blob: 693dac968b0af135b76c0703b3fe250326653004 [file] [log] [blame]
// +build ignore
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Check for invalid cgo pointer passing.
// This looks for code that uses cgo to call C code passing values
// whose types are almost always invalid according to the cgo pointer
// sharing rules.
// Specifically, it warns about attempts to pass a Go chan, map, func,
// or slice to C, either directly, or via a pointer, array, or struct.
package main
import (
"go/ast"
"go/token"
"go/types"
)
func init() {
register("cgocall",
"check for types that may not be passed to cgo calls",
checkCgoCall,
callExpr)
}
func checkCgoCall(f *File, node ast.Node) {
x := node.(*ast.CallExpr)
// We are only looking for calls to functions imported from
// the "C" package.
sel, ok := x.Fun.(*ast.SelectorExpr)
if !ok {
return
}
id, ok := sel.X.(*ast.Ident)
if !ok {
return
}
pkgname, ok := f.pkg.uses[id].(*types.PkgName)
if !ok || pkgname.Imported().Path() != "C" {
return
}
// A call to C.CBytes passes a pointer but is always safe.
if sel.Sel.Name == "CBytes" {
return
}
for _, arg := range x.Args {
if !typeOKForCgoCall(cgoBaseType(f, arg), make(map[types.Type]bool)) {
f.Badf(arg.Pos(), "possibly passing Go type with embedded pointer to C")
}
// Check for passing the address of a bad type.
if conv, ok := arg.(*ast.CallExpr); ok && len(conv.Args) == 1 && f.hasBasicType(conv.Fun, types.UnsafePointer) {
arg = conv.Args[0]
}
if u, ok := arg.(*ast.UnaryExpr); ok && u.Op == token.AND {
if !typeOKForCgoCall(cgoBaseType(f, u.X), make(map[types.Type]bool)) {
f.Badf(arg.Pos(), "possibly passing Go type with embedded pointer to C")
}
}
}
}
// cgoBaseType tries to look through type conversions involving
// unsafe.Pointer to find the real type. It converts:
// unsafe.Pointer(x) => x
// *(*unsafe.Pointer)(unsafe.Pointer(&x)) => x
func cgoBaseType(f *File, arg ast.Expr) types.Type {
switch arg := arg.(type) {
case *ast.CallExpr:
if len(arg.Args) == 1 && f.hasBasicType(arg.Fun, types.UnsafePointer) {
return cgoBaseType(f, arg.Args[0])
}
case *ast.StarExpr:
call, ok := arg.X.(*ast.CallExpr)
if !ok || len(call.Args) != 1 {
break
}
// Here arg is *f(v).
t := f.pkg.types[call.Fun].Type
if t == nil {
break
}
ptr, ok := t.Underlying().(*types.Pointer)
if !ok {
break
}
// Here arg is *(*p)(v)
elem, ok := ptr.Elem().Underlying().(*types.Basic)
if !ok || elem.Kind() != types.UnsafePointer {
break
}
// Here arg is *(*unsafe.Pointer)(v)
call, ok = call.Args[0].(*ast.CallExpr)
if !ok || len(call.Args) != 1 {
break
}
// Here arg is *(*unsafe.Pointer)(f(v))
if !f.hasBasicType(call.Fun, types.UnsafePointer) {
break
}
// Here arg is *(*unsafe.Pointer)(unsafe.Pointer(v))
u, ok := call.Args[0].(*ast.UnaryExpr)
if !ok || u.Op != token.AND {
break
}
// Here arg is *(*unsafe.Pointer)(unsafe.Pointer(&v))
return cgoBaseType(f, u.X)
}
return f.pkg.types[arg].Type
}
// typeOKForCgoCall reports whether the type of arg is OK to pass to a
// C function using cgo. This is not true for Go types with embedded
// pointers. m is used to avoid infinite recursion on recursive types.
func typeOKForCgoCall(t types.Type, m map[types.Type]bool) bool {
if t == nil || m[t] {
return true
}
m[t] = true
switch t := t.Underlying().(type) {
case *types.Chan, *types.Map, *types.Signature, *types.Slice:
return false
case *types.Pointer:
return typeOKForCgoCall(t.Elem(), m)
case *types.Array:
return typeOKForCgoCall(t.Elem(), m)
case *types.Struct:
for i := 0; i < t.NumFields(); i++ {
if !typeOKForCgoCall(t.Field(i).Type(), m) {
return false
}
}
}
return true
}