blob: 23da217509cd261f10c5fbb7bac2fb42d3acdbfe [file] [log] [blame] [edit]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package oracle
import (
"bytes"
"fmt"
"go/ast"
"go/token"
"os"
"sort"
"strconv"
"strings"
"code.google.com/p/go.tools/go/exact"
"code.google.com/p/go.tools/go/types"
"code.google.com/p/go.tools/importer"
"code.google.com/p/go.tools/oracle/serial"
"code.google.com/p/go.tools/pointer"
"code.google.com/p/go.tools/ssa"
)
// describe describes the syntax node denoted by the query position,
// including:
// - its syntactic category
// - the location of the definition of its referent (for identifiers)
// - its type and method set (for an expression or type expression)
// - its points-to set (for a pointer-like expression)
// - its dynamic types (for an interface, reflect.Value, or
// reflect.Type expression) and their points-to sets.
//
// All printed sets are sorted to ensure determinism.
//
func describe(o *Oracle, qpos *QueryPos) (queryResult, error) {
if false { // debugging
o.fprintf(os.Stderr, qpos.path[0], "you selected: %s %s",
importer.NodeDescription(qpos.path[0]), pathToString2(qpos.path))
}
path, action := findInterestingNode(qpos.info, qpos.path)
switch action {
case actionExpr:
return describeValue(o, qpos, path)
case actionType:
return describeType(o, qpos, path)
case actionPackage:
return describePackage(o, qpos, path)
case actionStmt:
return describeStmt(o, qpos, path)
case actionUnknown:
return &describeUnknownResult{path[0]}, nil
default:
panic(action) // unreachable
}
}
type describeUnknownResult struct {
node ast.Node
}
func (r *describeUnknownResult) display(printf printfFunc) {
// Nothing much to say about misc syntax.
printf(r.node, "%s", importer.NodeDescription(r.node))
}
func (r *describeUnknownResult) toSerial(res *serial.Result, fset *token.FileSet) {
res.Describe = &serial.Describe{
Desc: importer.NodeDescription(r.node),
Pos: fset.Position(r.node.Pos()).String(),
}
}
type action int
const (
actionUnknown action = iota // None of the below
actionExpr // FuncDecl, true Expr or Ident(types.{Const,Var})
actionType // type Expr or Ident(types.TypeName).
actionStmt // Stmt or Ident(types.Label)
actionPackage // Ident(types.Package) or ImportSpec
)
// findInterestingNode classifies the syntax node denoted by path as one of:
// - an expression, part of an expression or a reference to a constant
// or variable;
// - a type, part of a type, or a reference to a named type;
// - a statement, part of a statement, or a label referring to a statement;
// - part of a package declaration or import spec.
// - none of the above.
// and returns the most "interesting" associated node, which may be
// the same node, an ancestor or a descendent.
//
func findInterestingNode(pkginfo *importer.PackageInfo, path []ast.Node) ([]ast.Node, action) {
// TODO(adonovan): integrate with go/types/stdlib_test.go and
// apply this to every AST node we can find to make sure it
// doesn't crash.
// TODO(adonovan): audit for ParenExpr safety, esp. since we
// traverse up and down.
// TODO(adonovan): if the users selects the "." in
// "fmt.Fprintf()", they'll get an ambiguous selection error;
// we won't even reach here. Can we do better?
// TODO(adonovan): describing a field within 'type T struct {...}'
// describes the (anonymous) struct type and concludes "no methods".
