| // Copyright 2021 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package vta |
| |
| import ( |
| "go/token" |
| "go/types" |
| "reflect" |
| "sort" |
| "strings" |
| "testing" |
| "unsafe" |
| |
| "golang.org/x/tools/go/ssa" |
| |
| "golang.org/x/tools/go/types/typeutil" |
| ) |
| |
| // val is a test data structure for creating ssa.Value |
| // outside of the ssa package. Needed for manual creation |
| // of vta graph nodes in testing. |
| type val struct { |
| name string |
| typ types.Type |
| } |
| |
| func (v val) String() string { |
| return v.name |
| } |
| |
| func (v val) Name() string { |
| return v.name |
| } |
| |
| func (v val) Type() types.Type { |
| return v.typ |
| } |
| |
| func (v val) Parent() *ssa.Function { |
| return nil |
| } |
| |
| func (v val) Referrers() *[]ssa.Instruction { |
| return nil |
| } |
| |
| func (v val) Pos() token.Pos { |
| return token.NoPos |
| } |
| |
| // newLocal creates a new local node with ssa.Value |
| // named `name` and type `t`. |
| func newLocal(name string, t types.Type) local { |
| return local{val: val{name: name, typ: t}} |
| } |
| |
| // newNamedType creates a bogus type named `name`. |
| func newNamedType(name string) *types.Named { |
| return types.NewNamed(types.NewTypeName(token.NoPos, nil, name, nil), nil, nil) |
| } |
| |
| // sccString is a utility for stringifying `nodeToScc`. Every |
| // scc is represented as a string where string representation |
| // of scc nodes are sorted and concatenated using `;`. |
| func sccString(nodeToScc map[node]int) []string { |
| sccs := make(map[int][]node) |
| for n, id := range nodeToScc { |
| sccs[id] = append(sccs[id], n) |
| } |
| |
| var sccsStr []string |
| for _, scc := range sccs { |
| var nodesStr []string |
| for _, node := range scc { |
| nodesStr = append(nodesStr, node.String()) |
| } |
| sort.Strings(nodesStr) |
| sccsStr = append(sccsStr, strings.Join(nodesStr, ";")) |
| } |
| return sccsStr |
| } |
| |
| // nodeToTypeString is testing utility for stringifying results |
| // of type propagation: propTypeMap `pMap` is converted to a map |
| // from node strings to a string consisting of type stringifications |
| // concatenated with `;`. We stringify reachable type information |
| // that also has an accompanying function by the function name. |
| func nodeToTypeString(pMap propTypeMap) map[string]string { |
| // Convert propType to a string. If propType has |
| // an attached function, return the function name. |
| // Otherwise, return the type name. |
| propTypeString := func(p propType) string { |
| if p.f != nil { |
| return p.f.Name() |
| } |
| return p.typ.String() |
| } |
| |
| nodeToTypeStr := make(map[string]string) |
| for node := range pMap.nodeToScc { |
| var propStrings []string |
| for _, prop := range pMap.propTypes(node) { |
| propStrings = append(propStrings, propTypeString(prop)) |
| } |
| sort.Strings(propStrings) |
| nodeToTypeStr[node.String()] = strings.Join(propStrings, ";") |
| } |
| |
| return nodeToTypeStr |
| } |
| |
| // sccEqual compares two sets of SCC stringifications. |
| func sccEqual(sccs1 []string, sccs2 []string) bool { |
| if len(sccs1) != len(sccs2) { |
| return false |
| } |
| sort.Strings(sccs1) |
| sort.Strings(sccs2) |
| return reflect.DeepEqual(sccs1, sccs2) |
| } |
| |
| // isRevTopSorted checks if sccs of `g` are sorted in reverse |
| // topological order: |
| // for every edge x -> y in g, nodeToScc[x] > nodeToScc[y] |
