| // Copyright 2013 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package pointer |
| |
| // This file defines the constraint generation phase. |
| |
| // TODO(adonovan): move the constraint definitions and the store() etc |
| // functions which add them (and are also used by the solver) into a |
| // new file, constraints.go. |
| |
| import ( |
| "fmt" |
| "go/token" |
| "go/types" |
| |
| "golang.org/x/tools/go/callgraph" |
| "golang.org/x/tools/go/ssa" |
| ) |
| |
| var ( |
| tEface = types.NewInterface(nil, nil).Complete() |
| tInvalid = types.Typ[types.Invalid] |
| tUnsafePtr = types.Typ[types.UnsafePointer] |
| ) |
| |
| // ---------- Node creation ---------- |
| |
| // nextNode returns the index of the next unused node. |
| func (a *analysis) nextNode() nodeid { |
| return nodeid(len(a.nodes)) |
| } |
| |
| // addNodes creates nodes for all scalar elements in type typ, and |
| // returns the id of the first one, or zero if the type was |
| // analytically uninteresting. |
| // |
| // comment explains the origin of the nodes, as a debugging aid. |
| // |
| func (a *analysis) addNodes(typ types.Type, comment string) nodeid { |
| id := a.nextNode() |
| for _, fi := range a.flatten(typ) { |
| a.addOneNode(fi.typ, comment, fi) |
| } |
| if id == a.nextNode() { |
| return 0 // type contained no pointers |
| } |
| return id |
| } |
| |
| // addOneNode creates a single node with type typ, and returns its id. |
| // |
| // typ should generally be scalar (except for tagged.T nodes |
| // and struct/array identity nodes). Use addNodes for non-scalar types. |
| // |
| // comment explains the origin of the nodes, as a debugging aid. |
| // subelement indicates the subelement, e.g. ".a.b[*].c". |
| // |
| func (a *analysis) addOneNode(typ types.Type, comment string, subelement *fieldInfo) nodeid { |
| id := a.nextNode() |
| a.nodes = append(a.nodes, &node{typ: typ, subelement: subelement, solve: new(solverState)}) |
| if a.log != nil { |
| fmt.Fprintf(a.log, "\tcreate n%d %s for %s%s\n", |
| id, typ, comment, subelement.path()) |
| } |
| return id |
| } |
| |
| // setValueNode associates node id with the value v. |
| // cgn identifies the context iff v is a local variable. |
| // |
| func (a *analysis) setValueNode(v ssa.Value, id nodeid, cgn *cgnode) { |
| if cgn != nil { |
| a.localval[v] = id |
| } else { |
| a.globalval[v] = id |
| } |
| if a.log != nil { |
| fmt.Fprintf(a.log, "\tval[%s] = n%d (%T)\n", v.Name(), id, v) |
| } |
| |
| // Due to context-sensitivity, we may encounter the same Value |
| // in many contexts. We merge them to a canonical node, since |
| // that's what all clients want. |
| |
| // Record the (v, id) relation if the client has queried pts(v). |
| if _, ok := a.config.Queries[v]; ok { |
| t := v.Type() |
| ptr, ok := a.result.Queries[v] |
| if !ok { |
| // First time? Create the canonical query node. |
| ptr = Pointer{a, a.addNodes(t, "query")} |
| a.result.Queries[v] = ptr |
| } |
| a.result.Queries[v] = ptr |
| a.copy(ptr.n, id, a.sizeof(t)) |
| } |
| |
| // Record the (*v, id) relation if the client has queried pts(*v). |
| if _, ok := a.config.IndirectQueries[v]; ok { |
| t := v.Type() |
| ptr, ok := a.result.IndirectQueries[v] |
| if !ok { |
| // First time? Create the canonical indirect query node. |
| ptr = Pointer{a, a.addNodes(v.Type(), "query.indirect")} |
| a.result.IndirectQueries[v] = ptr |
| } |
| a.genLoad(cgn, ptr.n, v, 0, a.sizeof(t)) |
| } |
| } |
| |
| // endObject marks the end of a sequence of calls to addNodes denoting |
| // a single object allocation. |
| // |
| // obj is the start node of the object, from a prior call to nextNode. |
| // Its size, flags and optional data will be updated. |
| // |
| func (a *analysis) endObject(obj nodeid, cgn *cgnode, data interface{}) *object { |
| // Ensure object is non-empty by padding; |
| // the pad will be the object node. |
| size := uint32(a.nextNode() - obj) |
| if size == 0 { |
| a.addOneNode(tInvalid, "padding", nil) |
| } |
| objNode := a.nodes[obj] |
| o := &object{ |
| size: size, // excludes padding |
| cgn: cgn, |
| data: data, |
| } |
| objNode.obj = o |
| |
| return o |
| } |
| |
| // makeFunctionObject creates and returns a new function object |
| // (contour) for fn, and returns the id of its first node. It also |
| // enqueues fn for subsequent constraint generation. |
| // |
| // For a context-sensitive contour, callersite identifies the sole |
| // callsite; for shared contours, caller is nil. |
| // |
| func (a *analysis) makeFunctionObject(fn *ssa.Function, callersite *callsite) nodeid { |
| if a.log != nil { |
| fmt.Fprintf(a.log, "\t---- makeFunctionObject %s\n", fn) |
| } |
| |
| // obj is the function object (identity, params, results). |
| obj := a.nextNode() |
| cgn := a.makeCGNode(fn, obj, callersite) |
| sig := fn.Signature |
| a.addOneNode(sig, "func.cgnode", nil) // (scalar with Signature type) |
| if recv := sig.Recv(); recv != nil { |
| a.addNodes(recv.Type(), "func.recv") |
| } |
| a.addNodes(sig.Params(), "func.params") |
| a.addNodes(sig.Results(), "func.results") |
| a.endObject(obj, cgn, fn).flags |= otFunction |
| |
| if a.log != nil { |