// We should ascend to the enclosing type decl, if any.
for len(path) > 0 {
switch n := path[0].(type) {
case *ast.GenDecl:
if len(n.Specs) == 1 {
// Descend to sole {Import,Type,Value}Spec child.
path = append([]ast.Node{n.Specs[0]}, path...)
continue
}
return path, actionUnknown // uninteresting
case *ast.FuncDecl:
// Descend to function name.
path = append([]ast.Node{n.Name}, path...)
continue
case *ast.ImportSpec:
return path, actionPackage
case *ast.ValueSpec:
if len(n.Names) == 1 {
// Descend to sole Ident child.
path = append([]ast.Node{n.Names[0]}, path...)
continue
}
return path, actionUnknown // uninteresting
case *ast.TypeSpec:
// Descend to type name.
path = append([]ast.Node{n.Name}, path...)
continue
case ast.Stmt:
return path, actionStmt
case *ast.ArrayType,
*ast.StructType,
*ast.FuncType,
*ast.InterfaceType,
*ast.MapType,
*ast.ChanType:
return path, actionType
case *ast.Comment, *ast.CommentGroup, *ast.File, *ast.KeyValueExpr, *ast.CommClause:
return path, actionUnknown // uninteresting
case *ast.Ellipsis:
// Continue to enclosing node.
// e.g. [...]T in ArrayType
// f(x...) in CallExpr
// f(x...T) in FuncType
case *ast.Field:
// TODO(adonovan): this needs more thought,
// since fields can be so many things.
if len(n.Names) == 1 {
// Descend to sole Ident child.
path = append([]ast.Node{n.Names[0]}, path...)
continue
}
// Zero names (e.g. anon field in struct)
// or multiple field or param names:
// continue to enclosing field list.
case *ast.FieldList:
// Continue to enclosing node:
// {Struct,Func,Interface}Type or FuncDecl.
case *ast.BasicLit:
if _, ok := path[1].(*ast.ImportSpec); ok {
return path[1:], actionPackage
}
return path, actionExpr
case *ast.SelectorExpr:
if pkginfo.ObjectOf(n.Sel) == nil {
// Is this reachable?
return path, actionUnknown
}
// Descend to .Sel child.
path = append([]ast.Node{n.Sel}, path...)
continue
case *ast.Ident:
switch obj := pkginfo.ObjectOf(n).(type) {
case *types.PkgName:
return path, actionPackage
case *types.Const:
return path, actionExpr
case *types.Label:
return path, actionStmt
case *types.TypeName:
return path, actionType
case *types.Var:
// For x in 'struct {x T}', return struct type, for now.
if _, ok := path[1].(*ast.Field); ok {
_ = path[2].(*ast.FieldList) // assertion
if _, ok := path[3].(*ast.StructType); ok {
return path[3:], actionType
}
}
return path, actionExpr
case *types.Func:
// For f in 'interface {f()}', return the interface type, for now.
if _, ok := path[1].(*ast.Field); ok {
_ = path[2].(*ast.FieldList) // assertion
if _, ok := path[3].(*ast.InterfaceType); ok {
return path[3:], actionType
}
}
// For reference to built-in function, return enclosing call.
if _, ok := obj.Type().(*types.Builtin); ok {
// Ascend to enclosing function call.
path = path[1:]
continue
}
return path, actionExpr
}
// No object.
switch path[1].(type) {
case *ast.SelectorExpr:
// Return enclosing selector expression.
return path[1:], actionExpr
case *ast.Field:
// TODO(adonovan): test this.
// e.g. all f in:
// struct { f, g int }
// interface { f() }
// func (f T) method(f, g int) (f, g bool)
//
// switch path[3].(type) {
// case *ast.FuncDecl:
// case *ast.StructType:
// case *ast.InterfaceType:
// }
//
// return path[1:], actionExpr
//
// Unclear what to do with these.
// Struct.Fields -- field
// Interface.Methods -- field
// FuncType.{Params.Results} -- actionExpr
// FuncDecl.Recv -- actionExpr
case *ast.File:
// 'package foo'
return path, actionPackage
case *ast.ImportSpec:
// TODO(adonovan): fix: why no package object? go/types bug?
return path[1:], actionPackage
default:
// e.g. blank identifier (go/types bug?)
