| // Copyright 2014 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package main |
| |
| import ( |
| "bytes" |
| "fmt" |
| exact "go/constant" |
| "go/token" |
| "go/types" |
| "io" |
| "math/big" |
| ) |
| |
| // TODO(gri) use tabwriter for alignment? |
| |
| func print(w io.Writer, pkg *types.Package, filter func(types.Object) bool) { |
| var p printer |
| p.pkg = pkg |
| p.printPackage(pkg, filter) |
| p.printGccgoExtra(pkg) |
| io.Copy(w, &p.buf) |
| } |
| |
| type printer struct { |
| pkg *types.Package |
| buf bytes.Buffer |
| indent int // current indentation level |
| last byte // last byte written |
| } |
| |
| func (p *printer) print(s string) { |
| // Write the string one byte at a time. We care about the presence of |
| // newlines for indentation which we will see even in the presence of |
| // (non-corrupted) Unicode; no need to read one rune at a time. |
| for i := 0; i < len(s); i++ { |
| ch := s[i] |
| if ch != '\n' && p.last == '\n' { |
| // Note: This could lead to a range overflow for very large |
| // indentations, but it's extremely unlikely to happen for |
| // non-pathological code. |
| p.buf.WriteString("\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t\t"[:p.indent]) |
| } |
| p.buf.WriteByte(ch) |
| p.last = ch |
| } |
| } |
| |
| func (p *printer) printf(format string, args ...interface{}) { |
| p.print(fmt.Sprintf(format, args...)) |
| } |
| |
| // methodsFor returns the named type and corresponding methods if the type |
| // denoted by obj is not an interface and has methods. Otherwise it returns |
| // the zero value. |
| func methodsFor(obj *types.TypeName) (*types.Named, []*types.Selection) { |
| named, _ := obj.Type().(*types.Named) |
| if named == nil { |
| // A type name's type can also be the |
| // exported basic type unsafe.Pointer. |
| return nil, nil |
| } |
| if _, ok := named.Underlying().(*types.Interface); ok { |
| // ignore interfaces |
| return nil, nil |
| } |
| methods := combinedMethodSet(named) |
| if len(methods) == 0 { |
| return nil, nil |
| } |
| return named, methods |
| } |
| |
| func (p *printer) printPackage(pkg *types.Package, filter func(types.Object) bool) { |
| // collect objects by kind |
| var ( |
| consts []*types.Const |
| typem []*types.Named // non-interface types with methods |
| typez []*types.TypeName // interfaces or types without methods |
| vars []*types.Var |
| funcs []*types.Func |
| builtins []*types.Builtin |
| methods = make(map[*types.Named][]*types.Selection) // method sets for named types |
| ) |
| scope := pkg.Scope() |
| for _, name := range scope.Names() { |
| obj := scope.Lookup(name) |
| if obj.Exported() { |
| // collect top-level exported and possibly filtered objects |
| if filter == nil || filter(obj) { |
| switch obj := obj.(type) { |
| case *types.Const: |
| consts = append(consts, obj) |
| case *types.TypeName: |
| // group into types with methods and types without |
| if named, m := methodsFor(obj); named != nil { |
| typem = append(typem, named) |
| methods[named] = m |
| } else { |
| typez = append(typez, obj) |
| } |
| case *types.Var: |
| vars = append(vars, obj) |
| case *types.Func: |
| funcs = append(funcs, obj) |
| case *types.Builtin: |
| // for unsafe.Sizeof, etc. |
| builtins = append(builtins, obj) |
| } |
| } |
| } else if filter == nil { |