| fmt.Fprintf(a.log, "\t----\n") |
| } |
| |
| // Queue it up for constraint processing. |
| a.genq = append(a.genq, cgn) |
| |
| return obj |
| } |
| |
| // makeTagged creates a tagged object of type typ. |
| func (a *analysis) makeTagged(typ types.Type, cgn *cgnode, data interface{}) nodeid { |
| obj := a.addOneNode(typ, "tagged.T", nil) // NB: type may be non-scalar! |
| a.addNodes(typ, "tagged.v") |
| a.endObject(obj, cgn, data).flags |= otTagged |
| return obj |
| } |
| |
| // makeRtype returns the canonical tagged object of type *rtype whose |
| // payload points to the sole rtype object for T. |
| // |
| // TODO(adonovan): move to reflect.go; it's part of the solver really. |
| // |
| func (a *analysis) makeRtype(T types.Type) nodeid { |
| if v := a.rtypes.At(T); v != nil { |
| return v.(nodeid) |
| } |
| |
| // Create the object for the reflect.rtype itself, which is |
| // ordinarily a large struct but here a single node will do. |
| obj := a.nextNode() |
| a.addOneNode(T, "reflect.rtype", nil) |
| a.endObject(obj, nil, T) |
| |
| id := a.makeTagged(a.reflectRtypePtr, nil, T) |
| a.nodes[id+1].typ = T // trick (each *rtype tagged object is a singleton) |
| a.addressOf(a.reflectRtypePtr, id+1, obj) |
| |
| a.rtypes.Set(T, id) |
| return id |
| } |
| |
| // rtypeValue returns the type of the *reflect.rtype-tagged object obj. |
| func (a *analysis) rtypeTaggedValue(obj nodeid) types.Type { |
| tDyn, t, _ := a.taggedValue(obj) |
| if tDyn != a.reflectRtypePtr { |
| panic(fmt.Sprintf("not a *reflect.rtype-tagged object: obj=n%d tag=%v payload=n%d", obj, tDyn, t)) |
| } |
| return a.nodes[t].typ |
| } |
| |
| // valueNode returns the id of the value node for v, creating it (and |
| // the association) as needed. It may return zero for uninteresting |
| // values containing no pointers. |
| // |
| func (a *analysis) valueNode(v ssa.Value) nodeid { |
| // Value nodes for locals are created en masse by genFunc. |
| if id, ok := a.localval[v]; ok { |
| return id |
| } |
| |
| // Value nodes for globals are created on demand. |
| id, ok := a.globalval[v] |
| if !ok { |
| var comment string |
| if a.log != nil { |
| comment = v.String() |
| } |
| id = a.addNodes(v.Type(), comment) |
| if obj := a.objectNode(nil, v); obj != 0 { |
| a.addressOf(v.Type(), id, obj) |
| } |
| a.setValueNode(v, id, nil) |
| } |
| return id |
| } |
| |
| // valueOffsetNode ascertains the node for tuple/struct value v, |
| // then returns the node for its subfield #index. |
| // |
| func (a *analysis) valueOffsetNode(v ssa.Value, index int) nodeid { |
| id := a.valueNode(v) |
| if id == 0 { |
| panic(fmt.Sprintf("cannot offset within n0: %s = %s", v.Name(), v)) |
| } |
| return id + nodeid(a.offsetOf(v.Type(), index)) |
| } |
| |
| // isTaggedObject reports whether object obj is a tagged object. |
| func (a *analysis) isTaggedObject(obj nodeid) bool { |
| return a.nodes[obj].obj.flags&otTagged != 0 |
| } |
| |
| // taggedValue returns the dynamic type tag, the (first node of the) |
| // payload, and the indirect flag of the tagged object starting at id. |
| // Panic ensues if !isTaggedObject(id). |
| // |
| func (a *analysis) taggedValue(obj nodeid) (tDyn types.Type, v nodeid, indirect bool) { |
| n := a.nodes[obj] |
| flags := n.obj.flags |
| if flags&otTagged == 0 { |
| panic(fmt.Sprintf("not a tagged object: n%d", obj)) |
| } |
| return n.typ, obj + 1, flags&otIndirect != 0 |
| } |
| |
| // funcParams returns the first node of the params (P) block of the |
| // function whose object node (obj.flags&otFunction) is id. |
| // |
| func (a *analysis) funcParams(id nodeid) nodeid { |
| n := a.nodes[id] |
| if n.obj == nil || n.obj.flags&otFunction == 0 { |
| panic(fmt.Sprintf("funcParams(n%d): not a function object block", id)) |
| } |
| return id + 1 |
| } |
| |
| // funcResults returns the first node of the results (R) block of the |
| // function whose object node (obj.flags&otFunction) is id. |
| // |
| func (a *analysis) funcResults(id nodeid) nodeid { |
| n := a.nodes[id] |
| if n.obj == nil || n.obj.flags&otFunction == 0 { |
| panic(fmt.Sprintf("funcResults(n%d): not a function object block", id)) |
| } |
| sig := n.typ.(*types.Signature) |
| id += 1 + nodeid(a.sizeof(sig.Params())) |
| if sig.Recv() != nil { |
| id += nodeid(a.sizeof(sig.Recv().Type())) |
| } |
| return id |
| } |
| |
| // ---------- Constraint creation ---------- |
| |
| // copy creates a constraint of the form dst = src. |
| // sizeof is the width (in logical fields) of the copied type. |
| // |
| func (a *analysis) copy(dst, src nodeid, sizeof uint32) { |
| if src == dst || sizeof == 0 { |
| return // trivial |
| } |
| if src == 0 || dst == 0 { |
| panic(fmt.Sprintf("ill-typed copy dst=n%d src=n%d", dst, src)) |
| } |
| for i := uint32(0); i < sizeof; i++ { |
| a.addConstraint(©Constraint{dst, src}) |
| src++ |
| dst++ |
| } |
| } |
| |
| // addressOf creates a constraint of the form id = &obj. |
| // T is the type of the address. |
| func (a *analysis) addressOf(T types.Type, id, obj nodeid) { |
| if id == 0 { |
| panic("addressOf: zero id") |
| } |
| if obj == 0 { |
| panic("addressOf: zero obj") |
| } |
| if a.shouldTrack(T) { |
