blob: 4b60e7629789309e75b153bc3b2db35769b2d12a [file] [log] [blame]
// Below was copied from go/types/unify.go on September 24, 2024,
// and combined with snippets from other files as well.
// It is copied to implement unification for code completion inferences,
// in lieu of an official type unification API.
//
// TODO: When such an API is available, the code below should deleted.
//
// Due to complexity of extracting private types from the go/types package,
// the unifier does not fully implement interface unification.
//
// The code has been modified to compile without introducing any key functionality changes.
//
// Copyright 2020 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// This file implements type unification.
//
// Type unification attempts to make two types x and y structurally
// equivalent by determining the types for a given list of (bound)
// type parameters which may occur within x and y. If x and y are
// structurally different (say []T vs chan T), or conflicting
// types are determined for type parameters, unification fails.
// If unification succeeds, as a side-effect, the types of the
// bound type parameters may be determined.
//
// Unification typically requires multiple calls u.unify(x, y) to
// a given unifier u, with various combinations of types x and y.
// In each call, additional type parameter types may be determined
// as a side effect and recorded in u.
// If a call fails (returns false), unification fails.
//
// In the unification context, structural equivalence of two types
// ignores the difference between a defined type and its underlying
// type if one type is a defined type and the other one is not.
// It also ignores the difference between an (external, unbound)
// type parameter and its core type.
// If two types are not structurally equivalent, they cannot be Go
// identical types. On the other hand, if they are structurally
// equivalent, they may be Go identical or at least assignable, or
// they may be in the type set of a constraint.
// Whether they indeed are identical or assignable is determined
// upon instantiation and function argument passing.
package completion
import (
"fmt"
"go/types"
"strings"
)
const (
// Upper limit for recursion depth. Used to catch infinite recursions
// due to implementation issues (e.g., see issues go.dev/issue/48619, go.dev/issue/48656).
unificationDepthLimit = 50
// Whether to panic when unificationDepthLimit is reached.
// If disabled, a recursion depth overflow results in a (quiet)
// unification failure.
panicAtUnificationDepthLimit = true
// If enableCoreTypeUnification is set, unification will consider
// the core types, if any, of non-local (unbound) type parameters.
enableCoreTypeUnification = true
)
// A unifier maintains a list of type parameters and
// corresponding types inferred for each type parameter.
// A unifier is created by calling newUnifier.
type unifier struct {
// handles maps each type parameter to its inferred type through
// an indirection *Type called (inferred type) "handle".
// Initially, each type parameter has its own, separate handle,
// with a nil (i.e., not yet inferred) type.
// After a type parameter P is unified with a type parameter Q,
// P and Q share the same handle (and thus type). This ensures
// that inferring the type for a given type parameter P will
// automatically infer the same type for all other parameters
// unified (joined) with P.
handles map[*types.TypeParam]*types.Type
depth int // recursion depth during unification
}
// newUnifier returns a new unifier initialized with the given type parameter
// and corresponding type argument lists. The type argument list may be shorter
// than the type parameter list, and it may contain nil types. Matching type
// parameters and arguments must have the same index.
func newUnifier(tparams []*types.TypeParam, targs []types.Type) *unifier {
handles := make(map[*types.TypeParam]*types.Type, len(tparams))
// Allocate all handles up-front: in a correct program, all type parameters
// must be resolved and thus eventually will get a handle.
// Also, sharing of handles caused by unified type parameters is rare and
// so it's ok to not optimize for that case (and delay handle allocation).
for i, x := range tparams {
var t types.Type
if i < len(targs) {
t = targs[i]
}
handles[x] = &t
}
return &unifier{handles, 0}
}
// unifyMode controls the behavior of the unifier.
type unifyMode uint
const (
// If unifyModeAssign is set, we are unifying types involved in an assignment:
// they may match inexactly at the top, but element types must match
// exactly.
unifyModeAssign unifyMode = 1 << iota
// If unifyModeExact is set, types unify if they are identical (or can be
// made identical with suitable arguments for type parameters).
// Otherwise, a named type and a type literal unify if their
// underlying types unify, channel directions are ignored, and
// if there is an interface, the other type must implement the
// interface.
unifyModeExact
)
// This function was copied from go/types/unify.go
//
// unify attempts to unify x and y and reports whether it succeeded.