| // no filtering: collect top-level unexported types with methods |
| if obj, _ := obj.(*types.TypeName); obj != nil { |
| // see case *types.TypeName above |
| if named, m := methodsFor(obj); named != nil { |
| typem = append(typem, named) |
| methods[named] = m |
| } |
| } |
| } |
| } |
| |
| p.printf("package %s // %q\n", pkg.Name(), pkg.Path()) |
| |
| p.printDecl("const", len(consts), func() { |
| for _, obj := range consts { |
| p.printObj(obj) |
| p.print("\n") |
| } |
| }) |
| |
| p.printDecl("var", len(vars), func() { |
| for _, obj := range vars { |
| p.printObj(obj) |
| p.print("\n") |
| } |
| }) |
| |
| p.printDecl("type", len(typez), func() { |
| for _, obj := range typez { |
| p.printf("%s ", obj.Name()) |
| typ := obj.Type() |
| if isAlias(obj) { |
| p.print("= ") |
| p.writeType(p.pkg, typ) |
| } else { |
| p.writeType(p.pkg, typ.Underlying()) |
| } |
| p.print("\n") |
| } |
| }) |
| |
| // non-interface types with methods |
| for _, named := range typem { |
| first := true |
| if obj := named.Obj(); obj.Exported() { |
| if first { |
| p.print("\n") |
| first = false |
| } |
| p.printf("type %s ", obj.Name()) |
| p.writeType(p.pkg, named.Underlying()) |
| p.print("\n") |
| } |
| for _, m := range methods[named] { |
| if obj := m.Obj(); obj.Exported() { |
| if first { |
| p.print("\n") |
| first = false |
| } |
| p.printFunc(m.Recv(), obj.(*types.Func)) |
| p.print("\n") |
| } |
| } |
| } |
| |
| if len(funcs) > 0 { |
| p.print("\n") |
| for _, obj := range funcs { |
| p.printFunc(nil, obj) |
| p.print("\n") |
| } |
| } |
| |
| // TODO(gri) better handling of builtins (package unsafe only) |
| if len(builtins) > 0 { |
| p.print("\n") |
| for _, obj := range builtins { |
| p.printf("func %s() // builtin\n", obj.Name()) |
| } |
| } |
| |
| p.print("\n") |
| } |
| |
| func (p *printer) printDecl(keyword string, n int, printGroup func()) { |
| switch n { |
| case 0: |
| // nothing to do |
| case 1: |
| p.printf("\n%s ", keyword) |
| printGroup() |
| default: |
| p.printf("\n%s (\n", keyword) |
| p.indent++ |
| printGroup() |
| p.indent-- |
| p.print(")\n") |
| } |
| } |
| |
| // absInt returns the absolute value of v as a *big.Int. |
| // v must be a numeric value. |
| func absInt(v exact.Value) *big.Int { |
| // compute big-endian representation of v |
| b := exact.Bytes(v) // little-endian |
| for i, j := 0, len(b)-1; i < j; i, j = i+1, j-1 { |
| b[i], b[j] = b[j], b[i] |
| } |
| return new(big.Int).SetBytes(b) |
| } |
| |
| var ( |
| one = big.NewRat(1, 1) |
| ten = big.NewRat(10, 1) |
| ) |
| |
| // floatString returns the string representation for a |
| // numeric value v in normalized floating-point format. |
| func floatString(v exact.Value) string { |
| if exact.Sign(v) == 0 { |
| return "0.0" |
| } |
| // x != 0 |
| |
| // convert |v| into a big.Rat x |
| x := new(big.Rat).SetFrac(absInt(exact.Num(v)), absInt(exact.Denom(v))) |
| |
| // normalize x and determine exponent e |
| // (This is not very efficient, but also not speed-critical.) |
| var e int |
| for x.Cmp(ten) >= 0 { |
| x.Quo(x, ten) |
| e++ |
| } |
| for x.Cmp(one) < 0 { |
| x.Mul(x, ten) |
| e-- |
| } |
| |
| // TODO(gri) Values such as 1/2 are easier to read in form 0.5 |
| // rather than 5.0e-1. Similarly, 1.0e1 is easier to read as |