// or y in "switch y := x.(type)" (go/types bug?)
fmt.Printf("unknown reference %s in %T\n", n, path[1])
return path, actionUnknown
}
case *ast.StarExpr:
if pkginfo.IsType(n) {
return path, actionType
}
return path, actionExpr
case ast.Expr:
// All Expr but {BasicLit,Ident,StarExpr} are
// "true" expressions that evaluate to a value.
return path, actionExpr
}
// Ascend to parent.
path = path[1:]
}
return nil, actionUnknown // unreachable
}
// ---- VALUE ------------------------------------------------------------
// ssaValueForIdent returns the ssa.Value for the ast.Ident whose path
// to the root of the AST is path. It may return a nil Value without
// an error to indicate the pointer analysis is not appropriate.
//
func ssaValueForIdent(prog *ssa.Program, qinfo *importer.PackageInfo, obj types.Object, path []ast.Node) (ssa.Value, error) {
if obj, ok := obj.(*types.Var); ok {
pkg := prog.Package(qinfo.Pkg)
pkg.Build()
if v := prog.VarValue(obj, pkg, path); v != nil {
// Don't run pointer analysis on a ref to a const expression.
if _, ok := v.(*ssa.Const); ok {
v = nil
}
return v, nil
}
return nil, fmt.Errorf("can't locate SSA Value for var %s", obj.Name())
}
// Don't run pointer analysis on const/func objects.
return nil, nil
}
// ssaValueForExpr returns the ssa.Value of the non-ast.Ident
// expression whose path to the root of the AST is path. It may
// return a nil Value without an error to indicate the pointer
// analysis is not appropriate.
//
func ssaValueForExpr(prog *ssa.Program, qinfo *importer.PackageInfo, path []ast.Node) (ssa.Value, error) {
pkg := prog.Package(qinfo.Pkg)
pkg.SetDebugMode(true)
pkg.Build()
fn := ssa.EnclosingFunction(pkg, path)
if fn == nil {
return nil, fmt.Errorf("no SSA function built for this location (dead code?)")
}
if v := fn.ValueForExpr(path[0].(ast.Expr)); v != nil {
return v, nil
}
return nil, fmt.Errorf("can't locate SSA Value for expression in %s", fn)
}
func describeValue(o *Oracle, qpos *QueryPos, path []ast.Node) (*describeValueResult, error) {
var expr ast.Expr
var obj types.Object
switch n := path[0].(type) {
case *ast.ValueSpec:
// ambiguous ValueSpec containing multiple names
return nil, fmt.Errorf("multiple value specification")
case *ast.Ident:
obj = qpos.info.ObjectOf(n)
expr = n
case ast.Expr:
expr = n
default:
// Is this reachable?
return nil, fmt.Errorf("unexpected AST for expr: %T", n)
}
typ := qpos.info.TypeOf(expr)
constVal := qpos.info.ValueOf(expr)
// From this point on, we cannot fail with an error.
// Failure to run the pointer analysis will be reported later.
//
// Our disposition to pointer analysis may be one of the following:
// - ok: ssa.Value was const or func.
// - error: no ssa.Value for expr (e.g. trivially dead code)
// - ok: ssa.Value is non-pointerlike
// - error: no Pointer for ssa.Value (e.g. analytically unreachable)
// - ok: Pointer has empty points-to set
// - ok: Pointer has non-empty points-to set
// ptaErr is non-nil only in the "error:" cases.
var ptaErr error
var ptrs []pointerResult
// Only run pointer analysis on pointerlike expression types.
if pointer.CanPoint(typ) {
// Determine the ssa.Value for the expression.
var value ssa.Value
if obj != nil {
// def/ref of func/var/const object
value, ptaErr = ssaValueForIdent(o.prog, qpos.info, obj, path)
} else {
// any other expression
if qpos.info.ValueOf(path[0].(ast.Expr)) == nil { // non-constant?
value, ptaErr = ssaValueForExpr(o.prog, qpos.info, path)
}
}
if value != nil {
// TODO(adonovan): IsIdentical may be too strict;
// perhaps we need is-assignable or even
// has-same-underlying-representation?
indirect := types.IsIdentical(types.NewPointer(typ), value.Type())
ptrs, ptaErr = describePointer(o, value, indirect)
}
}
return &describeValueResult{
qpos: qpos,
expr: expr,
typ: typ,
constVal: constVal,
obj: obj,
ptaErr: ptaErr,
ptrs: ptrs,
}, nil
}
// describePointer runs the pointer analysis of the selected SSA value.