| func isRevTopSorted(g vtaGraph, nodeToScc map[node]int) bool { |
| for n, succs := range g { |
| for s := range succs { |
| if nodeToScc[n] < nodeToScc[s] { |
| return false |
| } |
| } |
| } |
| return true |
| } |
| |
| // setName sets name of the function `f` to `name` |
| // using reflection since setting the name otherwise |
| // is only possible within the ssa package. |
| func setName(f *ssa.Function, name string) { |
| fi := reflect.ValueOf(f).Elem().FieldByName("name") |
| fi = reflect.NewAt(fi.Type(), unsafe.Pointer(fi.UnsafeAddr())).Elem() |
| fi.SetString(name) |
| } |
| |
| // testSuite produces a named set of graphs as follows, where |
| // parentheses contain node types and F nodes stand for function |
| // nodes whose content is function named F: |
| // |
| // no-cycles: |
| // t0 (A) -> t1 (B) -> t2 (C) |
| // |
| // trivial-cycle: |
| // <-------- <-------- |
| // | | | | |
| // t0 (A) -> t1 (B) -> |
| // |
| // circle-cycle: |
| // t0 (A) -> t1 (A) -> t2 (B) |
| // | | |
| // <-------------------- |
| // |
| // fully-connected: |
| // t0 (A) <-> t1 (B) |
| // \ / |
| // t2(C) |
| // |
| // subsumed-scc: |
| // t0 (A) -> t1 (B) -> t2(B) -> t3 (A) |
| // | | | | |
| // | <--------- | |
| // <----------------------------- |
| // |
| // more-realistic: |
| // <-------- |
| // | | |
| // t0 (A) --> |
| // ----------> |
| // | | |
| // t1 (A) -> t2 (B) -> F1 -> F2 -> F3 -> F4 |
| // | | | | |
| // <------- <------------ |
| func testSuite() map[string]vtaGraph { |
| a := newNamedType("A") |
| b := newNamedType("B") |
| c := newNamedType("C") |
| sig := types.NewSignature(nil, types.NewTuple(), types.NewTuple(), false) |
| |
| f1 := &ssa.Function{Signature: sig} |
| setName(f1, "F1") |
| f2 := &ssa.Function{Signature: sig} |
| setName(f2, "F2") |
| f3 := &ssa.Function{Signature: sig} |
| setName(f3, "F3") |
| f4 := &ssa.Function{Signature: sig} |
| setName(f4, "F4") |
| |
| graphs := make(map[string]vtaGraph) |
| graphs["no-cycles"] = map[node]map[node]bool{ |
| newLocal("t0", a): {newLocal("t1", b): true}, |
| newLocal("t1", b): {newLocal("t2", c): true}, |
| } |
| |
| graphs["trivial-cycle"] = map[node]map[node]bool{ |
| newLocal("t0", a): {newLocal("t0", a): true}, |
| newLocal("t1", b): {newLocal("t1", b): true}, |
| } |
| |
| graphs["circle-cycle"] = map[node]map[node]bool{ |
| newLocal("t0", a): {newLocal("t1", a): true}, |
| newLocal("t1", a): {newLocal("t2", b): true}, |
| newLocal("t2", b): {newLocal("t0", a): true}, |
| } |
| |
| graphs["fully-connected"] = map[node]map[node]bool{ |
| newLocal("t0", a): {newLocal("t1", b): true, newLocal("t2", c): true}, |
| newLocal("t1", b): {newLocal("t0", a): true, newLocal("t2", c): true}, |
| newLocal("t2", c): {newLocal("t0", a): true, newLocal("t1", b): true}, |
| } |
| |
| graphs["subsumed-scc"] = map[node]map[node]bool{ |
| newLocal("t0", a): {newLocal("t1", b): true}, |
| newLocal("t1", b): {newLocal("t2", b): true}, |
| newLocal("t2", b): {newLocal("t1", b): true, newLocal("t3", a): true}, |
| newLocal("t3", a): {newLocal("t0", a): true}, |
| } |
| |
| graphs["more-realistic"] = map[node]map[node]bool{ |
| newLocal("t0", a): {newLocal("t0", a): true}, |
| newLocal("t1", a): {newLocal("t2", b): true}, |
| newLocal("t2", b): {newLocal("t1", a): true, function{f1}: true}, |
| function{f1}: {function{f2}: true, function{f3}: true}, |
| function{f2}: {function{f3}: true}, |
| function{f3}: {function{f1}: true, function{f4}: true}, |
| } |
| |
| return graphs |
| } |
| |