| // 10.0. Fine-tune best exponent range for readability. |
| |
| s := x.FloatString(100) // good-enough precision |
| |
| // trim trailing 0's |
| i := len(s) |
| for i > 0 && s[i-1] == '0' { |
| i-- |
| } |
| s = s[:i] |
| |
| // add a 0 if the number ends in decimal point |
| if len(s) > 0 && s[len(s)-1] == '.' { |
| s += "0" |
| } |
| |
| // add exponent and sign |
| if e != 0 { |
| s += fmt.Sprintf("e%+d", e) |
| } |
| if exact.Sign(v) < 0 { |
| s = "-" + s |
| } |
| |
| // TODO(gri) If v is a "small" fraction (i.e., numerator and denominator |
| // are just a small number of decimal digits), add the exact fraction as |
| // a comment. For instance: 3.3333...e-1 /* = 1/3 */ |
| |
| return s |
| } |
| |
| // valString returns the string representation for the value v. |
| // Setting floatFmt forces an integer value to be formatted in |
| // normalized floating-point format. |
| // TODO(gri) Move this code into package exact. |
| func valString(v exact.Value, floatFmt bool) string { |
| switch v.Kind() { |
| case exact.Int: |
| if floatFmt { |
| return floatString(v) |
| } |
| case exact.Float: |
| return floatString(v) |
| case exact.Complex: |
| re := exact.Real(v) |
| im := exact.Imag(v) |
| var s string |
| if exact.Sign(re) != 0 { |
| s = floatString(re) |
| if exact.Sign(im) >= 0 { |
| s += " + " |
| } else { |
| s += " - " |
| im = exact.UnaryOp(token.SUB, im, 0) // negate im |
| } |
| } |
| // im != 0, otherwise v would be exact.Int or exact.Float |
| return s + floatString(im) + "i" |
| } |
| return v.String() |
| } |
| |
| func (p *printer) printObj(obj types.Object) { |
| p.print(obj.Name()) |
| |
| typ, basic := obj.Type().Underlying().(*types.Basic) |
| if basic && typ.Info()&types.IsUntyped != 0 { |
| // don't write untyped types |
| } else { |
| p.print(" ") |
| p.writeType(p.pkg, obj.Type()) |
| } |
| |
| if obj, ok := obj.(*types.Const); ok { |
| floatFmt := basic && typ.Info()&(types.IsFloat|types.IsComplex) != 0 |
| p.print(" = ") |
| p.print(valString(obj.Val(), floatFmt)) |
| } |
| } |
| |
| func (p *printer) printFunc(recvType types.Type, obj *types.Func) { |
| p.print("func ") |
| sig := obj.Type().(*types.Signature) |
| if recvType != nil { |
| p.print("(") |
| p.writeType(p.pkg, recvType) |
| p.print(") ") |
| } |
| p.print(obj.Name()) |
| p.writeSignature(p.pkg, sig) |
| } |
| |
| // combinedMethodSet returns the method set for a named type T |
| // merged with all the methods of *T that have different names than |
| // the methods of T. |
| // |
| // combinedMethodSet is analogous to types/typeutil.IntuitiveMethodSet |
| // but doesn't require a MethodSetCache. |
| // TODO(gri) If this functionality doesn't change over time, consider |
| // just calling IntuitiveMethodSet eventually. |
| func combinedMethodSet(T *types.Named) []*types.Selection { |
| // method set for T |
| mset := types.NewMethodSet(T) |
| var res []*types.Selection |
| for i, n := 0, mset.Len(); i < n; i++ { |
| res = append(res, mset.At(i)) |
| } |
| |
| // add all *T methods with names different from T methods |
| pmset := types.NewMethodSet(types.NewPointer(T)) |
| for i, n := 0, pmset.Len(); i < n; i++ { |
| pm := pmset.At(i) |
| if obj := pm.Obj(); mset.Lookup(obj.Pkg(), obj.Name()) == nil { |
| res = append(res, pm) |
| } |
| } |
| |
| return res |
| } |