func describePointer(o *Oracle, v ssa.Value, indirect bool) (ptrs []pointerResult, err error) {
buildSSA(o)
// TODO(adonovan): don't run indirect pointer analysis on non-ptr-ptrlike types.
o.config.Queries = map[ssa.Value]pointer.Indirect{v: pointer.Indirect(indirect)}
ptares := ptrAnalysis(o)
// Combine the PT sets from all contexts.
pointers := ptares.Queries[v]
if pointers == nil {
return nil, fmt.Errorf("PTA did not encounter this expression (dead code?)")
}
pts := pointer.PointsToCombined(pointers)
if pointer.CanHaveDynamicTypes(v.Type()) {
// Show concrete types for interface/reflect.Value expression.
if concs := pts.DynamicTypes(); concs.Len() > 0 {
concs.Iterate(func(conc types.Type, pta interface{}) {
combined := pointer.PointsToCombined(pta.([]pointer.Pointer))
labels := combined.Labels()
sort.Sort(byPosAndString(labels)) // to ensure determinism
ptrs = append(ptrs, pointerResult{conc, labels})
})
}
} else {
// Show labels for other expressions.
labels := pts.Labels()
sort.Sort(byPosAndString(labels)) // to ensure determinism
ptrs = append(ptrs, pointerResult{v.Type(), labels})
}
sort.Sort(byTypeString(ptrs)) // to ensure determinism
return ptrs, nil
}
type pointerResult struct {
typ types.Type // type of the pointer (always concrete)
labels []*pointer.Label
}
type describeValueResult struct {
qpos *QueryPos
expr ast.Expr // query node
typ types.Type // type of expression
constVal exact.Value // value of expression, if constant
obj types.Object // var/func/const object, if expr was Ident
ptaErr error // reason why pointer analysis couldn't be run, or failed
ptrs []pointerResult // pointer info (typ is concrete => len==1)
}
func (r *describeValueResult) display(printf printfFunc) {
var prefix, suffix string
if r.constVal != nil {
suffix = fmt.Sprintf(" of constant value %s", r.constVal)
}
switch obj := r.obj.(type) {
case *types.Func:
if recv := obj.Type().(*types.Signature).Recv(); recv != nil {
if _, ok := recv.Type().Underlying().(*types.Interface); ok {
prefix = "interface method "
} else {
prefix = "method "
}
}
case *types.Var:
// TODO(adonovan): go/types should make it simple to
// ask: IsStructField(*Var)?
if false {
prefix = "struct field "
}
}
// Describe the expression.
if r.obj != nil {
if r.obj.Pos() == r.expr.Pos() {
// defining ident
printf(r.expr, "definition of %s%s%s", prefix, r.obj, suffix)
} else {
// referring ident
printf(r.expr, "reference to %s%s%s", prefix, r.obj, suffix)
if def := r.obj.Pos(); def != token.NoPos {
printf(def, "defined here")
}
}
} else {
desc := importer.NodeDescription(r.expr)
if suffix != "" {
// constant expression
printf(r.expr, "%s%s", desc, suffix)
} else {
// non-constant expression
printf(r.expr, "%s of type %s", desc, r.typ)
}
}
// pointer analysis could not be run
if r.ptaErr != nil {
printf(r.expr, "no points-to information: %s", r.ptaErr)
return
}
if r.ptrs == nil {
return // PTA was not invoked (not an error)
}
// Display the results of pointer analysis.
if pointer.CanHaveDynamicTypes(r.typ) {
// Show concrete types for interface, reflect.Type or
// reflect.Value expression.
if len(r.ptrs) > 0 {
printf(r.qpos, "this %s may contain these dynamic types:", r.typ)
for _, ptr := range r.ptrs {
var obj types.Object
if nt, ok := deref(ptr.typ).(*types.Named); ok {
obj = nt.Obj()
}
if len(ptr.labels) > 0 {
printf(obj, "\t%s, may point to:", ptr.typ)
printLabels(printf, ptr.labels, "\t\t")
} else {
printf(obj, "\t%s", ptr.typ)
}
}
} else {
printf(r.qpos, "this %s cannot contain any dynamic types.", r.typ)
}
} else {
// Show labels for other expressions.
if ptr := r.ptrs[0]; len(ptr.labels) > 0 {
printf(r.qpos, "value may point to these labels:")
printLabels(printf, ptr.labels, "\t")
} else {
printf(r.qpos, "value cannot point to anything.")