| a.addConstraint(&addrConstraint{id, obj}) |
| } |
| } |
| |
| // load creates a load constraint of the form dst = src[offset]. |
| // offset is the pointer offset in logical fields. |
| // sizeof is the width (in logical fields) of the loaded type. |
| // |
| func (a *analysis) load(dst, src nodeid, offset, sizeof uint32) { |
| if dst == 0 { |
| return // load of non-pointerlike value |
| } |
| if src == 0 && dst == 0 { |
| return // non-pointerlike operation |
| } |
| if src == 0 || dst == 0 { |
| panic(fmt.Sprintf("ill-typed load dst=n%d src=n%d", dst, src)) |
| } |
| for i := uint32(0); i < sizeof; i++ { |
| a.addConstraint(&loadConstraint{offset, dst, src}) |
| offset++ |
| dst++ |
| } |
| } |
| |
| // store creates a store constraint of the form dst[offset] = src. |
| // offset is the pointer offset in logical fields. |
| // sizeof is the width (in logical fields) of the stored type. |
| // |
| func (a *analysis) store(dst, src nodeid, offset uint32, sizeof uint32) { |
| if src == 0 { |
| return // store of non-pointerlike value |
| } |
| if src == 0 && dst == 0 { |
| return // non-pointerlike operation |
| } |
| if src == 0 || dst == 0 { |
| panic(fmt.Sprintf("ill-typed store dst=n%d src=n%d", dst, src)) |
| } |
| for i := uint32(0); i < sizeof; i++ { |
| a.addConstraint(&storeConstraint{offset, dst, src}) |
| offset++ |
| src++ |
| } |
| } |
| |
| // offsetAddr creates an offsetAddr constraint of the form dst = &src.#offset. |
| // offset is the field offset in logical fields. |
| // T is the type of the address. |
| // |
| func (a *analysis) offsetAddr(T types.Type, dst, src nodeid, offset uint32) { |
| if !a.shouldTrack(T) { |
| return |
| } |
| if offset == 0 { |
| // Simplify dst = &src->f0 |
| // to dst = src |
| // (NB: this optimisation is defeated by the identity |
| // field prepended to struct and array objects.) |
| a.copy(dst, src, 1) |
| } else { |
| a.addConstraint(&offsetAddrConstraint{offset, dst, src}) |
| } |
| } |
| |
| // typeAssert creates a typeFilter or untag constraint of the form dst = src.(T): |
| // typeFilter for an interface, untag for a concrete type. |
| // The exact flag is specified as for untagConstraint. |
| // |
| func (a *analysis) typeAssert(T types.Type, dst, src nodeid, exact bool) { |
| if isInterface(T) { |
| a.addConstraint(&typeFilterConstraint{T, dst, src}) |
| } else { |
| a.addConstraint(&untagConstraint{T, dst, src, exact}) |
| } |
| } |
| |
| // addConstraint adds c to the constraint set. |
| func (a *analysis) addConstraint(c constraint) { |
| a.constraints = append(a.constraints, c) |
| if a.log != nil { |
| fmt.Fprintf(a.log, "\t%s\n", c) |
| } |
| } |
| |
| // copyElems generates load/store constraints for *dst = *src, |
| // where src and dst are slices or *arrays. |
| // |
| func (a *analysis) copyElems(cgn *cgnode, typ types.Type, dst, src ssa.Value) { |
| tmp := a.addNodes(typ, "copy") |
| sz := a.sizeof(typ) |
| a.genLoad(cgn, tmp, src, 1, sz) |
| a.genStore(cgn, dst, tmp, 1, sz) |
| } |
| |
| // ---------- Constraint generation ---------- |
| |
| // genConv generates constraints for the conversion operation conv. |
| func (a *analysis) genConv(conv *ssa.Convert, cgn *cgnode) { |
| res := a.valueNode(conv) |
| if res == 0 { |
| return // result is non-pointerlike |
| } |
| |
| tSrc := conv.X.Type() |
| tDst := conv.Type() |
| |
| switch utSrc := tSrc.Underlying().(type) { |
| case *types.Slice: |
| // []byte/[]rune -> string? |
| return |
| |
| case *types.Pointer: |
| // *T -> unsafe.Pointer? |
| if tDst.Underlying() == tUnsafePtr { |
| return // we don't model unsafe aliasing (unsound) |
| } |
| |
| case *types.Basic: |
| switch tDst.Underlying().(type) { |
| case *types.Pointer: |
| // Treat unsafe.Pointer->*T conversions like |
| // new(T) and create an unaliased object. |
| if utSrc == tUnsafePtr { |
| obj := a.addNodes(mustDeref(tDst), "unsafe.Pointer conversion") |
| a.endObject(obj, cgn, conv) |
| a.addressOf(tDst, res, obj) |
| return |
| } |
| |
| case *types.Slice: |
| // string -> []byte/[]rune (or named aliases)? |
| if utSrc.Info()&types.IsString != 0 { |
| obj := a.addNodes(sliceToArray(tDst), "convert") |
| a.endObject(obj, cgn, conv) |
| a.addressOf(tDst, res, obj) |
| return |
| } |
| |
| case *types.Basic: |
| // All basic-to-basic type conversions are no-ops. |
| // This includes uintptr<->unsafe.Pointer conversions, |
| // which we (unsoundly) ignore. |
| return |
| } |
| } |
| |
| panic(fmt.Sprintf("illegal *ssa.Convert %s -> %s: %s", tSrc, tDst, conv.Parent())) |
| } |
| |
| // genAppend generates constraints for a call to append. |
| func (a *analysis) genAppend(instr *ssa.Call, cgn *cgnode) { |
| // Consider z = append(x, y). y is optional. |
| // This may allocate a new [1]T array; call its object w. |
| // We get the following constraints: |
| // z = x |
| // z = &w |
| // *z = *y |
| |
| x := instr.Call.Args[0] |
| |
| z := instr |
| a.copy(a.valueNode(z), a.valueNode(x), 1) // z = x |
| |
| if len(instr.Call.Args) == 1 { |
| return // no allocation for z = append(x) or _ = append(x). |
| } |
| |
| // TODO(adonovan): test append([]byte, ...string) []byte. |
| |
| y := instr.Call.Args[1] |