| func TestSCC(t *testing.T) { |
| suite := testSuite() |
| for _, test := range []struct { |
| name string |
| graph vtaGraph |
| want []string |
| }{ |
| // No cycles results in three separate SCCs: {t0} {t1} {t2} |
| {name: "no-cycles", graph: suite["no-cycles"], want: []string{"Local(t0)", "Local(t1)", "Local(t2)"}}, |
| // The two trivial self-loop cycles results in: {t0} {t1} |
| {name: "trivial-cycle", graph: suite["trivial-cycle"], want: []string{"Local(t0)", "Local(t1)"}}, |
| // The circle cycle produce a single SCC: {t0, t1, t2} |
| {name: "circle-cycle", graph: suite["circle-cycle"], want: []string{"Local(t0);Local(t1);Local(t2)"}}, |
| // Similar holds for fully connected SCC: {t0, t1, t2} |
| {name: "fully-connected", graph: suite["fully-connected"], want: []string{"Local(t0);Local(t1);Local(t2)"}}, |
| // Subsumed SCC also has a single SCC: {t0, t1, t2, t3} |
| {name: "subsumed-scc", graph: suite["subsumed-scc"], want: []string{"Local(t0);Local(t1);Local(t2);Local(t3)"}}, |
| // The more realistic example has the following SCCs: {t0} {t1, t2} {F1, F2, F3} {F4} |
| {name: "more-realistic", graph: suite["more-realistic"], want: []string{"Local(t0)", "Local(t1);Local(t2)", "Function(F1);Function(F2);Function(F3)", "Function(F4)"}}, |
| } { |
| sccs, _ := scc(test.graph) |
| if got := sccString(sccs); !sccEqual(test.want, got) { |
| t.Errorf("want %v for graph %v; got %v", test.want, test.name, got) |
| } |
| if !isRevTopSorted(test.graph, sccs) { |
| t.Errorf("%v not topologically sorted", test.name) |
| } |
| } |
| } |
| |
| func TestPropagation(t *testing.T) { |
| suite := testSuite() |
| var canon typeutil.Map |
| for _, test := range []struct { |
| name string |
| graph vtaGraph |
| want map[string]string |
| }{ |
| // No cycles graph pushes type information forward. |
| {name: "no-cycles", graph: suite["no-cycles"], |
| want: map[string]string{ |
| "Local(t0)": "A", |
| "Local(t1)": "A;B", |
| "Local(t2)": "A;B;C", |
| }, |
| }, |
| // No interesting type flow in trivial cycle graph. |
| {name: "trivial-cycle", graph: suite["trivial-cycle"], |
| want: map[string]string{ |
| "Local(t0)": "A", |
| "Local(t1)": "B", |
| }, |
| }, |
| // Circle cycle makes type A and B get propagated everywhere. |
| {name: "circle-cycle", graph: suite["circle-cycle"], |
| want: map[string]string{ |
| "Local(t0)": "A;B", |
| "Local(t1)": "A;B", |
| "Local(t2)": "A;B", |
| }, |
| }, |
| // Similarly for fully connected graph. |
| {name: "fully-connected", graph: suite["fully-connected"], |
| want: map[string]string{ |
| "Local(t0)": "A;B;C", |
| "Local(t1)": "A;B;C", |
| "Local(t2)": "A;B;C", |
| }, |
| }, |
| // The outer loop of subsumed-scc pushes A an B through the graph. |
| {name: "subsumed-scc", graph: suite["subsumed-scc"], |
| want: map[string]string{ |
| "Local(t0)": "A;B", |
| "Local(t1)": "A;B", |
| "Local(t2)": "A;B", |
| "Local(t3)": "A;B", |
| }, |
| }, |
| // More realistic graph has a more fine grained flow. |
| {name: "more-realistic", graph: suite["more-realistic"], |
| want: map[string]string{ |
| "Local(t0)": "A", |
| "Local(t1)": "A;B", |
| "Local(t2)": "A;B", |
| "Function(F1)": "A;B;F1;F2;F3", |
| "Function(F2)": "A;B;F1;F2;F3", |
| "Function(F3)": "A;B;F1;F2;F3", |
| "Function(F4)": "A;B;F1;F2;F3;F4", |
| }, |
| }, |
| } { |
| if got := nodeToTypeString(propagate(test.graph, &canon)); !reflect.DeepEqual(got, test.want) { |
| t.Errorf("want %v for graph %v; got %v", test.want, test.name, got) |
| } |
| } |
| } |