}
}
}
func (r *describeValueResult) toSerial(res *serial.Result, fset *token.FileSet) {
var value, objpos, ptaerr string
if r.constVal != nil {
value = r.constVal.String()
}
if r.obj != nil {
objpos = fset.Position(r.obj.Pos()).String()
}
if r.ptaErr != nil {
ptaerr = r.ptaErr.Error()
}
var pts []*serial.DescribePointer
for _, ptr := range r.ptrs {
var namePos string
if nt, ok := deref(ptr.typ).(*types.Named); ok {
namePos = fset.Position(nt.Obj().Pos()).String()
}
var labels []serial.DescribePTALabel
for _, l := range ptr.labels {
labels = append(labels, serial.DescribePTALabel{
Pos: fset.Position(l.Pos()).String(),
Desc: l.String(),
})
}
pts = append(pts, &serial.DescribePointer{
Type: ptr.typ.String(),
NamePos: namePos,
Labels: labels,
})
}
res.Describe = &serial.Describe{
Desc: importer.NodeDescription(r.expr),
Pos: fset.Position(r.expr.Pos()).String(),
Detail: "value",
Value: &serial.DescribeValue{
Type: r.typ.String(),
Value: value,
ObjPos: objpos,
PTAErr: ptaerr,
PTS: pts,
},
}
}
type byTypeString []pointerResult
func (a byTypeString) Len() int { return len(a) }
func (a byTypeString) Less(i, j int) bool { return a[i].typ.String() < a[j].typ.String() }
func (a byTypeString) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
type byPosAndString []*pointer.Label
func (a byPosAndString) Len() int { return len(a) }
func (a byPosAndString) Less(i, j int) bool {
cmp := a[i].Pos() - a[j].Pos()
return cmp < 0 || (cmp == 0 && a[i].String() < a[j].String())
}
func (a byPosAndString) Swap(i, j int) { a[i], a[j] = a[j], a[i] }
func printLabels(printf printfFunc, labels []*pointer.Label, prefix string) {
// TODO(adonovan): due to context-sensitivity, many of these
// labels may differ only by context, which isn't apparent.
for _, label := range labels {
printf(label, "%s%s", prefix, label)
}
}
// ---- TYPE ------------------------------------------------------------
func describeType(o *Oracle, qpos *QueryPos, path []ast.Node) (*describeTypeResult, error) {
var description string
var t types.Type
switch n := path[0].(type) {
case *ast.Ident:
t = qpos.info.TypeOf(n)
switch t := t.(type) {
case *types.Basic:
description = "reference to built-in type " + t.String()
case *types.Named:
isDef := t.Obj().Pos() == n.Pos() // see caveats at isDef above
if isDef {
description = "definition of type " + t.String()
} else {
description = "reference to type " + t.String()
}
}
case ast.Expr:
t = qpos.info.TypeOf(n)
description = "type " + t.String()
default:
// Unreachable?
return nil, fmt.Errorf("unexpected AST for type: %T", n)
}
return &describeTypeResult{
node: path[0],
description: description,
typ: t,
methods: accessibleMethods(t, qpos.info.Pkg),
}, nil
}
type describeTypeResult struct {
node ast.Node
description string
typ types.Type
methods []*types.Selection
}
func (r *describeTypeResult) display(printf printfFunc) {
printf(r.node, "%s", r.description)
// Show the underlying type for a reference to a named type.
if nt, ok := r.typ.(*types.Named); ok && r.node.Pos() != nt.Obj().Pos() {
printf(nt.Obj(), "defined as %s", nt.Underlying())
}
// Print the method set, if the type kind is capable of bearing methods.
switch r.typ.(type) {
case *types.Interface, *types.Struct, *types.Named:
if len(r.methods) > 0 {
printf(r.node, "Method set:")
for _, meth := range r.methods {
printf(meth.Obj(), "\t%s", meth)
}
} else {
printf(r.node, "No methods.")