| tArray := sliceToArray(instr.Call.Args[0].Type()) |
| |
| var w nodeid |
| w = a.nextNode() |
| a.addNodes(tArray, "append") |
| a.endObject(w, cgn, instr) |
| |
| a.copyElems(cgn, tArray.Elem(), z, y) // *z = *y |
| a.addressOf(instr.Type(), a.valueNode(z), w) // z = &w |
| } |
| |
| // genBuiltinCall generates contraints for a call to a built-in. |
| func (a *analysis) genBuiltinCall(instr ssa.CallInstruction, cgn *cgnode) { |
| call := instr.Common() |
| switch call.Value.(*ssa.Builtin).Name() { |
| case "append": |
| // Safe cast: append cannot appear in a go or defer statement. |
| a.genAppend(instr.(*ssa.Call), cgn) |
| |
| case "copy": |
| tElem := call.Args[0].Type().Underlying().(*types.Slice).Elem() |
| a.copyElems(cgn, tElem, call.Args[0], call.Args[1]) |
| |
| case "panic": |
| a.copy(a.panicNode, a.valueNode(call.Args[0]), 1) |
| |
| case "recover": |
| if v := instr.Value(); v != nil { |
| a.copy(a.valueNode(v), a.panicNode, 1) |
| } |
| |
| case "print": |
| // In the tests, the probe might be the sole reference |
| // to its arg, so make sure we create nodes for it. |
| if len(call.Args) > 0 { |
| a.valueNode(call.Args[0]) |
| } |
| |
| case "ssa:wrapnilchk": |
| a.copy(a.valueNode(instr.Value()), a.valueNode(call.Args[0]), 1) |
| |
| default: |
| // No-ops: close len cap real imag complex print println delete. |
| } |
| } |
| |
| // shouldUseContext defines the context-sensitivity policy. It |
| // returns true if we should analyse all static calls to fn anew. |
| // |
| // Obviously this interface rather limits how much freedom we have to |
| // choose a policy. The current policy, rather arbitrarily, is true |
| // for intrinsics and accessor methods (actually: short, single-block, |
| // call-free functions). This is just a starting point. |
| // |
| func (a *analysis) shouldUseContext(fn *ssa.Function) bool { |
| if a.findIntrinsic(fn) != nil { |
| return true // treat intrinsics context-sensitively |
| } |
| if len(fn.Blocks) != 1 { |
| return false // too expensive |
| } |
| blk := fn.Blocks[0] |
| if len(blk.Instrs) > 10 { |
| return false // too expensive |
| } |
| if fn.Synthetic != "" && (fn.Pkg == nil || fn != fn.Pkg.Func("init")) { |
| return true // treat synthetic wrappers context-sensitively |
| } |
| for _, instr := range blk.Instrs { |
| switch instr := instr.(type) { |
| case ssa.CallInstruction: |
| // Disallow function calls (except to built-ins) |
| // because of the danger of unbounded recursion. |
| if _, ok := instr.Common().Value.(*ssa.Builtin); !ok { |
| return false |
| } |
| } |
| } |
| return true |
| } |
| |
| // genStaticCall generates constraints for a statically dispatched function call. |
| func (a *analysis) genStaticCall(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) { |
| fn := call.StaticCallee() |
| |
| // Special cases for inlined intrinsics. |
| switch fn { |
| case a.runtimeSetFinalizer: |
| // Inline SetFinalizer so the call appears direct. |
| site.targets = a.addOneNode(tInvalid, "SetFinalizer.targets", nil) |
| a.addConstraint(&runtimeSetFinalizerConstraint{ |
| targets: site.targets, |
| x: a.valueNode(call.Args[0]), |
| f: a.valueNode(call.Args[1]), |
| }) |
| return |
| |
| case a.reflectValueCall: |
| // Inline (reflect.Value).Call so the call appears direct. |
| dotdotdot := false |
| ret := reflectCallImpl(a, caller, site, a.valueNode(call.Args[0]), a.valueNode(call.Args[1]), dotdotdot) |
| if result != 0 { |
| a.addressOf(fn.Signature.Results().At(0).Type(), result, ret) |
| } |
| return |
| } |
| |
| // Ascertain the context (contour/cgnode) for a particular call. |
| var obj nodeid |
| if a.shouldUseContext(fn) { |
| obj = a.makeFunctionObject(fn, site) // new contour |
| } else { |
| obj = a.objectNode(nil, fn) // shared contour |
| } |
| a.callEdge(caller, site, obj) |
| |
| sig := call.Signature() |
| |
| // Copy receiver, if any. |
| params := a.funcParams(obj) |
| args := call.Args |
| if sig.Recv() != nil { |
| sz := a.sizeof(sig.Recv().Type()) |
| a.copy(params, a.valueNode(args[0]), sz) |
| params += nodeid(sz) |
| args = args[1:] |
| } |
| |
| // Copy actual parameters into formal params block. |
| // Must loop, since the actuals aren't contiguous. |
| for i, arg := range args { |
| sz := a.sizeof(sig.Params().At(i).Type()) |
| a.copy(params, a.valueNode(arg), sz) |
| params += nodeid(sz) |
| } |
| |
| // Copy formal results block to actual result. |
| if result != 0 { |
| a.copy(result, a.funcResults(obj), a.sizeof(sig.Results())) |
| } |
| } |
| |
| // genDynamicCall generates constraints for a dynamic function call. |
| func (a *analysis) genDynamicCall(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) { |
| // pts(targets) will be the set of possible call targets. |
| site.targets = a.valueNode(call.Value) |
| |
| // We add dynamic closure rules that store the arguments into |
| // the P-block and load the results from the R-block of each |
| // function discovered in pts(targets). |
| |
| sig := call.Signature() |
| var offset uint32 = 1 // P/R block starts at offset 1 |
| for i, arg := range call.Args { |
| sz := a.sizeof(sig.Params().At(i).Type()) |
| a.genStore(caller, call.Value, a.valueNode(arg), offset, sz) |
