blob: ea5b6afb433ee95df59af118fdaf8f36d2475061 [file] [log] [blame]
// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package ssa
// This file defines utilities for population of method sets and
// synthesis of wrapper methods.
//
// Wrappers include:
// - indirection/promotion wrappers for methods of embedded fields.
// - interface method wrappers for expressions I.f.
// - bound method wrappers, for uncalled obj.Method closures.
// TODO(adonovan): split and rename to {methodset,wrappers}.go.
import (
"fmt"
"go/token"
"code.google.com/p/go.tools/go/types"
)
// Method returns the Function implementing method meth, building
// wrapper methods on demand.
//
// Thread-safe.
//
// EXCLUSIVE_LOCKS_ACQUIRED(prog.methodsMu)
//
func (prog *Program) Method(meth *types.Selection) *Function {
if meth == nil {
panic("Method(nil)")
}
T := meth.Recv()
if prog.mode&LogSource != 0 {
defer logStack("Method %s %v", T, meth)()
}
prog.methodsMu.Lock()
defer prog.methodsMu.Unlock()
return prog.addMethod(prog.createMethodSet(T), meth)
}
// LookupMethod returns the implementation of the method of type T
// identified by (pkg, name). It panics if there is no such method.
//
func (prog *Program) LookupMethod(T types.Type, pkg *types.Package, name string) *Function {
sel := prog.MethodSets.MethodSet(T).Lookup(pkg, name)
if sel == nil {
panic(fmt.Sprintf("%s has no method %s", T, types.Id(pkg, name)))
}
return prog.Method(sel)
}
// makeMethods ensures that all wrappers in the complete method set of
// T are generated. It is equivalent to calling prog.Method() on all
// members of T.methodSet(), but acquires fewer locks.
//
// It reports whether the type's method set is non-empty.
//
// Thread-safe.
//
// EXCLUSIVE_LOCKS_ACQUIRED(prog.methodsMu)
//
func (prog *Program) makeMethods(T types.Type) bool {
tmset := prog.MethodSets.MethodSet(T)
n := tmset.Len()
if n == 0 {
return false // empty (common case)
}
if prog.mode&LogSource != 0 {
defer logStack("makeMethods %s", T)()
}
prog.methodsMu.Lock()
defer prog.methodsMu.Unlock()
mset := prog.createMethodSet(T)
if !mset.complete {
mset.complete = true
for i := 0; i < n; i++ {
prog.addMethod(mset, tmset.At(i))
}
}
return true
}
type methodSet struct {
mapping map[string]*Function // populated lazily
complete bool // mapping contains all methods
}
// EXCLUSIVE_LOCKS_REQUIRED(prog.methodsMu)
func (prog *Program) createMethodSet(T types.Type) *methodSet {
mset, ok := prog.methodSets.At(T).(*methodSet)
if !ok {
mset = &methodSet{mapping: make(map[string]*Function)}
prog.methodSets.Set(T, mset)
}
return mset
}
// EXCLUSIVE_LOCKS_REQUIRED(prog.methodsMu)
func (prog *Program) addMethod(mset *methodSet, meth *types.Selection) *Function {
id := meth.Obj().Id()
fn := mset.mapping[id]
if fn == nil {
fn = findMethod(prog, meth)
mset.mapping[id] = fn
}
return fn
}
// TypesWithMethodSets returns a new unordered slice containing all
// types in the program for which a complete (non-empty) method set is
// required at run-time.
//
// It is the union of pkg.TypesWithMethodSets() for all pkg in
// prog.AllPackages().
//
// Thread-safe.
//
// EXCLUSIVE_LOCKS_ACQUIRED(prog.methodsMu)
//
func (prog *Program) TypesWithMethodSets() []types.Type {
prog.methodsMu.Lock()
defer prog.methodsMu.Unlock()
var res []types.Type
prog.methodSets.Iterate(func(T types.Type, v interface{}) {
if v.(*methodSet).complete {
res = append(res, T)
}
})
return res
}
// TypesWithMethodSets returns an unordered slice containing the
// set of all types referenced within package pkg and not belonging to
// some other package, for which a complete (non-empty) method set is
// required at run-time.
//
// A type belongs to a package if it is a named type or a pointer to a
// named type, and the name was defined in that package. All other
// types belong to no package.
