| // Copyright 2013 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssa |
| |
| // This file defines algorithms related to dominance. |
| |
| // Dominator tree construction ---------------------------------------- |
| // |
| // We use the algorithm described in Lengauer & Tarjan. 1979. A fast |
| // algorithm for finding dominators in a flowgraph. |
| // http://doi.acm.org/10.1145/357062.357071 |
| // |
| // We also apply the optimizations to SLT described in Georgiadis et |
| // al, Finding Dominators in Practice, JGAA 2006, |
| // http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf |
| // to avoid the need for buckets of size > 1. |
| |
| import ( |
| "fmt" |
| "io" |
| "math/big" |
| "os" |
| ) |
| |
| // domNode represents a node in the dominator tree. |
| // |
| // TODO(adonovan): export this, when ready. |
| type domNode struct { |
| Block *BasicBlock // the basic block; n.Block.dom == n |
| Idom *domNode // immediate dominator (parent in dominator tree) |
| Children []*domNode // nodes dominated by this one |
| Level int // level number of node within tree; zero for root |
| Pre, Post int // pre- and post-order numbering within dominator tree |
| |
| // Working state for Lengauer-Tarjan algorithm |
| // (during which Pre is repurposed for CFG DFS preorder number). |
| // TODO(adonovan): opt: measure allocating these as temps. |
| semi *domNode // semidominator |
| parent *domNode // parent in DFS traversal of CFG |
| ancestor *domNode // ancestor with least sdom |
| } |
| |
| // ltDfs implements the depth-first search part of the LT algorithm. |
| func ltDfs(v *domNode, i int, preorder []*domNode) int { |
| preorder[i] = v |
| v.Pre = i // For now: DFS preorder of spanning tree of CFG |
| i++ |
| v.semi = v |
| v.ancestor = nil |
| for _, succ := range v.Block.Succs { |
| if w := succ.dom; w.semi == nil { |
| w.parent = v |
| i = ltDfs(w, i, preorder) |
| } |
| } |
| return i |
| } |
| |
| // ltEval implements the EVAL part of the LT algorithm. |
| func ltEval(v *domNode) *domNode { |
| // TODO(adonovan): opt: do path compression per simple LT. |
| u := v |
| for ; v.ancestor != nil; v = v.ancestor { |
| if v.semi.Pre < u.semi.Pre { |
| u = v |
| } |
| } |
| return u |
| } |
| |
| // ltLink implements the LINK part of the LT algorithm. |
| func ltLink(v, w *domNode) { |
| w.ancestor = v |
| } |
| |
| // buildDomTree computes the dominator tree of f using the LT algorithm. |
| // Precondition: all blocks are reachable (e.g. optimizeBlocks has been run). |
| // |
| func buildDomTree(f *Function) { |
| // The step numbers refer to the original LT paper; the |
| // reodering is due to Georgiadis. |
| |
| // Initialize domNode nodes. |
| for _, b := range f.Blocks { |
| dom := b.dom |
| if dom == nil { |
| dom = &domNode{Block: b} |
| b.dom = dom |
| } else { |
| dom.Block = b // reuse |
| } |
| } |
| |
| // Step 1. Number vertices by depth-first preorder. |
| n := len(f.Blocks) |
| preorder := make([]*domNode, n) |
| root := f.Blocks[0].dom |
| ltDfs(root, 0, preorder) |
| |
| buckets := make([]*domNode, n) |
| copy(buckets, preorder) |
| |
| // In reverse preorder... |
| for i := n - 1; i > 0; i-- { |
| w := preorder[i] |
| |
| // Step 3. Implicitly define the immediate dominator of each node. |
| for v := buckets[i]; v != w; v = buckets[v.Pre] { |
| u := ltEval(v) |
| if u.semi.Pre < i { |
| v.Idom = u |
| } else { |
| v.Idom = w |
| } |
| } |
| |
| // Step 2. Compute the semidominators of all nodes. |
| w.semi = w.parent |
| for _, pred := range w.Block.Preds { |
| v := pred.dom |
| u := ltEval(v) |
| if u.semi.Pre < w.semi.Pre { |
| w.semi = u.semi |
| } |
| } |
| |
| ltLink(w.parent, w) |
| |
| if w.parent == w.semi { |
| w.Idom = w.parent |
| } else { |
| buckets[i] = buckets[w.semi.Pre] |
| buckets[w.semi.Pre] = w |
| } |
| } |
| |
| // The final 'Step 3' is now outside the loop. |
| for v := buckets[0]; v != root; v = buckets[v.Pre] { |
| v.Idom = root |
| } |
| |
| // Step 4. Explicitly define the immediate dominator of each |
| // node, in preorder. |
| for _, w := range preorder[1:] { |
| if w == root { |
| w.Idom = nil |
| } else { |
| if w.Idom != w.semi { |
| w.Idom = w.Idom.Idom |
| } |
| // Calculate Children relation as inverse of Idom. |