| offset += sz |
| } |
| if result != 0 { |
| a.genLoad(caller, result, call.Value, offset, a.sizeof(sig.Results())) |
| } |
| } |
| |
| // genInvoke generates constraints for a dynamic method invocation. |
| func (a *analysis) genInvoke(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) { |
| if call.Value.Type() == a.reflectType { |
| a.genInvokeReflectType(caller, site, call, result) |
| return |
| } |
| |
| sig := call.Signature() |
| |
| // Allocate a contiguous targets/params/results block for this call. |
| block := a.nextNode() |
| // pts(targets) will be the set of possible call targets |
| site.targets = a.addOneNode(sig, "invoke.targets", nil) |
| p := a.addNodes(sig.Params(), "invoke.params") |
| r := a.addNodes(sig.Results(), "invoke.results") |
| |
| // Copy the actual parameters into the call's params block. |
| for i, n := 0, sig.Params().Len(); i < n; i++ { |
| sz := a.sizeof(sig.Params().At(i).Type()) |
| a.copy(p, a.valueNode(call.Args[i]), sz) |
| p += nodeid(sz) |
| } |
| // Copy the call's results block to the actual results. |
| if result != 0 { |
| a.copy(result, r, a.sizeof(sig.Results())) |
| } |
| |
| // We add a dynamic invoke constraint that will connect the |
| // caller's and the callee's P/R blocks for each discovered |
| // call target. |
| a.addConstraint(&invokeConstraint{call.Method, a.valueNode(call.Value), block}) |
| } |
| |
| // genInvokeReflectType is a specialization of genInvoke where the |
| // receiver type is a reflect.Type, under the assumption that there |
| // can be at most one implementation of this interface, *reflect.rtype. |
| // |
| // (Though this may appear to be an instance of a pattern---method |
| // calls on interfaces known to have exactly one implementation---in |
| // practice it occurs rarely, so we special case for reflect.Type.) |
| // |
| // In effect we treat this: |
| // var rt reflect.Type = ... |
| // rt.F() |
| // as this: |
| // rt.(*reflect.rtype).F() |
| // |
| func (a *analysis) genInvokeReflectType(caller *cgnode, site *callsite, call *ssa.CallCommon, result nodeid) { |
| // Unpack receiver into rtype |
| rtype := a.addOneNode(a.reflectRtypePtr, "rtype.recv", nil) |
| recv := a.valueNode(call.Value) |
| a.typeAssert(a.reflectRtypePtr, rtype, recv, true) |
| |
| // Look up the concrete method. |
| fn := a.prog.LookupMethod(a.reflectRtypePtr, call.Method.Pkg(), call.Method.Name()) |
| |
| obj := a.makeFunctionObject(fn, site) // new contour for this call |
| a.callEdge(caller, site, obj) |
| |
| // From now on, it's essentially a static call, but little is |
| // gained by factoring together the code for both cases. |
| |
| sig := fn.Signature // concrete method |
| targets := a.addOneNode(sig, "call.targets", nil) |
| a.addressOf(sig, targets, obj) // (a singleton) |
| |
| // Copy receiver. |
| params := a.funcParams(obj) |
| a.copy(params, rtype, 1) |
| params++ |
| |
| // Copy actual parameters into formal P-block. |
| // Must loop, since the actuals aren't contiguous. |
| for i, arg := range call.Args { |
| sz := a.sizeof(sig.Params().At(i).Type()) |
| a.copy(params, a.valueNode(arg), sz) |
| params += nodeid(sz) |
| } |
| |
| // Copy formal R-block to actual R-block. |
| if result != 0 { |
| a.copy(result, a.funcResults(obj), a.sizeof(sig.Results())) |
| } |
| } |
| |
| // genCall generates constraints for call instruction instr. |
| func (a *analysis) genCall(caller *cgnode, instr ssa.CallInstruction) { |
| call := instr.Common() |
| |
| // Intrinsic implementations of built-in functions. |
| if _, ok := call.Value.(*ssa.Builtin); ok { |
| a.genBuiltinCall(instr, caller) |
| return |
| } |
| |
| var result nodeid |
| if v := instr.Value(); v != nil { |
| result = a.valueNode(v) |
| } |
| |
| site := &callsite{instr: instr} |
| if call.StaticCallee() != nil { |
| a.genStaticCall(caller, site, call, result) |
| } else if call.IsInvoke() { |
| a.genInvoke(caller, site, call, result) |
| } else { |
| a.genDynamicCall(caller, site, call, result) |
| } |
| |
| caller.sites = append(caller.sites, site) |
| |
| if a.log != nil { |
| // TODO(adonovan): debug: improve log message. |
| fmt.Fprintf(a.log, "\t%s to targets %s from %s\n", site, site.targets, caller) |
| } |
| } |
| |
| // objectNode returns the object to which v points, if known. |
| // In other words, if the points-to set of v is a singleton, it |
| // returns the sole label, zero otherwise. |
| // |
| // We exploit this information to make the generated constraints less |
| // dynamic. For example, a complex load constraint can be replaced by |
| // a simple copy constraint when the sole destination is known a priori. |
| // |
| // Some SSA instructions always have singletons points-to sets: |
| // Alloc, Function, Global, MakeChan, MakeClosure, MakeInterface, MakeMap, MakeSlice. |
| // Others may be singletons depending on their operands: |
| // FreeVar, Const, Convert, FieldAddr, IndexAddr, Slice. |
| // |
| // Idempotent. Objects are created as needed, possibly via recursion |
| // down the SSA value graph, e.g IndexAddr(FieldAddr(Alloc))). |
| // |
| func (a *analysis) objectNode(cgn *cgnode, v ssa.Value) nodeid { |
| switch v.(type) { |
