| // Copyright 2021 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package trie |
| |
| import ( |
| "math/bits" |
| ) |
| |
| // This file contains bit twiddling functions for Patricia tries. |
| // Consult this paper for details. |
| // C. Okasaki and A. Gill, “Fast mergeable integer maps,” in ACM SIGPLAN |
| // Workshop on ML, September 1998, pp. 77–86. |
| |
| // key is a key in a Map. |
| type key uint64 |
| |
| // bitpos is the position of a bit. A position is represented by having a 1 |
| // bit in that position. |
| // Examples: |
| // - 0b0010 is the position of the `1` bit in 2. |
| // It is the 3rd most specific bit position in big endian encoding |
| // (0b0 and 0b1 are more specific). |
| // - 0b0100 is the position of the bit that 1 and 5 disagree on. |
| // - 0b0 is a special value indicating that all bit agree. |
| type bitpos uint64 |
| |
| // prefixes represent a set of keys that all agree with the |
| // prefix up to a bitpos m. |
| // |
| // The value for a prefix is determined by the mask(k, m) function. |
| // (See mask for details on the values.) |
| // A `p` prefix for position `m` matches a key `k` iff mask(k, m) == p. |
| // A prefix always mask(p, m) == p. |
| // |
| // A key is its own prefix for the bit position 64, |
| // e.g. seeing a `prefix(key)` is not a problem. |
| // |
| // Prefixes should never be turned into keys. |
| type prefix uint64 |
| |
| // branchingBit returns the position of the first bit in `x` and `y` |
| // that are not equal. |
| func branchingBit(x, y prefix) bitpos { |
| p := x ^ y |
| if p == 0 { |
| return 0 |
| } |
| return bitpos(1) << uint(bits.Len64(uint64(p))-1) // uint conversion needed for go1.12 |
| } |
| |
| // zeroBit returns true if k has a 0 bit at position `b`. |
| func zeroBit(k prefix, b bitpos) bool { |
| return (uint64(k) & uint64(b)) == 0 |
| } |
| |
| // matchPrefix returns true if a prefix k matches a prefix p up to position `b`. |
| func matchPrefix(k prefix, p prefix, b bitpos) bool { |
| return mask(k, b) == p |
| } |
| |
| // mask returns a prefix of `k` with all bits after and including `b` zeroed out. |
| // |
| // In big endian encoding, this value is the [64-(m-1)] most significant bits of k |
| // followed by a `0` bit at bitpos m, followed m-1 `1` bits. |
| // Examples: |
| // |
| // prefix(0b1011) for a bitpos 0b0100 represents the keys: |
| // 0b1000, 0b1001, 0b1010, 0b1011, 0b1100, 0b1101, 0b1110, 0b1111 |
| // |
| // This mask function has the property that if matchPrefix(k, p, b), then |
| // k <= p if and only if zeroBit(k, m). This induces binary search tree tries. |
| // See Okasaki & Gill for more details about this choice of mask function. |
| // |
| // mask is idempotent for a given `b`, i.e. mask(mask(p, b), b) == mask(p,b). |
| func mask(k prefix, b bitpos) prefix { |
| return prefix((uint64(k) | (uint64(b) - 1)) & (^uint64(b))) |
| } |
| |
| // ord returns true if m comes before n in the bit ordering. |
| func ord(m, n bitpos) bool { |
| return m > n // big endian encoding |
| } |
| |
| // prefixesOverlap returns true if there is some key a prefix `p` for bitpos `m` |
| // can hold that can also be held by a prefix `q` for some bitpos `n`. |
| // |
| // This is equivalent to: |
| // |
| // m ==n && p == q, |
| // higher(m, n) && matchPrefix(q, p, m), or |
| // higher(n, m) && matchPrefix(p, q, n) |
| func prefixesOverlap(p prefix, m bitpos, q prefix, n bitpos) bool { |
| fbb := n |
| if ord(m, n) { |
| fbb = m |
| } |
| return mask(p, fbb) == mask(q, fbb) |
| // Lemma: |
| // mask(p, fbb) == mask(q, fbb) |
| // iff |
| // m > n && matchPrefix(q, p, m) or (note: big endian encoding) |
| // m < n && matchPrefix(p, q, n) or (note: big endian encoding) |
| // m ==n && p == q |
| // Quick-n-dirty proof: |
| // p == mask(p0, m) for some p0 by precondition. |
| // q == mask(q0, n) for some q0 by precondition. |
| // So mask(p, m) == p and mask(q, n) == q as mask(*, n') is idempotent. |
| // |
| // [=> proof] |
| // Suppose mask(p, fbb) == mask(q, fbb). |
| // if m ==n, p == mask(p, m) == mask(p, fbb) == mask(q, fbb) == mask(q, n) == q |
| // if m > n, fbb = firstBranchBit(m, n) = m (big endian). |
| // p == mask(p, m) == mask(p, fbb) == mask(q, fbb) == mask(q, m) |
| // so mask(q, m) == p or matchPrefix(q, p, m) |
| // if m < n, is symmetric to the above. |
| // |
| // [<= proof] |
| // case m ==n && p == q. Then mask(p, fbb) == mask(q, fbb) |
| // |
| // case m > n && matchPrefix(q, p, m). |
| // fbb == firstBranchBit(m, n) == m (by m>n). |
| // mask(q, fbb) == mask(q, m) == p == mask(p, m) == mask(p, fbb) |
| // |
| // case m < n && matchPrefix(p, q, n) is symmetric. |
| } |