blob: 683fddddcfdcca3ebf036ea415e24378a61f1b52 [file] [log] [blame]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pointer
import (
"bytes"
"fmt"
"go/types"
"log"
"os"
"os/exec"
"runtime"
"time"
"golang.org/x/tools/container/intsets"
)
// CanPoint reports whether the type T is pointerlike,
// for the purposes of this analysis.
func CanPoint(T types.Type) bool {
switch T := T.(type) {
case *types.Named:
if obj := T.Obj(); obj.Name() == "Value" && obj.Pkg().Path() == "reflect" {
return true // treat reflect.Value like interface{}
}
return CanPoint(T.Underlying())
case *types.Pointer, *types.Interface, *types.Map, *types.Chan, *types.Signature, *types.Slice:
return true
}
return false // array struct tuple builtin basic
}
// CanHaveDynamicTypes reports whether the type T can "hold" dynamic types,
// i.e. is an interface (incl. reflect.Type) or a reflect.Value.
//
func CanHaveDynamicTypes(T types.Type) bool {
switch T := T.(type) {
case *types.Named:
if obj := T.Obj(); obj.Name() == "Value" && obj.Pkg().Path() == "reflect" {
return true // reflect.Value
}
return CanHaveDynamicTypes(T.Underlying())
case *types.Interface:
return true
}
return false
}
func isInterface(T types.Type) bool { return types.IsInterface(T) }
// mustDeref returns the element type of its argument, which must be a
// pointer; panic ensues otherwise.
func mustDeref(typ types.Type) types.Type {
return typ.Underlying().(*types.Pointer).Elem()
}
// deref returns a pointer's element type; otherwise it returns typ.
func deref(typ types.Type) types.Type {
if p, ok := typ.Underlying().(*types.Pointer); ok {
return p.Elem()
}
return typ
}
// A fieldInfo describes one subelement (node) of the flattening-out
// of a type T: the subelement's type and its path from the root of T.
//
// For example, for this type:
// type line struct{ points []struct{x, y int} }
// flatten() of the inner struct yields the following []fieldInfo:
// struct{ x, y int } ""
// int ".x"
// int ".y"
// and flatten(line) yields:
// struct{ points []struct{x, y int} } ""
// struct{ x, y int } ".points[*]"
// int ".points[*].x
// int ".points[*].y"
//
type fieldInfo struct {
typ types.Type
// op and tail describe the path to the element (e.g. ".a#2.b[*].c").
op interface{} // *Array: true; *Tuple: int; *Struct: *types.Var; *Named: nil
tail *fieldInfo
}
// path returns a user-friendly string describing the subelement path.
//
func (fi *fieldInfo) path() string {
var buf bytes.Buffer
for p := fi; p != nil; p = p.tail {
switch op := p.op.(type) {
case bool:
fmt.Fprintf(&buf, "[*]")
case int:
fmt.Fprintf(&buf, "#%d", op)
case *types.Var:
fmt.Fprintf(&buf, ".%s", op.Name())
}
}
return buf.String()
}
// flatten returns a list of directly contained fields in the preorder
// traversal of the type tree of t. The resulting elements are all
// scalars (basic types or pointerlike types), except for struct/array
// "identity" nodes, whose type is that of the aggregate.
//
// reflect.Value is considered pointerlike, similar to interface{}.
//
// Callers must not mutate the result.
//
func (a *analysis) flatten(t types.Type) []*fieldInfo {
fl, ok := a.flattenMemo[t]
if !ok {
switch t := t.(type) {
case *types.Named:
u := t.Underlying()
if isInterface(u) {
// Debuggability hack: don't remove
// the named type from interfaces as
// they're very verbose.
fl = append(fl, &fieldInfo{typ: t})
} else {
fl = a.flatten(u)
}
case *types.Basic,
*types.Signature,
*types.Chan,
*types.Map,
*types.Interface,
*types.Slice,
*types.Pointer:
fl = append(fl, &fieldInfo{typ: t})
case *types.Array:
fl = append(fl, &fieldInfo{typ: t}) // identity node
for _, fi := range a.flatten(t.Elem()) {
fl = append(fl, &fieldInfo{typ: fi.typ, op: true, tail: fi})
}
case *types.Struct:
fl = append(fl, &fieldInfo{typ: t}) // identity node
for i, n := 0, t.NumFields(); i < n; i++ {
f := t.Field(i)
for _, fi := range a.flatten(f.Type()) {
fl = append(fl, &fieldInfo{typ: fi.typ, op: f, tail: fi})
}
}
case *types.Tuple:
// No identity node: tuples are never address-taken.
n := t.Len()
if n == 1 {
// Don't add a fieldInfo link for singletons,
// e.g. in params/results.
fl = append(fl, a.flatten(t.At(0).Type())...)