}
}
}
func (r *describeTypeResult) toSerial(res *serial.Result, fset *token.FileSet) {
var namePos, nameDef string
if nt, ok := r.typ.(*types.Named); ok {
namePos = fset.Position(nt.Obj().Pos()).String()
nameDef = nt.Underlying().String()
}
res.Describe = &serial.Describe{
Desc: r.description,
Pos: fset.Position(r.node.Pos()).String(),
Detail: "type",
Type: &serial.DescribeType{
Type: r.typ.String(),
NamePos: namePos,
NameDef: nameDef,
Methods: methodsToSerial(r.methods, fset),
},
}
}
// ---- PACKAGE ------------------------------------------------------------
func describePackage(o *Oracle, qpos *QueryPos, path []ast.Node) (*describePackageResult, error) {
var description string
var pkg *types.Package
switch n := path[0].(type) {
case *ast.ImportSpec:
// Most ImportSpecs have no .Name Ident so we can't
// use ObjectOf.
// We could use the types.Info.Implicits mechanism,
// but it's easier just to look it up by name.
description = "import of package " + n.Path.Value
importPath, _ := strconv.Unquote(n.Path.Value)
pkg = o.prog.ImportedPackage(importPath).Object
case *ast.Ident:
if _, isDef := path[1].(*ast.File); isDef {
// e.g. package id
pkg = qpos.info.Pkg
description = fmt.Sprintf("definition of package %q", pkg.Path())
} else {
// e.g. import id
// or id.F()
pkg = qpos.info.ObjectOf(n).Pkg()
description = fmt.Sprintf("reference to package %q", pkg.Path())
}
default:
// Unreachable?
return nil, fmt.Errorf("unexpected AST for package: %T", n)
}
var members []*describeMember
// NB: "unsafe" has no types.Package
if pkg != nil {
// Enumerate the accessible package members
// in lexicographic order.
for _, name := range pkg.Scope().Names() {
if pkg == qpos.info.Pkg || ast.IsExported(name) {
mem := pkg.Scope().Lookup(name)
var methods []*types.Selection
if mem, ok := mem.(*types.TypeName); ok {
methods = accessibleMethods(mem.Type(), qpos.info.Pkg)
}
members = append(members, &describeMember{
mem,
methods,
})
}
}
}
return &describePackageResult{o.prog.Fset, path[0], description, pkg, members}, nil
}
type describePackageResult struct {
fset *token.FileSet
node ast.Node
description string
pkg *types.Package
members []*describeMember // in lexicographic name order
}
type describeMember struct {
obj types.Object
methods []*types.Selection // in types.MethodSet order
}
func (r *describePackageResult) display(printf printfFunc) {
printf(r.node, "%s", r.description)
// Compute max width of name "column".
maxname := 0
for _, mem := range r.members {
if l := len(mem.obj.Name()); l > maxname {
maxname = l
}
}
for _, mem := range r.members {
printf(mem.obj, "\t%s", formatMember(mem.obj, maxname))
for _, meth := range mem.methods {
printf(meth.Obj(), "\t\t%s", meth)
}
}
}
func formatMember(obj types.Object, maxname int) string {
var buf bytes.Buffer
fmt.Fprintf(&buf, "%-5s %-*s", tokenOf(obj), maxname, obj.Name())
switch obj := obj.(type) {
case *types.Const:
fmt.Fprintf(&buf, " %s = %s", obj.Type(), obj.Val().String())
case *types.Func:
fmt.Fprintf(&buf, " %s", obj.Type())
case *types.TypeName:
// Abbreviate long aggregate type names.
