0, v2.1.0}, {[v1.4.0, v1.6.0)} -> v2.1.0
func earliestValidFix(modulePath, version string, affected []osv.Affected) string {
var moduleAffected []osv.Affected
for _, a := range affected {
if a.Module.Path == modulePath {
moduleAffected = append(moduleAffected, a)
}
}
vFixes := validFixes(version, moduleAffected)
for _, fix := range vFixes {
if !fixNegated(fix, moduleAffected) {
return fix
}
}
return ""
}
// validFixes computes all fixes for version in affected and
// returns them sorted increasingly. Assumes that all affected
// apply to the same module.
func validFixes(version string, affected []osv.Affected) []string {
var fixes []string
for _, a := range affected {
for _, r := range a.Ranges {
if r.Type != osv.RangeTypeSemver {
continue
}
for _, e := range r.Events {
fix := e.Fixed
if fix != "" && semver.Less(version, fix) {
fixes = append(fixes, fix)
}
}
}
}
sort.SliceStable(fixes, func(i, j int) bool { return semver.Less(fixes[i], fixes[j]) })
return fixes
}
// fixNegated checks if fix is negated to by a re-introduction
// of a vulnerability in affected. Assumes that all affected apply
// to the same module.
func fixNegated(fix string, affected []osv.Affected) bool {
for _, a := range affected {
for _, r := range a.Ranges {
if semver.ContainsSemver(r, fix) {
return true
}
}
}
return false
}
func modPath(mod *packages.Module) string {
if mod.Replace != nil {
return mod.Replace.Path
}
return mod.Path
}
func modVersion(mod *packages.Module) string {
if mod.Replace != nil {
return mod.Replace.Version
}
return mod.Version
}
// pkgPath returns the path of the f's enclosing package, if any.
// Otherwise, returns internal.UnknownPackagePath.
func pkgPath(f *ssa.Function) string {
g := f
if f.Origin() != nil {
// Instantiations of generics do not have
// an associated package. We hence look up
// the original function for the package.
g = f.Origin()
}
if g.Package() != nil && g.Package().Pkg != nil {
return g.Package().Pkg.Path()
}
return internal.UnknownPackagePath
}
func IsStdPackage(pkg string) bool {
if pkg == "" || pkg == internal.UnknownPackagePath {
return false
}
// std packages do not have a "." in their path. For instance, see
// Contains in pkgsite/+/refs/heads/master/internal/stdlbib/stdlib.go.
if i := strings.IndexByte(pkg, '/'); i != -1 {
pkg = pkg[:i]
}
return !strings.Contains(pkg, ".")
}