// As a side-effect, types may be inferred for type parameters.
// The mode parameter controls how types are compared.
func (u *unifier) unify(x, y types.Type, mode unifyMode) bool {
return u.nify(x, y, mode)
}
// join unifies the given type parameters x and y.
// If both type parameters already have a type associated with them
// and they are not joined, join fails and returns false.
func (u *unifier) join(x, y *types.TypeParam) bool {
switch hx, hy := u.handles[x], u.handles[y]; {
case hx == hy:
// Both type parameters already share the same handle. Nothing to do.
case *hx != nil && *hy != nil:
// Both type parameters have (possibly different) inferred types. Cannot join.
return false
case *hx != nil:
// Only type parameter x has an inferred type. Use handle of x.
u.setHandle(y, hx)
// This case is treated like the default case.
// case *hy != nil:
// // Only type parameter y has an inferred type. Use handle of y.
// u.setHandle(x, hy)
default:
// Neither type parameter has an inferred type. Use handle of y.
u.setHandle(x, hy)
}
return true
}
// asBoundTypeParam returns x.(*types.TypeParam) if x is a type parameter recorded with u.
// Otherwise, the result is nil.
func (u *unifier) asBoundTypeParam(x types.Type) *types.TypeParam {
if x, _ := types.Unalias(x).(*types.TypeParam); x != nil {
if _, found := u.handles[x]; found {
return x
}
}
return nil
}
// setHandle sets the handle for type parameter x
// (and all its joined type parameters) to h.
func (u *unifier) setHandle(x *types.TypeParam, h *types.Type) {
hx := u.handles[x]
for y, hy := range u.handles {
if hy == hx {
u.handles[y] = h
}
}
}
// at returns the (possibly nil) type for type parameter x.
func (u *unifier) at(x *types.TypeParam) types.Type {
return *u.handles[x]
}
// set sets the type t for type parameter x;
// t must not be nil.
func (u *unifier) set(x *types.TypeParam, t types.Type) {
*u.handles[x] = t
}
// asInterface returns the underlying type of x as an interface if
// it is a non-type parameter interface. Otherwise it returns nil.
func asInterface(x types.Type) (i *types.Interface) {
if _, ok := types.Unalias(x).(*types.TypeParam); !ok {
i, _ = x.Underlying().(*types.Interface)
}
return i
}
func isTypeParam(t types.Type) bool {
_, ok := types.Unalias(t).(*types.TypeParam)
return ok
}
func asNamed(t types.Type) *types.Named {
n, _ := types.Unalias(t).(*types.Named)
return n
}
func isTypeLit(t types.Type) bool {
switch types.Unalias(t).(type) {
case *types.Named, *types.TypeParam:
return false
}
return true
}
// identicalOrigin reports whether x and y originated in the same declaration.
func identicalOrigin(x, y *types.Named) bool {
// TODO(gri) is this correct?
return x.Origin().Obj() == y.Origin().Obj()
}
func coreType(t types.Type) types.Type {
t = types.Unalias(t)
tpar, _ := t.(*types.TypeParam)
if tpar == nil {
return t.Underlying()
}
return nil
}
func sameId(obj *types.Var, pkg *types.Package, name string, foldCase bool) bool {
// If we don't care about capitalization, we also ignore packages.
if foldCase && strings.EqualFold(obj.Name(), name) {
return true
}
// spec:
// "Two identifiers are different if they are spelled differently,
// or if they appear in different packages and are not exported.
// Otherwise, they are the same."
if obj.Name() != name {
return false
}
// obj.Name == name
if obj.Exported() {
return true
}
// not exported, so packages must be the same
if obj.Pkg() != nil && pkg != nil {
return obj.Pkg() == pkg
}
return obj.Pkg().Path() == pkg.Path()
}
// nify implements the core unification algorithm which is an
// adapted version of Checker.identical. For changes to that
// code the corresponding changes should be made here.
// Must not be called directly from outside the unifier.
func (u *unifier) nify(x, y types.Type, mode unifyMode) (result bool) {
u.depth++
defer func() {
u.depth--
}()
// nothing to do if x == y
if x == y || types.Unalias(x) == types.Unalias(y) {
return true
}
// Stop gap for cases where unification fails.
if u.depth > unificationDepthLimit {
if panicAtUnificationDepthLimit {
panic("unification reached recursion depth limit")
}
return false
}
// Unification is symmetric, so we can swap the operands.