| case *ssa.Global, *ssa.Function, *ssa.Const, *ssa.FreeVar: |
| // Global object. |
| obj, ok := a.globalobj[v] |
| if !ok { |
| switch v := v.(type) { |
| case *ssa.Global: |
| obj = a.nextNode() |
| a.addNodes(mustDeref(v.Type()), "global") |
| a.endObject(obj, nil, v) |
| |
| case *ssa.Function: |
| obj = a.makeFunctionObject(v, nil) |
| |
| case *ssa.Const: |
| // not addressable |
| |
| case *ssa.FreeVar: |
| // not addressable |
| } |
| |
| if a.log != nil { |
| fmt.Fprintf(a.log, "\tglobalobj[%s] = n%d\n", v, obj) |
| } |
| a.globalobj[v] = obj |
| } |
| return obj |
| } |
| |
| // Local object. |
| obj, ok := a.localobj[v] |
| if !ok { |
| switch v := v.(type) { |
| case *ssa.Alloc: |
| obj = a.nextNode() |
| a.addNodes(mustDeref(v.Type()), "alloc") |
| a.endObject(obj, cgn, v) |
| |
| case *ssa.MakeSlice: |
| obj = a.nextNode() |
| a.addNodes(sliceToArray(v.Type()), "makeslice") |
| a.endObject(obj, cgn, v) |
| |
| case *ssa.MakeChan: |
| obj = a.nextNode() |
| a.addNodes(v.Type().Underlying().(*types.Chan).Elem(), "makechan") |
| a.endObject(obj, cgn, v) |
| |
| case *ssa.MakeMap: |
| obj = a.nextNode() |
| tmap := v.Type().Underlying().(*types.Map) |
| a.addNodes(tmap.Key(), "makemap.key") |
| elem := a.addNodes(tmap.Elem(), "makemap.value") |
| |
| // To update the value field, MapUpdate |
| // generates store-with-offset constraints which |
| // the presolver can't model, so we must mark |
| // those nodes indirect. |
| for id, end := elem, elem+nodeid(a.sizeof(tmap.Elem())); id < end; id++ { |
| a.mapValues = append(a.mapValues, id) |
| } |
| a.endObject(obj, cgn, v) |
| |
| case *ssa.MakeInterface: |
| tConc := v.X.Type() |
| obj = a.makeTagged(tConc, cgn, v) |
| |
| // Copy the value into it, if nontrivial. |
| if x := a.valueNode(v.X); x != 0 { |
| a.copy(obj+1, x, a.sizeof(tConc)) |
| } |
| |
| case *ssa.FieldAddr: |
| if xobj := a.objectNode(cgn, v.X); xobj != 0 { |
| obj = xobj + nodeid(a.offsetOf(mustDeref(v.X.Type()), v.Field)) |
| } |
| |
| case *ssa.IndexAddr: |
| if xobj := a.objectNode(cgn, v.X); xobj != 0 { |
| obj = xobj + 1 |
| } |
| |
| case *ssa.Slice: |
| obj = a.objectNode(cgn, v.X) |
| |
| case *ssa.Convert: |
| // TODO(adonovan): opt: handle these cases too: |
| // - unsafe.Pointer->*T conversion acts like Alloc |
| // - string->[]byte/[]rune conversion acts like MakeSlice |
| } |
| |
| if a.log != nil { |
| fmt.Fprintf(a.log, "\tlocalobj[%s] = n%d\n", v.Name(), obj) |
| } |
| a.localobj[v] = obj |
| } |
| return obj |
| } |
| |
| // genLoad generates constraints for result = *(ptr + val). |
| func (a *analysis) genLoad(cgn *cgnode, result nodeid, ptr ssa.Value, offset, sizeof uint32) { |
| if obj := a.objectNode(cgn, ptr); obj != 0 { |
| // Pre-apply loadConstraint.solve(). |
| a.copy(result, obj+nodeid(offset), sizeof) |
| } else { |
| a.load(result, a.valueNode(ptr), offset, sizeof) |
| } |
| } |
| |
| // genOffsetAddr generates constraints for a 'v=ptr.field' (FieldAddr) |
| // or 'v=ptr[*]' (IndexAddr) instruction v. |
| func (a *analysis) genOffsetAddr(cgn *cgnode, v ssa.Value, ptr nodeid, offset uint32) { |
| dst := a.valueNode(v) |
| if obj := a.objectNode(cgn, v); obj != 0 { |
| // Pre-apply offsetAddrConstraint.solve(). |
| a.addressOf(v.Type(), dst, obj) |
| } else { |
| a.offsetAddr(v.Type(), dst, ptr, offset) |
| } |
| } |
| |
| // genStore generates constraints for *(ptr + offset) = val. |
| func (a *analysis) genStore(cgn *cgnode, ptr ssa.Value, val nodeid, offset, sizeof uint32) { |
| if obj := a.objectNode(cgn, ptr); obj != 0 { |
| // Pre-apply storeConstraint.solve(). |
| a.copy(obj+nodeid(offset), val, sizeof) |
| } else { |
| a.store(a.valueNode(ptr), val, offset, sizeof) |
| } |
| } |
| |
| // genInstr generates constraints for instruction instr in context cgn. |
| func (a *analysis) genInstr(cgn *cgnode, instr ssa.Instruction) { |
| if a.log != nil { |
| var prefix string |
| if val, ok := instr.(ssa.Value); ok { |
| prefix = val.Name() + " = " |
| } |
| fmt.Fprintf(a.log, "; %s%s\n", prefix, instr) |
| } |
| |
| switch instr := instr.(type) { |
| case *ssa.DebugRef: |
| // no-op. |
| |
| case *ssa.UnOp: |
| switch instr.Op { |
| case token.ARROW: // <-x |
| // We can ignore instr.CommaOk because the node we're |
| // altering is always at zero offset relative to instr |
| tElem := instr.X.Type().Underlying().(*types.Chan).Elem() |
| a.genLoad(cgn, a.valueNode(instr), instr.X, 0, a.sizeof(tElem)) |
| |
| case token.MUL: // *x |
| a.genLoad(cgn, a.valueNode(instr), instr.X, 0, a.sizeof(instr.Type())) |
| |
| default: |
| // NOT, SUB, XOR: no-op. |
| } |
| |
| case *ssa.BinOp: |
| // All no-ops. |
| |
| case ssa.CallInstruction: // *ssa.Call, *ssa.Go, *ssa.Defer |
| a.genCall(cgn, instr) |
| |
| case *ssa.ChangeType: |
| a.copy(a.valueNode(instr), a.valueNode(instr.X), 1) |
| |
| case *ssa.Convert: |
| a.genConv(instr, cgn) |
| |
| case *ssa.Extract: |
| a.copy(a.valueNode(instr), |
| a.valueOffsetNode(instr.Tuple, instr.Index), |
| a.sizeof(instr.Type())) |
| |
| case *ssa.FieldAddr: |
| a.genOffsetAddr(cgn, instr, a.valueNode(instr.X), |
| a.offsetOf(mustDeref(instr.X.Type()), instr.Field)) |
| |
| case *ssa.IndexAddr: |