var abbrev string
switch t := obj.Type().Underlying().(type) {
case *types.Interface:
if t.NumMethods() > 1 {
abbrev = "interface{...}"
}
case *types.Struct:
if t.NumFields() > 1 {
abbrev = "struct{...}"
}
}
if abbrev == "" {
fmt.Fprintf(&buf, " %s", obj.Type().Underlying())
} else {
fmt.Fprintf(&buf, " %s", abbrev)
}
case *types.Var:
fmt.Fprintf(&buf, " %s", obj.Type())
}
return buf.String()
}
func (r *describePackageResult) toSerial(res *serial.Result, fset *token.FileSet) {
var members []*serial.DescribeMember
for _, mem := range r.members {
typ := mem.obj.Type()
var val string
switch mem := mem.obj.(type) {
case *types.Const:
val = mem.Val().String()
case *types.TypeName:
typ = typ.Underlying()
}
members = append(members, &serial.DescribeMember{
Name: mem.obj.Name(),
Type: typ.String(),
Value: val,
Pos: fset.Position(mem.obj.Pos()).String(),
Kind: tokenOf(mem.obj),
Methods: methodsToSerial(mem.methods, fset),
})
}
res.Describe = &serial.Describe{
Desc: r.description,
Pos: fset.Position(r.node.Pos()).String(),
Detail: "package",
Package: &serial.DescribePackage{
Path: r.pkg.Path(),
Members: members,
},
}
}
func tokenOf(o types.Object) string {
switch o.(type) {
case *types.Func:
return "func"
case *types.Var:
return "var"
case *types.TypeName:
return "type"
case *types.Const:
return "const"
case *types.PkgName:
return "package"
}
panic(o)
}
// ---- STATEMENT ------------------------------------------------------------
func describeStmt(o *Oracle, qpos *QueryPos, path []ast.Node) (*describeStmtResult, error) {
var description string
switch n := path[0].(type) {
case *ast.Ident:
if qpos.info.ObjectOf(n).Pos() == n.Pos() {
description = "labelled statement"
} else {
description = "reference to labelled statement"
}
default:
// Nothing much to say about statements.
description = importer.NodeDescription(n)
}
return &describeStmtResult{o.prog.Fset, path[0], description}, nil
}
type describeStmtResult struct {
fset *token.FileSet
node ast.Node
description string
}
func (r *describeStmtResult) display(printf printfFunc) {
printf(r.node, "%s", r.description)
}
func (r *describeStmtResult) toSerial(res *serial.Result, fset *token.FileSet) {
res.Describe = &serial.Describe{
Desc: r.description,
Pos: fset.Position(r.node.Pos()).String(),
Detail: "unknown",
}
}
// ------------------- Utilities -------------------
// pathToString returns a string containing the concrete types of the
// nodes in path.
func pathToString2(path []ast.Node) string {
var buf bytes.Buffer
fmt.Fprint(&buf, "[")
for i, n := range path {
if i > 0 {
fmt.Fprint(&buf, " ")
}
fmt.Fprint(&buf, strings.TrimPrefix(fmt.Sprintf("%T", n), "*ast."))
}
fmt.Fprint(&buf, "]")
return buf.String()
}
func accessibleMethods(t types.Type, from *types.Package) []*types.Selection {
var methods []*types.Selection
for _, meth := range ssa.IntuitiveMethodSet(t) {
if isAccessibleFrom(meth.Obj(), from) {
methods = append(methods, meth)
}
}
return methods
}
func isAccessibleFrom(obj types.Object, pkg *types.Package) bool {
return ast.IsExported(obj.Name()) || obj.Pkg() == pkg
}
func methodsToSerial(methods []*types.Selection, fset *token.FileSet) []serial.DescribeMethod {
var jmethods []serial.DescribeMethod
for _, meth := range methods {
jmethods = append(jmethods, serial.DescribeMethod{
Name: meth.String(),
Pos: fset.Position(meth.Obj().Pos()).String(),
})
}
return jmethods
}