| // Copyright 2013 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssa |
| |
| // This file defines algorithms related to dominance. |
| |
| // Dominator tree construction ---------------------------------------- |
| // |
| // We use the algorithm described in Lengauer & Tarjan. 1979. A fast |
| // algorithm for finding dominators in a flowgraph. |
| // http://doi.acm.org/10.1145/357062.357071 |
| // |
| // We also apply the optimizations to SLT described in Georgiadis et |
| // al, Finding Dominators in Practice, JGAA 2006, |
| // http://jgaa.info/accepted/2006/GeorgiadisTarjanWerneck2006.10.1.pdf |
| // to avoid the need for buckets of size > 1. |
| |
| import ( |
| "bytes" |
| "fmt" |
| "math/big" |
| "os" |
| "sort" |
| ) |
| |
| // Idom returns the block that immediately dominates b: |
| // its parent in the dominator tree, if any. |
| // Neither the entry node (b.Index==0) nor recover node |
| // (b==b.Parent().Recover()) have a parent. |
| // |
| func (b *BasicBlock) Idom() *BasicBlock { return b.dom.idom } |
| |
| // Dominees returns the list of blocks that b immediately dominates: |
| // its children in the dominator tree. |
| // |
| func (b *BasicBlock) Dominees() []*BasicBlock { return b.dom.children } |
| |
| // Dominates reports whether b dominates c. |
| func (b *BasicBlock) Dominates(c *BasicBlock) bool { |
| return b.dom.pre <= c.dom.pre && c.dom.post <= b.dom.post |
| } |
| |
| type byDomPreorder []*BasicBlock |
| |
| func (a byDomPreorder) Len() int { return len(a) } |
| func (a byDomPreorder) Swap(i, j int) { a[i], a[j] = a[j], a[i] } |
| func (a byDomPreorder) Less(i, j int) bool { return a[i].dom.pre < a[j].dom.pre } |
| |
| // DomPreorder returns a new slice containing the blocks of f in |
| // dominator tree preorder. |
| // |
| func (f *Function) DomPreorder() []*BasicBlock { |
| n := len(f.Blocks) |
| order := make(byDomPreorder, n) |
| copy(order, f.Blocks) |
| sort.Sort(order) |
| return order |
| } |
| |
| // domInfo contains a BasicBlock's dominance information. |
| type domInfo struct { |
| idom *BasicBlock // immediate dominator (parent in domtree) |
| children []*BasicBlock // nodes immediately dominated by this one |
| pre, post int32 // pre- and post-order numbering within domtree |
| } |
| |
| // ltState holds the working state for Lengauer-Tarjan algorithm |
| // (during which domInfo.pre is repurposed for CFG DFS preorder number). |
| type ltState struct { |
| // Each slice is indexed by b.Index. |
| sdom []*BasicBlock // b's semidominator |
| parent []*BasicBlock // b's parent in DFS traversal of CFG |
| ancestor []*BasicBlock // b's ancestor with least sdom |
| } |
| |
| // dfs implements the depth-first search part of the LT algorithm. |
| func (lt *ltState) dfs(v *BasicBlock, i int32, preorder []*BasicBlock) int32 { |
| preorder[i] = v |
| v.dom.pre = i // For now: DFS preorder of spanning tree of CFG |
| i++ |
| lt.sdom[v.Index] = v |
| lt.link(nil, v) |
| for _, w := range v.Succs { |
| if lt.sdom[w.Index] == nil { |
| lt.parent[w.Index] = v |
| i = lt.dfs(w, i, preorder) |
| } |
| } |
| return i |
| } |
| |
| // eval implements the EVAL part of the LT algorithm. |
| func (lt *ltState) eval(v *BasicBlock) *BasicBlock { |
| // TODO(adonovan): opt: do path compression per simple LT. |
| u := v |
| for ; lt.ancestor[v.Index] != nil; v = lt.ancestor[v.Index] { |
| if lt.sdom[v.Index].dom.pre < lt.sdom[u.Index].dom.pre { |