| a.genOffsetAddr(cgn, instr, a.valueNode(instr.X), 1) |
| |
| case *ssa.Field: |
| a.copy(a.valueNode(instr), |
| a.valueOffsetNode(instr.X, instr.Field), |
| a.sizeof(instr.Type())) |
| |
| case *ssa.Index: |
| a.copy(a.valueNode(instr), 1+a.valueNode(instr.X), a.sizeof(instr.Type())) |
| |
| case *ssa.Select: |
| recv := a.valueOffsetNode(instr, 2) // instr : (index, recvOk, recv0, ... recv_n-1) |
| for _, st := range instr.States { |
| elemSize := a.sizeof(st.Chan.Type().Underlying().(*types.Chan).Elem()) |
| switch st.Dir { |
| case types.RecvOnly: |
| a.genLoad(cgn, recv, st.Chan, 0, elemSize) |
| recv += nodeid(elemSize) |
| |
| case types.SendOnly: |
| a.genStore(cgn, st.Chan, a.valueNode(st.Send), 0, elemSize) |
| } |
| } |
| |
| case *ssa.Return: |
| results := a.funcResults(cgn.obj) |
| for _, r := range instr.Results { |
| sz := a.sizeof(r.Type()) |
| a.copy(results, a.valueNode(r), sz) |
| results += nodeid(sz) |
| } |
| |
| case *ssa.Send: |
| a.genStore(cgn, instr.Chan, a.valueNode(instr.X), 0, a.sizeof(instr.X.Type())) |
| |
| case *ssa.Store: |
| a.genStore(cgn, instr.Addr, a.valueNode(instr.Val), 0, a.sizeof(instr.Val.Type())) |
| |
| case *ssa.Alloc, *ssa.MakeSlice, *ssa.MakeChan, *ssa.MakeMap, *ssa.MakeInterface: |
| v := instr.(ssa.Value) |
| a.addressOf(v.Type(), a.valueNode(v), a.objectNode(cgn, v)) |
| |
| case *ssa.ChangeInterface: |
| a.copy(a.valueNode(instr), a.valueNode(instr.X), 1) |
| |
| case *ssa.TypeAssert: |
| a.typeAssert(instr.AssertedType, a.valueNode(instr), a.valueNode(instr.X), true) |
| |
| case *ssa.Slice: |
| a.copy(a.valueNode(instr), a.valueNode(instr.X), 1) |
| |
| case *ssa.If, *ssa.Jump: |
| // no-op. |
| |
| case *ssa.Phi: |
| sz := a.sizeof(instr.Type()) |
| for _, e := range instr.Edges { |
| a.copy(a.valueNode(instr), a.valueNode(e), sz) |
| } |
| |
| case *ssa.MakeClosure: |
| fn := instr.Fn.(*ssa.Function) |
| a.copy(a.valueNode(instr), a.valueNode(fn), 1) |
| // Free variables are treated like global variables. |
| for i, b := range instr.Bindings { |
| a.copy(a.valueNode(fn.FreeVars[i]), a.valueNode(b), a.sizeof(b.Type())) |
| } |
| |
| case *ssa.RunDefers: |
| // The analysis is flow insensitive, so we just "call" |
| // defers as we encounter them. |
| |
| case *ssa.Range: |
| // Do nothing. Next{Iter: *ssa.Range} handles this case. |
| |
| case *ssa.Next: |
| if !instr.IsString { // map |
| // Assumes that Next is always directly applied to a Range result. |
| theMap := instr.Iter.(*ssa.Range).X |
| tMap := theMap.Type().Underlying().(*types.Map) |
| |
| ksize := a.sizeof(tMap.Key()) |
| vsize := a.sizeof(tMap.Elem()) |
| |
| // The k/v components of the Next tuple may each be invalid. |
| tTuple := instr.Type().(*types.Tuple) |
| |
| // Load from the map's (k,v) into the tuple's (ok, k, v). |
| osrc := uint32(0) // offset within map object |
| odst := uint32(1) // offset within tuple (initially just after 'ok bool') |
| sz := uint32(0) // amount to copy |
| |
| // Is key valid? |
| if tTuple.At(1).Type() != tInvalid { |
| sz += ksize |
| } else { |
| odst += ksize |
| osrc += ksize |
| } |
| |
| // Is value valid? |
| if tTuple.At(2).Type() != tInvalid { |
| sz += vsize |
| } |
| |
| a.genLoad(cgn, a.valueNode(instr)+nodeid(odst), theMap, osrc, sz) |
| } |
| |
| case *ssa.Lookup: |
| if tMap, ok := instr.X.Type().Underlying().(*types.Map); ok { |
| // CommaOk can be ignored: field 0 is a no-op. |
| ksize := a.sizeof(tMap.Key()) |
| vsize := a.sizeof(tMap.Elem()) |
| a.genLoad(cgn, a.valueNode(instr), instr.X, ksize, vsize) |
| } |
| |
| case *ssa.MapUpdate: |
| tmap := instr.Map.Type().Underlying().(*types.Map) |
| ksize := a.sizeof(tmap.Key()) |
| vsize := a.sizeof(tmap.Elem()) |
| a.genStore(cgn, instr.Map, a.valueNode(instr.Key), 0, ksize) |
| a.genStore(cgn, instr.Map, a.valueNode(instr.Value), ksize, vsize) |
| |
| case *ssa.Panic: |
| a.copy(a.panicNode, a.valueNode(instr.X), 1) |
| |
| default: |
| panic(fmt.Sprintf("unimplemented: %T", instr)) |
| } |
| } |
| |
| func (a *analysis) makeCGNode(fn *ssa.Function, obj nodeid, callersite *callsite) *cgnode { |
| cgn := &cgnode{fn: fn, obj: obj, callersite: callersite} |
| a.cgnodes = append(a.cgnodes, cgn) |
| return cgn |
| } |
| |
| // genRootCalls generates the synthetic root of the callgraph and the |
| // initial calls from it to the analysis scope, such as main, a test |
| // or a library. |
| // |
| func (a *analysis) genRootCalls() *cgnode { |
| r := a.prog.NewFunction("<root>", new(types.Signature), "root of callgraph") |
| root := a.makeCGNode(r, 0, nil) |
| |
| // TODO(adonovan): make an ssa utility to construct an actual |
| // root function so we don't need to special-case site-less |
| // call edges. |
| |
| // For each main package, call main.init(), main.main(). |
| for _, mainPkg := range a.config.Mains { |
| main := mainPkg.Func("main") |
| if main == nil { |
| panic(fmt.Sprintf("%s has no main function", mainPkg)) |
| } |
| |
| targets := a.addOneNode(main.Signature, "root.targets", nil) |
| site := &callsite{targets: targets} |
| root.sites = append(root.sites, site) |
| for _, fn := range [2]*ssa.Function{mainPkg.Func("init"), main} { |
| if a.log != nil { |