| w.Idom.Children = append(w.Idom.Children, w) |
| } |
| |
| // Clear working state. |
| w.semi = nil |
| w.parent = nil |
| w.ancestor = nil |
| } |
| |
| numberDomTree(root, 0, 0, 0) |
| |
| // printDomTreeDot(os.Stderr, f) // debugging |
| // printDomTreeText(os.Stderr, root, 0) // debugging |
| |
| if f.Prog.mode&SanityCheckFunctions != 0 { |
| sanityCheckDomTree(f) |
| } |
| } |
| |
| // numberDomTree sets the pre- and post-order numbers of a depth-first |
| // traversal of the dominator tree rooted at v. These are used to |
| // answer dominance queries in constant time. Also, it sets the level |
| // numbers (zero for the root) used for frontier computation. |
| // |
| func numberDomTree(v *domNode, pre, post, level int) (int, int) { |
| v.Level = level |
| level++ |
| v.Pre = pre |
| pre++ |
| for _, child := range v.Children { |
| pre, post = numberDomTree(child, pre, post, level) |
| } |
| v.Post = post |
| post++ |
| return pre, post |
| } |
| |
| // dominates returns true if b dominates c. |
| // Requires that dominance information is up-to-date. |
| // |
| func dominates(b, c *BasicBlock) bool { |
| return b.dom.Pre <= c.dom.Pre && c.dom.Post <= b.dom.Post |
| } |
| |
| // Testing utilities ---------------------------------------- |
| |
| // sanityCheckDomTree checks the correctness of the dominator tree |
| // computed by the LT algorithm by comparing against the dominance |
| // relation computed by a naive Kildall-style forward dataflow |
| // analysis (Algorithm 10.16 from the "Dragon" book). |
| // |
| func sanityCheckDomTree(f *Function) { |
| n := len(f.Blocks) |
| |
| // D[i] is the set of blocks that dominate f.Blocks[i], |
| // represented as a bit-set of block indices. |
| D := make([]big.Int, n) |
| |
| one := big.NewInt(1) |
| |
| // all is the set of all blocks; constant. |
| var all big.Int |
| all.Set(one).Lsh(&all, uint(n)).Sub(&all, one) |
| |
| // Initialization. |
| for i := range f.Blocks { |
| if i == 0 { |
| // The root is dominated only by itself. |
| D[i].SetBit(&D[0], 0, 1) |
| } else { |
| // All other blocks are (initially) dominated |
| // by every block. |
| D[i].Set(&all) |
| } |
| } |
| |
| // Iteration until fixed point. |
| for changed := true; changed; { |
| changed = false |
| for i, b := range f.Blocks { |
| if i == 0 { |
| continue |
| } |
| // Compute intersection across predecessors. |
| var x big.Int |
| x.Set(&all) |
| for _, pred := range b.Preds { |
| x.And(&x, &D[pred.Index]) |
| } |
| x.SetBit(&x, i, 1) // a block always dominates itself. |
| if D[i].Cmp(&x) != 0 { |
| D[i].Set(&x) |
| changed = true |
| } |
| } |
| } |
| |
| // Check the entire relation. O(n^2). |
| ok := true |
| for i := 0; i < n; i++ { |
| for j := 0; j < n; j++ { |
| b, c := f.Blocks[i], f.Blocks[j] |
| actual := dominates(b, c) |
| expected := D[j].Bit(i) == 1 |
| if actual != expected { |
| fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected) |
| ok = false |
| } |
| } |
| } |
| if !ok { |
| panic("sanityCheckDomTree failed for " + f.String()) |
| } |
| } |
| |
| // Printing functions ---------------------------------------- |
| |
| // printDomTree prints the dominator tree as text, using indentation. |
| func printDomTreeText(w io.Writer, v *domNode, indent int) { |
| fmt.Fprintf(w, "%*s%s\n", 4*indent, "", v.Block) |
| for _, child := range v.Children { |
| printDomTreeText(w, child, indent+1) |
| } |
| } |
| |
| // printDomTreeDot prints the dominator tree of f in AT&T GraphViz |
| // (.dot) format. |
| func printDomTreeDot(w io.Writer, f *Function) { |
| fmt.Fprintln(w, "//", f) |
| fmt.Fprintln(w, "digraph domtree {") |
| for i, b := range f.Blocks { |
| v := b.dom |
| fmt.Fprintf(w, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.Pre, b, v.Pre, v.Post) |
| // TODO(adonovan): improve appearance of edges |
| // belonging to both dominator tree and CFG. |
| |
| // Dominator tree edge. |
| if i != 0 { |
| fmt.Fprintf(w, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.Idom.Pre, v.Pre) |
| } |
| // CFG edges. |
| for _, pred := range b.Preds { |
| fmt.Fprintf(w, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.Pre, v.Pre) |
| } |
| } |
| fmt.Fprintln(w, "}") |
| } |