// Ensure that if we have at least one
// - defined type, make sure one is in y
// - type parameter recorded with u, make sure one is in x
if asNamed(x) != nil || u.asBoundTypeParam(y) != nil {
x, y = y, x
}
// Unification will fail if we match a defined type against a type literal.
// If we are matching types in an assignment, at the top-level, types with
// the same type structure are permitted as long as at least one of them
// is not a defined type. To accommodate for that possibility, we continue
// unification with the underlying type of a defined type if the other type
// is a type literal. This is controlled by the exact unification mode.
// We also continue if the other type is a basic type because basic types
// are valid underlying types and may appear as core types of type constraints.
// If we exclude them, inferred defined types for type parameters may not
// match against the core types of their constraints (even though they might
// correctly match against some of the types in the constraint's type set).
// Finally, if unification (incorrectly) succeeds by matching the underlying
// type of a defined type against a basic type (because we include basic types
// as type literals here), and if that leads to an incorrectly inferred type,
// we will fail at function instantiation or argument assignment time.
//
// If we have at least one defined type, there is one in y.
if ny := asNamed(y); mode&unifyModeExact == 0 && ny != nil && isTypeLit(x) {
y = ny.Underlying()
// Per the spec, a defined type cannot have an underlying type
// that is a type parameter.
// x and y may be identical now
if x == y || types.Unalias(x) == types.Unalias(y) {
return true
}
}
// Cases where at least one of x or y is a type parameter recorded with u.
// If we have at least one type parameter, there is one in x.
// If we have exactly one type parameter, because it is in x,
// isTypeLit(x) is false and y was not changed above. In other
// words, if y was a defined type, it is still a defined type
// (relevant for the logic below).
switch px, py := u.asBoundTypeParam(x), u.asBoundTypeParam(y); {
case px != nil && py != nil:
// both x and y are type parameters
if u.join(px, py) {
return true
}
// both x and y have an inferred type - they must match
return u.nify(u.at(px), u.at(py), mode)
case px != nil:
// x is a type parameter, y is not
if x := u.at(px); x != nil {
// x has an inferred type which must match y
if u.nify(x, y, mode) {
// We have a match, possibly through underlying types.
xi := asInterface(x)
yi := asInterface(y)
xn := asNamed(x) != nil
yn := asNamed(y) != nil
// If we have two interfaces, what to do depends on
// whether they are named and their method sets.
if xi != nil && yi != nil {
// Both types are interfaces.
// If both types are defined types, they must be identical
// because unification doesn't know which type has the "right" name.
if xn && yn {
return types.Identical(x, y)
}
return false
// Below is the original code for reference
// In all other cases, the method sets must match.
// The types unified so we know that corresponding methods
// match and we can simply compare the number of methods.
// TODO(gri) We may be able to relax this rule and select
// the more general interface. But if one of them is a defined
// type, it's not clear how to choose and whether we introduce
// an order dependency or not. Requiring the same method set
// is conservative.
// if len(xi.typeSet().methods) != len(yi.typeSet().methods) {
// return false
// }
} else if xi != nil || yi != nil {
// One but not both of them are interfaces.
// In this case, either x or y could be viable matches for the corresponding
// type parameter, which means choosing either introduces an order dependence.
// Therefore, we must fail unification (go.dev/issue/60933).
return false
}
// If we have inexact unification and one of x or y is a defined type, select the
// defined type. This ensures that in a series of types, all matching against the
// same type parameter, we infer a defined type if there is one, independent of
// order. Type inference or assignment may fail, which is ok.
// Selecting a defined type, if any, ensures that we don't lose the type name;
// and since we have inexact unification, a value of equally named or matching
// undefined type remains assignable (go.dev/issue/43056).
//
// Similarly, if we have inexact unification and there are no defined types but
// channel types, select a directed channel, if any. This ensures that in a series
// of unnamed types, all matching against the same type parameter, we infer the
// directed channel if there is one, independent of order.
// Selecting a directional channel, if any, ensures that a value of another
// inexactly unifying channel type remains assignable (go.dev/issue/62157).
//
// If we have multiple defined channel types, they are either identical or we
// have assignment conflicts, so we can ignore directionality in this case.
