| // Copyright 2018 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| // Package nilness inspects the control-flow graph of an SSA function |
| // and reports errors such as nil pointer dereferences and degenerate |
| // nil pointer comparisons. |
| package nilness |
| |
| import ( |
| "fmt" |
| "go/token" |
| "go/types" |
| |
| "golang.org/x/tools/go/analysis" |
| "golang.org/x/tools/go/analysis/passes/buildssa" |
| "golang.org/x/tools/go/ssa" |
| ) |
| |
| const Doc = `check for redundant or impossible nil comparisons |
| |
| The nilness checker inspects the control-flow graph of each function in |
| a package and reports nil pointer dereferences, degenerate nil |
| pointers, and panics with nil values. A degenerate comparison is of the form |
| x==nil or x!=nil where x is statically known to be nil or non-nil. These are |
| often a mistake, especially in control flow related to errors. Panics with nil |
| values are checked because they are not detectable by |
| |
| if r := recover(); r != nil { |
| |
| This check reports conditions such as: |
| |
| if f == nil { // impossible condition (f is a function) |
| } |
| |
| and: |
| |
| p := &v |
| ... |
| if p != nil { // tautological condition |
| } |
| |
| and: |
| |
| if p == nil { |
| print(*p) // nil dereference |
| } |
| |
| and: |
| |
| if p == nil { |
| panic(p) |
| } |
| ` |
| |
| var Analyzer = &analysis.Analyzer{ |
| Name: "nilness", |
| Doc: Doc, |
| Run: run, |
| Requires: []*analysis.Analyzer{buildssa.Analyzer}, |
| } |
| |
| func run(pass *analysis.Pass) (interface{}, error) { |
| ssainput := pass.ResultOf[buildssa.Analyzer].(*buildssa.SSA) |
| // TODO(48525): ssainput.SrcFuncs is missing fn._Instances(). runFunc will be skipped. |
| for _, fn := range ssainput.SrcFuncs { |
| runFunc(pass, fn) |
| } |
| return nil, nil |
| } |
| |
| func runFunc(pass *analysis.Pass, fn *ssa.Function) { |
| reportf := func(category string, pos token.Pos, format string, args ...interface{}) { |
| pass.Report(analysis.Diagnostic{ |
| Pos: pos, |
| Category: category, |
| Message: fmt.Sprintf(format, args...), |
| }) |
| } |
| |
| // notNil reports an error if v is provably nil. |
| notNil := func(stack []fact, instr ssa.Instruction, v ssa.Value, descr string) { |
| if nilnessOf(stack, v) == isnil { |
| reportf("nilderef", instr.Pos(), "nil dereference in "+descr) |
| } |
| } |
| |
| // visit visits reachable blocks of the CFG in dominance order, |
| // maintaining a stack of dominating nilness facts. |
| // |
| // By traversing the dom tree, we can pop facts off the stack as |
| // soon as we've visited a subtree. Had we traversed the CFG, |
| // we would need to retain the set of facts for each block. |
| seen := make([]bool, len(fn.Blocks)) // seen[i] means visit should ignore block i |
| var visit func(b *ssa.BasicBlock, stack []fact) |
| visit = func(b *ssa.BasicBlock, stack []fact) { |
| if seen[b.Index] { |
| return |
| } |
| seen[b.Index] = true |
| |
| // Report nil dereferences. |
| for _, instr := range b.Instrs { |
| switch instr := instr.(type) { |
| case ssa.CallInstruction: |
| notNil(stack, instr, instr.Common().Value, |
| instr.Common().Description()) |
| case *ssa.FieldAddr: |
| notNil(stack, instr, instr.X, "field selection") |
| case *ssa.IndexAddr: |
| notNil(stack, instr, instr.X, "index operation") |
| case *ssa.MapUpdate: |
| notNil(stack, instr, instr.Map, "map update") |
| case *ssa.Slice: |
| // A nilcheck occurs in ptr[:] iff ptr is a pointer to an array. |
| if _, ok := instr.X.Type().Underlying().(*types.Pointer); ok { |
| notNil(stack, instr, instr.X, "slice operation") |
| } |
| case *ssa.Store: |
| notNil(stack, instr, instr.Addr, "store") |
| case *ssa.TypeAssert: |
| if !instr.CommaOk { |
| notNil(stack, instr, instr.X, "type assertion") |
| } |
| case *ssa.UnOp: |
| if instr.Op == token.MUL { // *X |
| notNil(stack, instr, instr.X, "load") |
| } |
| } |
| } |
| |
| // Look for panics with nil value |
| for _, instr := range b.Instrs { |