| u = v |
| } |
| } |
| return u |
| } |
| |
| // link implements the LINK part of the LT algorithm. |
| func (lt *ltState) link(v, w *BasicBlock) { |
| lt.ancestor[w.Index] = v |
| } |
| |
| // buildDomTree computes the dominator tree of f using the LT algorithm. |
| // Precondition: all blocks are reachable (e.g. optimizeBlocks has been run). |
| // |
| func buildDomTree(f *Function) { |
| // The step numbers refer to the original LT paper; the |
| // reordering is due to Georgiadis. |
| |
| // Clear any previous domInfo. |
| for _, b := range f.Blocks { |
| b.dom = domInfo{} |
| } |
| |
| n := len(f.Blocks) |
| // Allocate space for 5 contiguous [n]*BasicBlock arrays: |
| // sdom, parent, ancestor, preorder, buckets. |
| space := make([]*BasicBlock, 5*n) |
| lt := ltState{ |
| sdom: space[0:n], |
| parent: space[n : 2*n], |
| ancestor: space[2*n : 3*n], |
| } |
| |
| // Step 1. Number vertices by depth-first preorder. |
| preorder := space[3*n : 4*n] |
| root := f.Blocks[0] |
| prenum := lt.dfs(root, 0, preorder) |
| recover := f.Recover |
| if recover != nil { |
| lt.dfs(recover, prenum, preorder) |
| } |
| |
| buckets := space[4*n : 5*n] |
| copy(buckets, preorder) |
| |
| // In reverse preorder... |
| for i := int32(n) - 1; i > 0; i-- { |
| w := preorder[i] |
| |
| // Step 3. Implicitly define the immediate dominator of each node. |
| for v := buckets[i]; v != w; v = buckets[v.dom.pre] { |
| u := lt.eval(v) |
| if lt.sdom[u.Index].dom.pre < i { |
| v.dom.idom = u |
| } else { |
| v.dom.idom = w |
| } |
| } |
| |
| // Step 2. Compute the semidominators of all nodes. |
| lt.sdom[w.Index] = lt.parent[w.Index] |
| for _, v := range w.Preds { |
| u := lt.eval(v) |
| if lt.sdom[u.Index].dom.pre < lt.sdom[w.Index].dom.pre { |
| lt.sdom[w.Index] = lt.sdom[u.Index] |
| } |
| } |
| |
| lt.link(lt.parent[w.Index], w) |
| |
| if lt.parent[w.Index] == lt.sdom[w.Index] { |
| w.dom.idom = lt.parent[w.Index] |
| } else { |
| buckets[i] = buckets[lt.sdom[w.Index].dom.pre] |
| buckets[lt.sdom[w.Index].dom.pre] = w |
| } |
| } |
| |
| // The final 'Step 3' is now outside the loop. |
| for v := buckets[0]; v != root; v = buckets[v.dom.pre] { |
| v.dom.idom = root |
| } |
| |
| // Step 4. Explicitly define the immediate dominator of each |
| // node, in preorder. |
| for _, w := range preorder[1:] { |
| if w == root || w == recover { |
| w.dom.idom = nil |
| } else { |
| if w.dom.idom != lt.sdom[w.Index] { |
| w.dom.idom = w.dom.idom.dom.idom |
| } |
| // Calculate Children relation as inverse of Idom. |
| w.dom.idom.dom.children = append(w.dom.idom.dom.children, w) |
| } |
| } |
| |
| pre, post := numberDomTree(root, 0, 0) |
| if recover != nil { |
| numberDomTree(recover, pre, post) |
| } |
| |
| // printDomTreeDot(os.Stderr, f) // debugging |
| // printDomTreeText(os.Stderr, root, 0) // debugging |
| |
| if f.Prog.mode&SanityCheckFunctions != 0 { |
| sanityCheckDomTree(f) |
| } |
| } |
| |
| // numberDomTree sets the pre- and post-order numbers of a depth-first |
| // traversal of the dominator tree rooted at v. These are used to |
| // answer dominance queries in constant time. |
| // |
| func numberDomTree(v *BasicBlock, pre, post int32) (int32, int32) { |
| v.dom.pre = pre |
| pre++ |
| for _, child := range v.dom.children { |
| pre, post = numberDomTree(child, pre, post) |
| } |
| v.dom.post = post |
| post++ |
| return pre, post |
| } |
| |