| fmt.Fprintf(a.log, "\troot call to %s:\n", fn) |
| } |
| a.copy(targets, a.valueNode(fn), 1) |
| } |
| } |
| |
| return root |
| } |
| |
| // genFunc generates constraints for function fn. |
| func (a *analysis) genFunc(cgn *cgnode) { |
| fn := cgn.fn |
| |
| impl := a.findIntrinsic(fn) |
| |
| if a.log != nil { |
| fmt.Fprintf(a.log, "\n\n==== Generating constraints for %s, %s\n", cgn, cgn.contour()) |
| |
| // Hack: don't display body if intrinsic. |
| if impl != nil { |
| fn2 := *cgn.fn // copy |
| fn2.Locals = nil |
| fn2.Blocks = nil |
| fn2.WriteTo(a.log) |
| } else { |
| cgn.fn.WriteTo(a.log) |
| } |
| } |
| |
| if impl != nil { |
| impl(a, cgn) |
| return |
| } |
| |
| if fn.Blocks == nil { |
| // External function with no intrinsic treatment. |
| // We'll warn about calls to such functions at the end. |
| return |
| } |
| |
| if a.log != nil { |
| fmt.Fprintln(a.log, "; Creating nodes for local values") |
| } |
| |
| a.localval = make(map[ssa.Value]nodeid) |
| a.localobj = make(map[ssa.Value]nodeid) |
| |
| // The value nodes for the params are in the func object block. |
| params := a.funcParams(cgn.obj) |
| for _, p := range fn.Params { |
| a.setValueNode(p, params, cgn) |
| params += nodeid(a.sizeof(p.Type())) |
| } |
| |
| // Free variables have global cardinality: |
| // the outer function sets them with MakeClosure; |
| // the inner function accesses them with FreeVar. |
| // |
| // TODO(adonovan): treat free vars context-sensitively. |
| |
| // Create value nodes for all value instructions |
| // since SSA may contain forward references. |
| var space [10]*ssa.Value |
| for _, b := range fn.Blocks { |
| for _, instr := range b.Instrs { |
| switch instr := instr.(type) { |
| case *ssa.Range: |
| // do nothing: it has a funky type, |
| // and *ssa.Next does all the work. |
| |
| case ssa.Value: |
| var comment string |
| if a.log != nil { |
| comment = instr.Name() |
| } |
| id := a.addNodes(instr.Type(), comment) |
| a.setValueNode(instr, id, cgn) |
| } |
| |
| // Record all address-taken functions (for presolver). |
| rands := instr.Operands(space[:0]) |
| if call, ok := instr.(ssa.CallInstruction); ok && !call.Common().IsInvoke() { |
| // Skip CallCommon.Value in "call" mode. |
| // TODO(adonovan): fix: relies on unspecified ordering. Specify it. |
| rands = rands[1:] |
| } |
| for _, rand := range rands { |
| if atf, ok := (*rand).(*ssa.Function); ok { |
| a.atFuncs[atf] = true |
| } |
| } |
| } |
| } |
| |
| // Generate constraints for instructions. |
| for _, b := range fn.Blocks { |
| for _, instr := range b.Instrs { |
| a.genInstr(cgn, instr) |
| } |
| } |
| |
| a.localval = nil |
| a.localobj = nil |
| } |
| |
| // genMethodsOf generates nodes and constraints for all methods of type T. |
| func (a *analysis) genMethodsOf(T types.Type) { |
| itf := isInterface(T) |
| |
| // TODO(adonovan): can we skip this entirely if itf is true? |
| // I think so, but the answer may depend on reflection. |
| mset := a.prog.MethodSets.MethodSet(T) |
| for i, n := 0, mset.Len(); i < n; i++ { |
| m := a.prog.MethodValue(mset.At(i)) |
| a.valueNode(m) |
| |
| if !itf { |
| // Methods of concrete types are address-taken functions. |
| a.atFuncs[m] = true |
| } |
| } |
| } |
| |
| // generate generates offline constraints for the entire program. |
| func (a *analysis) generate() { |
| start("Constraint generation") |
| if a.log != nil { |
| fmt.Fprintln(a.log, "==== Generating constraints") |
| } |
| |
| // Create a dummy node since we use the nodeid 0 for |
| // non-pointerlike variables. |
| a.addNodes(tInvalid, "(zero)") |
| |
| // Create the global node for panic values. |
| a.panicNode = a.addNodes(tEface, "panic") |
| |
| // Create nodes and constraints for all methods of reflect.rtype. |
| // (Shared contours are used by dynamic calls to reflect.Type |
| // methods---typically just String().) |
| if rtype := a.reflectRtypePtr; rtype != nil { |
| a.genMethodsOf(rtype) |
| } |
| |
| root := a.genRootCalls() |
| |
| if a.config.BuildCallGraph { |
| a.result.CallGraph = callgraph.New(root.fn) |
| } |
| |
| // Create nodes and constraints for all methods of all types |
| // that are dynamically accessible via reflection or interfaces. |
| for _, T := range a.prog.RuntimeTypes() { |
| a.genMethodsOf(T) |
| } |
| |
| // Generate constraints for functions as they become reachable |
| // from the roots. (No constraints are generated for functions |
| // that are dead in this analysis scope.) |
| for len(a.genq) > 0 { |
| cgn := a.genq[0] |
| a.genq = a.genq[1:] |
| a.genFunc(cgn) |
| } |
| |
| // The runtime magically allocates os.Args; so should we. |
| if os := a.prog.ImportedPackage("os"); os != nil { |
| // In effect: os.Args = new([1]string)[:] |
| T := types.NewSlice(types.Typ[types.String]) |
| obj := a.addNodes(sliceToArray(T), "<command-line args>") |
| a.endObject(obj, nil, "<command-line args>") |
| a.addressOf(T, a.objectNode(nil, os.Var("Args")), obj) |
| } |
| |
| // Discard generation state, to avoid confusion after node renumbering. |
| a.panicNode = 0 |
| a.globalval = nil |
| a.localval = nil |
| a.localobj = nil |
| |
| stop("Constraint generation") |
| } |