//
// A type may appear in the TypesWithMethodSets() set of multiple
// distinct packages if that type belongs to no package. Typical
// compilers emit method sets for such types multiple times (using
// weak symbols) into each package that references them, with the
// linker performing duplicate elimination.
//
// This set includes the types of all operands of some MakeInterface
// instruction, the types of all exported members of some package, and
// all types that are subcomponents, since even types that aren't used
// directly may be derived via reflection.
//
// Callers must not mutate the result.
//
func (pkg *Package) TypesWithMethodSets() []types.Type {
return pkg.methodSets
}
// ------------------------------------------------------------------------
// declaredFunc returns the concrete function/method denoted by obj.
// Panic ensues if there is none.
//
func (prog *Program) declaredFunc(obj *types.Func) *Function {
if v := prog.packageLevelValue(obj); v != nil {
return v.(*Function)
}
panic("no concrete method: " + obj.String())
}
// recvType returns the receiver type of method obj.
func recvType(obj *types.Func) types.Type {
return obj.Type().(*types.Signature).Recv().Type()
}
// findMethod returns the concrete Function for the method meth,
// synthesizing wrappers as needed.
//
// EXCLUSIVE_LOCKS_REQUIRED(prog.methodsMu)
//
func findMethod(prog *Program, meth *types.Selection) *Function {
needsPromotion := len(meth.Index()) > 1
obj := meth.Obj().(*types.Func)
needsIndirection := !isPointer(recvType(obj)) && isPointer(meth.Recv())
if needsPromotion || needsIndirection {
return makeWrapper(prog, meth.Recv(), meth)
}
if _, ok := meth.Recv().Underlying().(*types.Interface); ok {
return interfaceMethodWrapper(prog, meth.Recv(), obj)
}
return prog.declaredFunc(obj)
}
// makeWrapper returns a synthetic wrapper Function that optionally
// performs receiver indirection, implicit field selections and then a
// tailcall of a "promoted" method. For example, given these decls:
//
// type A struct {B}
// type B struct {*C}
// type C ...
// func (*C) f()
//
// then makeWrapper(typ=A, obj={Func:(*C).f, Indices=[B,C,f]})
// synthesize this wrapper method:
//
// func (a A) f() { return a.B.C->f() }
//
// prog is the program to which the synthesized method will belong.
// typ is the receiver type of the wrapper method. obj is the
// type-checker's object for the promoted method; its Func may be a
// concrete or an interface method.
//
// EXCLUSIVE_LOCKS_REQUIRED(prog.methodsMu)
//
func makeWrapper(prog *Program, typ types.Type, meth *types.Selection) *Function {
obj := meth.Obj().(*types.Func)
oldsig := obj.Type().(*types.Signature)
recv := newVar("recv", typ)
description := fmt.Sprintf("wrapper for %s", obj)
if prog.mode&LogSource != 0 {
defer logStack("make %s to (%s)", description, typ)()
}
fn := &Function{
name: obj.Name(),
method: meth,
Signature: changeRecv(oldsig, recv),
Synthetic: description,
Prog: prog,
pos: obj.Pos(),
}
fn.startBody()
fn.addSpilledParam(recv)
createParams(fn)
var v Value = fn.Locals[0] // spilled receiver
if isPointer(typ) {
// TODO(adonovan): consider emitting a nil-pointer check here
// with a nice error message, like gc does.
v = emitLoad(fn, v)
}
// Invariant: v is a pointer, either
// value of *A receiver param, or
// address of A spilled receiver.
// We use pointer arithmetic (FieldAddr possibly followed by
// Load) in preference to value extraction (Field possibly
// preceded by Load).
indices := meth.Index()
v = emitImplicitSelections(fn, v, indices[:len(indices)-1])
// Invariant: v is a pointer, either
// value of implicit *C field, or
// address of implicit C field.
var c Call
if _, ok := oldsig.Recv().Type().Underlying().(*types.Interface); !ok { // concrete method
if !isPointer(oldsig.Recv().Type()) {
v = emitLoad(fn, v)
}
c.Call.Value = prog.declaredFunc(obj)
c.Call.Args = append(c.Call.Args, v)
} else {
c.Call.Method = obj
c.Call.Value = emitLoad(fn, v)
}
for _, arg := range fn.Params[1:] {
c.Call.Args = append(c.Call.Args, arg)
}
emitTailCall(fn, &c)
fn.finishBody()
return fn
}
// createParams creates parameters for wrapper method fn based on its
// Signature.Params, which do not include the receiver.