| switch instr := instr.(type) { |
| case *ssa.Panic: |
| if nilnessOf(stack, instr.X) == isnil { |
| reportf("nilpanic", instr.Pos(), "panic with nil value") |
| } |
| case *ssa.SliceToArrayPointer: |
| nn := nilnessOf(stack, instr.X) |
| if nn == isnil && slice2ArrayPtrLen(instr) > 0 { |
| reportf("conversionpanic", instr.Pos(), "nil slice being cast to an array of len > 0 will always panic") |
| } |
| } |
| } |
| |
| // For nil comparison blocks, report an error if the condition |
| // is degenerate, and push a nilness fact on the stack when |
| // visiting its true and false successor blocks. |
| if binop, tsucc, fsucc := eq(b); binop != nil { |
| xnil := nilnessOf(stack, binop.X) |
| ynil := nilnessOf(stack, binop.Y) |
| |
| if ynil != unknown && xnil != unknown && (xnil == isnil || ynil == isnil) { |
| // Degenerate condition: |
| // the nilness of both operands is known, |
| // and at least one of them is nil. |
| var adj string |
| if (xnil == ynil) == (binop.Op == token.EQL) { |
| adj = "tautological" |
| } else { |
| adj = "impossible" |
| } |
| reportf("cond", binop.Pos(), "%s condition: %s %s %s", adj, xnil, binop.Op, ynil) |
| |
| // If tsucc's or fsucc's sole incoming edge is impossible, |
| // it is unreachable. Prune traversal of it and |
| // all the blocks it dominates. |
| // (We could be more precise with full dataflow |
| // analysis of control-flow joins.) |
| var skip *ssa.BasicBlock |
| if xnil == ynil { |
| skip = fsucc |
| } else { |
| skip = tsucc |
| } |
| for _, d := range b.Dominees() { |
| if d == skip && len(d.Preds) == 1 { |
| continue |
| } |
| visit(d, stack) |
| } |
| return |
| } |
| |
| // "if x == nil" or "if nil == y" condition; x, y are unknown. |
| if xnil == isnil || ynil == isnil { |
| var newFacts facts |
| if xnil == isnil { |
| // x is nil, y is unknown: |
| // t successor learns y is nil. |
| newFacts = expandFacts(fact{binop.Y, isnil}) |
| } else { |
| // x is nil, y is unknown: |
| // t successor learns x is nil. |
| newFacts = expandFacts(fact{binop.X, isnil}) |
| } |
| |
| for _, d := range b.Dominees() { |
| // Successor blocks learn a fact |
| // only at non-critical edges. |
| // (We could do be more precise with full dataflow |
| // analysis of control-flow joins.) |
| s := stack |
| if len(d.Preds) == 1 { |
| if d == tsucc { |
| s = append(s, newFacts...) |
| } else if d == fsucc { |
| s = append(s, newFacts.negate()...) |
| } |
| } |
| visit(d, s) |
| } |
| return |
| } |
| } |
| |
| for _, d := range b.Dominees() { |
| visit(d, stack) |
| } |
| } |
| |
| // Visit the entry block. No need to visit fn.Recover. |
| if fn.Blocks != nil { |
| visit(fn.Blocks[0], make([]fact, 0, 20)) // 20 is plenty |
| } |
| } |
| |
| // A fact records that a block is dominated |
| // by the condition v == nil or v != nil. |
| type fact struct { |
| value ssa.Value |
| nilness nilness |
| } |
| |
| func (f fact) negate() fact { return fact{f.value, -f.nilness} } |
| |
| type nilness int |
| |
| const ( |
| isnonnil = -1 |
| unknown nilness = 0 |
| isnil = 1 |
| ) |
| |
| var nilnessStrings = []string{"non-nil", "unknown", "nil"} |
| |
| func (n nilness) String() string { return nilnessStrings[n+1] } |
| |
| // nilnessOf reports whether v is definitely nil, definitely not nil, |
| // or unknown given the dominating stack of facts. |
| func nilnessOf(stack []fact, v ssa.Value) nilness { |
| switch v := v.(type) { |
| // unwrap ChangeInterface and Slice values recursively, to detect if underlying |
| // values have any facts recorded or are otherwise known with regard to nilness. |
| // |
| // This work must be in addition to expanding facts about |
| // ChangeInterfaces during inference/fact gathering because this covers |
| // cases where the nilness of a value is intrinsic, rather than based |
| // on inferred facts, such as a zero value interface variable. That |
| // said, this work alone would only inform us when facts are about |