//
// If we have defined and literal channel types, a defined type wins to avoid
// order dependencies.
if mode&unifyModeExact == 0 {
switch {
case xn:
// x is a defined type: nothing to do.
case yn:
// x is not a defined type and y is a defined type: select y.
u.set(px, y)
default:
// Neither x nor y are defined types.
if yc, _ := y.Underlying().(*types.Chan); yc != nil && yc.Dir() != types.SendRecv {
// y is a directed channel type: select y.
u.set(px, y)
}
}
}
return true
}
return false
}
// otherwise, infer type from y
u.set(px, y)
return true
}
// If u.EnableInterfaceInference is set and we don't require exact unification,
// if both types are interfaces, one interface must have a subset of the
// methods of the other and corresponding method signatures must unify.
// If only one type is an interface, all its methods must be present in the
// other type and corresponding method signatures must unify.
// Unless we have exact unification, neither x nor y are interfaces now.
// Except for unbound type parameters (see below), x and y must be structurally
// equivalent to unify.
// If we get here and x or y is a type parameter, they are unbound
// (not recorded with the unifier).
// Ensure that if we have at least one type parameter, it is in x
// (the earlier swap checks for _recorded_ type parameters only).
// This ensures that the switch switches on the type parameter.
//
// TODO(gri) Factor out type parameter handling from the switch.
if isTypeParam(y) {
x, y = y, x
}
// Type elements (array, slice, etc. elements) use emode for unification.
// Element types must match exactly if the types are used in an assignment.
emode := mode
if mode&unifyModeAssign != 0 {
emode |= unifyModeExact
}
// Continue with unaliased types but don't lose original alias names, if any (go.dev/issue/67628).
xorig, x := x, types.Unalias(x)
yorig, y := y, types.Unalias(y)
switch x := x.(type) {
case *types.Basic:
// Basic types are singletons except for the rune and byte
// aliases, thus we cannot solely rely on the x == y check
// above. See also comment in TypeName.IsAlias.
if y, ok := y.(*types.Basic); ok {
return x.Kind() == y.Kind()
}
case *types.Array:
// Two array types unify if they have the same array length
// and their element types unify.
if y, ok := y.(*types.Array); ok {
// If one or both array lengths are unknown (< 0) due to some error,
// assume they are the same to avoid spurious follow-on errors.
return (x.Len() < 0 || y.Len() < 0 || x.Len() == y.Len()) && u.nify(x.Elem(), y.Elem(), emode)
}
case *types.Slice:
// Two slice types unify if their element types unify.
if y, ok := y.(*types.Slice); ok {
return u.nify(x.Elem(), y.Elem(), emode)
}
case *types.Struct:
// Two struct types unify if they have the same sequence of fields,
// and if corresponding fields have the same names, their (field) types unify,
// and they have identical tags. Two embedded fields are considered to have the same
// name. Lower-case field names from different packages are always different.
if y, ok := y.(*types.Struct); ok {
if x.NumFields() == y.NumFields() {
for i := range x.NumFields() {
f := x.Field(i)
g := y.Field(i)
if f.Embedded() != g.Embedded() ||
x.Tag(i) != y.Tag(i) ||
!sameId(f, g.Pkg(), g.Name(), false) ||
!u.nify(f.Type(), g.Type(), emode) {
return false
}
}
return true
}
}
case *types.Pointer:
// Two pointer types unify if their base types unify.
if y, ok := y.(*types.Pointer); ok {
return u.nify(x.Elem(), y.Elem(), emode)
}
case *types.Tuple:
// Two tuples types unify if they have the same number of elements
// and the types of corresponding elements unify.
if y, ok := y.(*types.Tuple); ok {
if x.Len() == y.Len() {
if x != nil {
for i := range x.Len() {
v := x.At(i)
w := y.At(i)
if !u.nify(v.Type(), w.Type(), mode) {
return false
}
}
}
return true
}
}
case *types.Signature:
// Two function types unify if they have the same number of parameters
// and result values, corresponding parameter and result types unify,
// and either both functions are variadic or neither is.
// Parameter and result names are not required to match.