} else {
for i := 0; i < n; i++ {
f := t.At(i)
for _, fi := range a.flatten(f.Type()) {
fl = append(fl, &fieldInfo{typ: fi.typ, op: i, tail: fi})
}
}
}
default:
panic(fmt.Sprintf("cannot flatten unsupported type %T", t))
}
a.flattenMemo[t] = fl
}
return fl
}
// sizeof returns the number of pointerlike abstractions (nodes) in the type t.
func (a *analysis) sizeof(t types.Type) uint32 {
return uint32(len(a.flatten(t)))
}
// shouldTrack reports whether object type T contains (recursively)
// any fields whose addresses should be tracked.
func (a *analysis) shouldTrack(T types.Type) bool {
if a.track == trackAll {
return true // fast path
}
track, ok := a.trackTypes[T]
if !ok {
a.trackTypes[T] = true // break cycles conservatively
// NB: reflect.Value, reflect.Type are pre-populated to true.
for _, fi := range a.flatten(T) {
switch ft := fi.typ.Underlying().(type) {
case *types.Interface, *types.Signature:
track = true // needed for callgraph
case *types.Basic:
// no-op
case *types.Chan:
track = a.track&trackChan != 0 || a.shouldTrack(ft.Elem())
case *types.Map:
track = a.track&trackMap != 0 || a.shouldTrack(ft.Key()) || a.shouldTrack(ft.Elem())
case *types.Slice:
track = a.track&trackSlice != 0 || a.shouldTrack(ft.Elem())
case *types.Pointer:
track = a.track&trackPtr != 0 || a.shouldTrack(ft.Elem())
case *types.Array, *types.Struct:
// No need to look at field types since they will follow (flattened).
default:
// Includes *types.Tuple, which are never address-taken.
panic(ft)
}
if track {
break
}
}
a.trackTypes[T] = track
if !track && a.log != nil {
fmt.Fprintf(a.log, "\ttype not tracked: %s\n", T)
}
}
return track
}
// offsetOf returns the (abstract) offset of field index within struct
// or tuple typ.
func (a *analysis) offsetOf(typ types.Type, index int) uint32 {
var offset uint32
switch t := typ.Underlying().(type) {
case *types.Tuple:
for i := 0; i < index; i++ {
offset += a.sizeof(t.At(i).Type())
}
case *types.Struct:
offset++ // the node for the struct itself
for i := 0; i < index; i++ {
offset += a.sizeof(t.Field(i).Type())
}
default:
panic(fmt.Sprintf("offsetOf(%s : %T)", typ, typ))
}
return offset
}
// sliceToArray returns the type representing the arrays to which
// slice type slice points.
func sliceToArray(slice types.Type) *types.Array {
return types.NewArray(slice.Underlying().(*types.Slice).Elem(), 1)
}
// Node set -------------------------------------------------------------------
type nodeset struct {
intsets.Sparse
}
func (ns *nodeset) String() string {
var buf bytes.Buffer
buf.WriteRune('{')
var space [50]int
for i, n := range ns.AppendTo(space[:0]) {
if i > 0 {
buf.WriteString(", ")
}
buf.WriteRune('n')
fmt.Fprintf(&buf, "%d", n)
}
buf.WriteRune('}')
return buf.String()
}
func (ns *nodeset) add(n nodeid) bool {
return ns.Sparse.Insert(int(n))
}
func (x *nodeset) addAll(y *nodeset) bool {
return x.UnionWith(&y.Sparse)
}
// Profiling & debugging -------------------------------------------------------
var timers = make(map[string]time.Time)
func start(name string) {
if debugTimers {
timers[name] = time.Now()
log.Printf("%s...\n", name)
}
}
func stop(name string) {
if debugTimers {
log.Printf("%s took %s\n", name, time.Since(timers[name]))
}
}
// diff runs the command "diff a b" and reports its success.
func diff(a, b string) bool {
var cmd *exec.Cmd
switch runtime.GOOS {
case "plan9":
cmd = exec.Command("/bin/diff", "-c", a, b)
default:
cmd = exec.Command("/usr/bin/diff", "-u", a, b)
}
cmd.Stdout = os.Stderr
cmd.Stderr = os.Stderr
return cmd.Run() == nil
}