//
func createParams(fn *Function) {
var last *Parameter
tparams := fn.Signature.Params()
for i, n := 0, tparams.Len(); i < n; i++ {
last = fn.addParamObj(tparams.At(i))
}
if fn.Signature.Variadic() {
last.typ = types.NewSlice(last.typ)
}
}
// Wrappers for standalone interface methods ----------------------------------
// interfaceMethodWrapper returns a synthetic wrapper function
// permitting an abstract method obj to be called like a standalone
// function, e.g.:
//
// type I interface { f(x int) R }
// m := I.f // wrapper
// var i I
// m(i, 0)
//
// The wrapper is defined as if by:
//
// func (i I) f(x int, ...) R {
// return i.f(x, ...)
// }
//
// typ is the type of the receiver (I here). It isn't necessarily
// equal to the recvType(obj) because one interface may embed another.
// TODO(adonovan): more tests.
//
// TODO(adonovan): opt: currently the stub is created even when used
// in call position: I.f(i, 0). Clearly this is suboptimal.
//
// EXCLUSIVE_LOCKS_REQUIRED(prog.methodsMu)
//
func interfaceMethodWrapper(prog *Program, typ types.Type, obj *types.Func) *Function {
// If one interface embeds another they'll share the same
// wrappers for common methods. This is safe, but it might
// confuse some tools because of the implicit interface
// conversion applied to the first argument. If this becomes
// a problem, we should include 'typ' in the memoization key.
fn, ok := prog.ifaceMethodWrappers[obj]
if !ok {
description := "interface method wrapper"
if prog.mode&LogSource != 0 {
defer logStack("(%s).%s, %s", typ, obj.Name(), description)()
}
fn = &Function{
name: obj.Name(),
object: obj,
Signature: obj.Type().(*types.Signature),
Synthetic: description,
pos: obj.Pos(),
Prog: prog,
}
fn.startBody()
fn.addParam("recv", typ, token.NoPos)
createParams(fn)
var c Call
c.Call.Method = obj
c.Call.Value = fn.Params[0]
for _, arg := range fn.Params[1:] {
c.Call.Args = append(c.Call.Args, arg)
}
emitTailCall(fn, &c)
fn.finishBody()
prog.ifaceMethodWrappers[obj] = fn
}
return fn
}
// Wrappers for bound methods -------------------------------------------------
// boundMethodWrapper returns a synthetic wrapper function that
// delegates to a concrete or interface method.
// The wrapper has one free variable, the method's receiver.
// Use MakeClosure with such a wrapper to construct a bound-method
// closure. e.g.:
//
// type T int or: type T interface { meth() }
// func (t T) meth()
// var t T
// f := t.meth
// f() // calls t.meth()
//
// f is a closure of a synthetic wrapper defined as if by:
//
// f := func() { return t.meth() }
//
// EXCLUSIVE_LOCKS_ACQUIRED(meth.Prog.methodsMu)
//
func boundMethodWrapper(prog *Program, obj *types.Func) *Function {
prog.methodsMu.Lock()
defer prog.methodsMu.Unlock()
fn, ok := prog.boundMethodWrappers[obj]
if !ok {
description := fmt.Sprintf("bound method wrapper for %s", obj)
if prog.mode&LogSource != 0 {
defer logStack("%s", description)()
}
fn = &Function{
name: "bound$" + obj.FullName(),
Signature: changeRecv(obj.Type().(*types.Signature), nil), // drop receiver
Synthetic: description,
Prog: prog,
pos: obj.Pos(),
}
cap := &Capture{name: "recv", typ: recvType(obj), parent: fn}
fn.FreeVars = []*Capture{cap}
fn.startBody()
createParams(fn)
var c Call
if _, ok := recvType(obj).Underlying().(*types.Interface); !ok { // concrete
c.Call.Value = prog.declaredFunc(obj)
c.Call.Args = []Value{cap}
} else {
c.Call.Value = cap
c.Call.Method = obj
}
for _, arg := range fn.Params {
c.Call.Args = append(c.Call.Args, arg)
}
emitTailCall(fn, &c)
fn.finishBody()
prog.boundMethodWrappers[obj] = fn
}
return fn
}
func changeRecv(s *types.Signature, recv *types.Var) *types.Signature {
return types.NewSignature(nil, recv, s.Params(), s.Results(), s.Variadic())
}