| // Testing utilities ---------------------------------------- |
| |
| // sanityCheckDomTree checks the correctness of the dominator tree |
| // computed by the LT algorithm by comparing against the dominance |
| // relation computed by a naive Kildall-style forward dataflow |
| // analysis (Algorithm 10.16 from the "Dragon" book). |
| // |
| func sanityCheckDomTree(f *Function) { |
| n := len(f.Blocks) |
| |
| // D[i] is the set of blocks that dominate f.Blocks[i], |
| // represented as a bit-set of block indices. |
| D := make([]big.Int, n) |
| |
| one := big.NewInt(1) |
| |
| // all is the set of all blocks; constant. |
| var all big.Int |
| all.Set(one).Lsh(&all, uint(n)).Sub(&all, one) |
| |
| // Initialization. |
| for i, b := range f.Blocks { |
| if i == 0 || b == f.Recover { |
| // A root is dominated only by itself. |
| D[i].SetBit(&D[0], 0, 1) |
| } else { |
| // All other blocks are (initially) dominated |
| // by every block. |
| D[i].Set(&all) |
| } |
| } |
| |
| // Iteration until fixed point. |
| for changed := true; changed; { |
| changed = false |
| for i, b := range f.Blocks { |
| if i == 0 || b == f.Recover { |
| continue |
| } |
| // Compute intersection across predecessors. |
| var x big.Int |
| x.Set(&all) |
| for _, pred := range b.Preds { |
| x.And(&x, &D[pred.Index]) |
| } |
| x.SetBit(&x, i, 1) // a block always dominates itself. |
| if D[i].Cmp(&x) != 0 { |
| D[i].Set(&x) |
| changed = true |
| } |
| } |
| } |
| |
| // Check the entire relation. O(n^2). |
| // The Recover block (if any) must be treated specially so we skip it. |
| ok := true |
| for i := 0; i < n; i++ { |
| for j := 0; j < n; j++ { |
| b, c := f.Blocks[i], f.Blocks[j] |
| if c == f.Recover { |
| continue |
| } |
| actual := b.Dominates(c) |
| expected := D[j].Bit(i) == 1 |
| if actual != expected { |
| fmt.Fprintf(os.Stderr, "dominates(%s, %s)==%t, want %t\n", b, c, actual, expected) |
| ok = false |
| } |
| } |
| } |
| |
| preorder := f.DomPreorder() |
| for _, b := range f.Blocks { |
| if got := preorder[b.dom.pre]; got != b { |
| fmt.Fprintf(os.Stderr, "preorder[%d]==%s, want %s\n", b.dom.pre, got, b) |
| ok = false |
| } |
| } |
| |
| if !ok { |
| panic("sanityCheckDomTree failed for " + f.String()) |
| } |
| |
| } |
| |
| // Printing functions ---------------------------------------- |
| |
| // printDomTree prints the dominator tree as text, using indentation. |
| func printDomTreeText(buf *bytes.Buffer, v *BasicBlock, indent int) { |
| fmt.Fprintf(buf, "%*s%s\n", 4*indent, "", v) |
| for _, child := range v.dom.children { |
| printDomTreeText(buf, child, indent+1) |
| } |
| } |
| |
| // printDomTreeDot prints the dominator tree of f in AT&T GraphViz |
| // (.dot) format. |
| func printDomTreeDot(buf *bytes.Buffer, f *Function) { |
| fmt.Fprintln(buf, "//", f) |
| fmt.Fprintln(buf, "digraph domtree {") |
| for i, b := range f.Blocks { |
| v := b.dom |
| fmt.Fprintf(buf, "\tn%d [label=\"%s (%d, %d)\",shape=\"rectangle\"];\n", v.pre, b, v.pre, v.post) |
| // TODO(adonovan): improve appearance of edges |
| // belonging to both dominator tree and CFG. |
| |
| // Dominator tree edge. |
| if i != 0 { |
| fmt.Fprintf(buf, "\tn%d -> n%d [style=\"solid\",weight=100];\n", v.idom.dom.pre, v.pre) |
| } |
| // CFG edges. |
| for _, pred := range b.Preds { |
| fmt.Fprintf(buf, "\tn%d -> n%d [style=\"dotted\",weight=0];\n", pred.dom.pre, v.pre) |
| } |
| } |
| fmt.Fprintln(buf, "}") |
| } |