| // underlying values, rather than outer values, when the analysis is |
| // transitive in both directions. |
| case *ssa.ChangeInterface: |
| if underlying := nilnessOf(stack, v.X); underlying != unknown { |
| return underlying |
| } |
| case *ssa.Slice: |
| if underlying := nilnessOf(stack, v.X); underlying != unknown { |
| return underlying |
| } |
| case *ssa.SliceToArrayPointer: |
| nn := nilnessOf(stack, v.X) |
| if slice2ArrayPtrLen(v) > 0 { |
| if nn == isnil { |
| // We know that *(*[1]byte)(nil) is going to panic because of the |
| // conversion. So return unknown to the caller, prevent useless |
| // nil deference reporting due to * operator. |
| return unknown |
| } |
| // Otherwise, the conversion will yield a non-nil pointer to array. |
| // Note that the instruction can still panic if array length greater |
| // than slice length. If the value is used by another instruction, |
| // that instruction can assume the panic did not happen when that |
| // instruction is reached. |
| return isnonnil |
| } |
| // In case array length is zero, the conversion result depends on nilness of the slice. |
| if nn != unknown { |
| return nn |
| } |
| } |
| |
| // Is value intrinsically nil or non-nil? |
| switch v := v.(type) { |
| case *ssa.Alloc, |
| *ssa.FieldAddr, |
| *ssa.FreeVar, |
| *ssa.Function, |
| *ssa.Global, |
| *ssa.IndexAddr, |
| *ssa.MakeChan, |
| *ssa.MakeClosure, |
| *ssa.MakeInterface, |
| *ssa.MakeMap, |
| *ssa.MakeSlice: |
| return isnonnil |
| case *ssa.Const: |
| if v.IsNil() { |
| return isnil |
| } else { |
| return isnonnil |
| } |
| } |
| |
| // Search dominating control-flow facts. |
| for _, f := range stack { |
| if f.value == v { |
| return f.nilness |
| } |
| } |
| return unknown |
| } |
| |
| func slice2ArrayPtrLen(v *ssa.SliceToArrayPointer) int64 { |
| return v.Type().(*types.Pointer).Elem().Underlying().(*types.Array).Len() |
| } |
| |
| // If b ends with an equality comparison, eq returns the operation and |
| // its true (equal) and false (not equal) successors. |
| func eq(b *ssa.BasicBlock) (op *ssa.BinOp, tsucc, fsucc *ssa.BasicBlock) { |
| if If, ok := b.Instrs[len(b.Instrs)-1].(*ssa.If); ok { |
| if binop, ok := If.Cond.(*ssa.BinOp); ok { |
| switch binop.Op { |
| case token.EQL: |
| return binop, b.Succs[0], b.Succs[1] |
| case token.NEQ: |
| return binop, b.Succs[1], b.Succs[0] |
| } |
| } |
| } |
| return nil, nil, nil |
| } |
| |
| // expandFacts takes a single fact and returns the set of facts that can be |
| // known about it or any of its related values. Some operations, like |
| // ChangeInterface, have transitive nilness, such that if you know the |
| // underlying value is nil, you also know the value itself is nil, and vice |
| // versa. This operation allows callers to match on any of the related values |
| // in analyses, rather than just the one form of the value that happened to |
| // appear in a comparison. |
| // |
| // This work must be in addition to unwrapping values within nilnessOf because |
| // while this work helps give facts about transitively known values based on |
| // inferred facts, the recursive check within nilnessOf covers cases where |
| // nilness facts are intrinsic to the underlying value, such as a zero value |
| // interface variables. |
| // |
| // ChangeInterface is the only expansion currently supported, but others, like |
| // Slice, could be added. At this time, this tool does not check slice |
| // operations in a way this expansion could help. See |
| // https://play.golang.org/p/mGqXEp7w4fR for an example. |
| func expandFacts(f fact) []fact { |
| ff := []fact{f} |
| |
| Loop: |
| for { |
| switch v := f.value.(type) { |
| case *ssa.ChangeInterface: |
| f = fact{v.X, f.nilness} |
| ff = append(ff, f) |
| default: |
| break Loop |
| } |
| } |
| |
| return ff |
| } |
| |
| type facts []fact |
| |
| func (ff facts) negate() facts { |
| nn := make([]fact, len(ff)) |
| for i, f := range ff { |
| nn[i] = f.negate() |
| } |
| return nn |
| } |