// TODO(gri) handle type parameters or document why we can ignore them.
if y, ok := y.(*types.Signature); ok {
return x.Variadic() == y.Variadic() &&
u.nify(x.Params(), y.Params(), emode) &&
u.nify(x.Results(), y.Results(), emode)
}
case *types.Interface:
return false
// Below is the original code
// Two interface types unify if they have the same set of methods with
// the same names, and corresponding function types unify.
// Lower-case method names from different packages are always different.
// The order of the methods is irrelevant.
// xset := x.typeSet()
// yset := y.typeSet()
// if xset.comparable != yset.comparable {
// return false
// }
// if !xset.terms.equal(yset.terms) {
// return false
// }
// a := xset.methods
// b := yset.methods
// if len(a) == len(b) {
// // Interface types are the only types where cycles can occur
// // that are not "terminated" via named types; and such cycles
// // can only be created via method parameter types that are
// // anonymous interfaces (directly or indirectly) embedding
// // the current interface. Example:
// //
// // type T interface {
// // m() interface{T}
// // }
// //
// // If two such (differently named) interfaces are compared,
// // endless recursion occurs if the cycle is not detected.
// //
// // If x and y were compared before, they must be equal
// // (if they were not, the recursion would have stopped);
// // search the ifacePair stack for the same pair.
// //
// // This is a quadratic algorithm, but in practice these stacks
// // are extremely short (bounded by the nesting depth of interface
// // type declarations that recur via parameter types, an extremely
// // rare occurrence). An alternative implementation might use a
// // "visited" map, but that is probably less efficient overall.
// q := &ifacePair{x, y, p}
// for p != nil {
// if p.identical(q) {
// return true // same pair was compared before
// }
// p = p.prev
// }
// if debug {
// assertSortedMethods(a)
// assertSortedMethods(b)
// }
// for i, f := range a {
// g := b[i]
// if f.Id() != g.Id() || !u.nify(f.typ, g.typ, exact, q) {
// return false
// }
// }
// return true
// }
case *types.Map:
// Two map types unify if their key and value types unify.
if y, ok := y.(*types.Map); ok {
return u.nify(x.Key(), y.Key(), emode) && u.nify(x.Elem(), y.Elem(), emode)
}
case *types.Chan:
// Two channel types unify if their value types unify
// and if they have the same direction.
// The channel direction is ignored for inexact unification.
if y, ok := y.(*types.Chan); ok {
return (mode&unifyModeExact == 0 || x.Dir() == y.Dir()) && u.nify(x.Elem(), y.Elem(), emode)
}
case *types.Named:
// Two named types unify if their type names originate in the same type declaration.
// If they are instantiated, their type argument lists must unify.
if y := asNamed(y); y != nil {
// Check type arguments before origins so they unify
// even if the origins don't match; for better error
// messages (see go.dev/issue/53692).
xargs := x.TypeArgs()
yargs := y.TypeArgs()
if xargs.Len() != yargs.Len() {
return false
}
for i := range xargs.Len() {
xarg := xargs.At(i)
yarg := yargs.At(i)
if !u.nify(xarg, yarg, mode) {
return false
}
}
return identicalOrigin(x, y)
}
case *types.TypeParam:
// By definition, a valid type argument must be in the type set of
// the respective type constraint. Therefore, the type argument's
// underlying type must be in the set of underlying types of that
// constraint. If there is a single such underlying type, it's the
// constraint's core type. It must match the type argument's under-
// lying type, irrespective of whether the actual type argument,
// which may be a defined type, is actually in the type set (that
// will be determined at instantiation time).
// Thus, if we have the core type of an unbound type parameter,
// we know the structure of the possible types satisfying such
// parameters. Use that core type for further unification
// (see go.dev/issue/50755 for a test case).
if enableCoreTypeUnification {
// Because the core type is always an underlying type,
// unification will take care of matching against a
// defined or literal type automatically.
// If y is also an unbound type parameter, we will end
// up here again with x and y swapped, so we don't
// need to take care of that case separately.
if cx := coreType(x); cx != nil {
// If y is a defined type, it may not match against cx which
// is an underlying type (incl. int, string, etc.). Use assign
// mode here so that the unifier automatically takes under(y)
// if necessary.
return u.nify(cx, yorig, unifyModeAssign)
}
}
// x != y and there's nothing to do
case nil:
// avoid a crash in case of nil type
default:
panic(fmt.Sprintf("u.nify(%s, %s, %d)", xorig, yorig, mode))
}
return false
}