| // Copyright 2023 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package inline |
| |
| // This file defines the callee side of the "fallible constant" analysis. |
| |
| import ( |
| "fmt" |
| "go/ast" |
| "go/constant" |
| "go/format" |
| "go/token" |
| "go/types" |
| "strconv" |
| "strings" |
| |
| "golang.org/x/tools/go/types/typeutil" |
| "golang.org/x/tools/internal/aliases" |
| "golang.org/x/tools/internal/typeparams" |
| ) |
| |
| // falconResult is the result of the analysis of the callee. |
| type falconResult struct { |
| Types []falconType // types for falcon constraint environment |
| Constraints []string // constraints (Go expressions) on values of fallible constants |
| } |
| |
| // A falconType specifies the name and underlying type of a synthetic |
| // defined type for use in falcon constraints. |
| // |
| // Unique types from callee code are bijectively mapped onto falcon |
| // types so that constraints are independent of callee type |
| // information but preserve type equivalence classes. |
| // |
| // Fresh names are deliberately obscure to avoid shadowing even if a |
| // callee parameter has a nanme like "int" or "any". |
| type falconType struct { |
| Name string |
| Kind types.BasicKind // string/number/bool |
| } |
| |
| // falcon identifies "fallible constant" expressions, which are |
| // expressions that may fail to compile if one or more of their |
| // operands is changed from non-constant to constant. |
| // |
| // Consider: |
| // |
| // func sub(s string, i, j int) string { return s[i:j] } |
| // |
| // If parameters are replaced by constants, the compiler is |
| // required to perform these additional checks: |
| // |
| // - if i is constant, 0 <= i. |
| // - if s and i are constant, i <= len(s). |
| // - ditto for j. |
| // - if i and j are constant, i <= j. |
| // |
| // s[i:j] is thus a "fallible constant" expression dependent on {s, i, |
| // j}. Each falcon creates a set of conditional constraints across one |
| // or more parameter variables. |
| // |
| // - When inlining a call such as sub("abc", -1, 2), the parameter i |
| // cannot be eliminated by substitution as its argument value is |
| // negative. |
| // |
| // - When inlining sub("", 2, 1), all three parameters cannot be be |
| // simultaneously eliminated by substitution without violating i |
| // <= len(s) and j <= len(s), but the parameters i and j could be |
| // safely eliminated without s. |
| // |
| // Parameters that cannot be eliminated must remain non-constant, |
| // either in the form of a binding declaration: |
| // |
| // { var i int = -1; return "abc"[i:2] } |
| // |
| // or a parameter of a literalization: |
| // |
| // func (i int) string { return "abc"[i:2] }(-1) |
| // |
| // These example expressions are obviously doomed to fail at run |
| // time, but in realistic cases such expressions are dominated by |
| // appropriate conditions that make them reachable only when safe: |
| // |
| // if 0 <= i && i <= j && j <= len(s) { _ = s[i:j] } |
| // |
| // (In principle a more sophisticated inliner could entirely eliminate |
| // such unreachable blocks based on the condition being always-false |
| // for the given parameter substitution, but this is tricky to do safely |
| // because the type-checker considers only a single configuration. |
| // Consider: if runtime.GOOS == "linux" { ... }.) |
| // |
| // We believe this is an exhaustive list of "fallible constant" operations: |
| // |
| // - switch z { case x: case y } // duplicate case values |
| // - s[i], s[i:j], s[i:j:k] // index out of bounds (0 <= i <= j <= k <= len(s)) |
| // - T{x: 0} // index out of bounds, duplicate index |
| // - x/y, x%y, x/=y, x%=y // integer division by zero; minint/-1 overflow |
| // - x+y, x-y, x*y // arithmetic overflow |
| // - x<<y // shift out of range |
| // - -x // negation of minint |
| // - T(x) // value out of range |
| // |
| // The fundamental reason for this elaborate algorithm is that the |
| // "separate analysis" of callee and caller, as required when running |
| // in an environment such as unitchecker, means that there is no way |
| // for us to simply invoke the type checker on the combination of |
| // caller and callee code, as by the time we analyze the caller, we no |
| // longer have access to type information for the callee (and, in |
| // particular, any of its direct dependencies that are not direct |
| // dependencies of the caller). So, in effect, we are forced to map |
| // the problem in a neutral (callee-type-independent) constraint |
| // system that can be verified later. |
| func falcon(logf func(string, ...any), fset *token.FileSet, params map[*types.Var]*paramInfo, info *types.Info, decl *ast.FuncDecl) falconResult { |
| |
| st := &falconState{ |
| logf: logf, |
| fset: fset, |
| params: params, |
| info: info, |
| decl: decl, |
| } |
| |
| // type mapping |
| st.int = st.typename(types.Typ[types.Int]) |
| st.any = "interface{}" // don't use "any" as it may be shadowed |
| for obj, info := range st.params { |
| if isBasic(obj.Type(), types.IsConstType) { |
| info.FalconType = st.typename(obj.Type()) |
| } |
| } |
| |
| st.stmt(st.decl.Body) |
| |
| return st.result |
| } |
| |
| type falconState struct { |
| // inputs |
| logf func(string, ...any) |
| fset *token.FileSet |
| params map[*types.Var]*paramInfo |
| info *types.Info |
| decl *ast.FuncDecl |
| |
| // working state |
| int string |
| any string |
| typenames typeutil.Map |
| |
| result falconResult |
| } |
| |
| // typename returns the name in the falcon constraint system |
| // of a given string/number/bool type t. Falcon types are |
| // specified directly in go/types data structures rather than |
| // by name, avoiding potential shadowing conflicts with |
| // confusing parameter names such as "int". |
| // |
| // Also, each distinct type (as determined by types.Identical) |
| // is mapped to a fresh type in the falcon system so that we |
| // can map the types in the callee code into a neutral form |
| // that does not depend on imports, allowing us to detect |
| // potential conflicts such as |
| // |
| // map[any]{T1(1): 0, T2(1): 0} |
| // |
| // where T1=T2. |
| func (st *falconState) typename(t types.Type) string { |
| name, ok := st.typenames.At(t).(string) |
| if !ok { |
| basic := t.Underlying().(*types.Basic) |
| |
| // That dot ۰ is an Arabic zero numeral U+06F0. |
| // It is very unlikely to appear in a real program. |
| // TODO(adonovan): use a non-heuristic solution. |
| name = fmt.Sprintf("%s۰%d", basic, st.typenames.Len()) |
| st.typenames.Set(t, name) |
| st.logf("falcon: emit type %s %s // %q", name, basic, t) |
| st.result.Types = append(st.result.Types, falconType{ |
| Name: name, |
| Kind: basic.Kind(), |
| }) |
| } |
| return name |
| } |
| |
| // -- constraint emission -- |
| |
| // emit emits a Go expression that must have a legal type. |
| // In effect, we let the go/types constant folding algorithm |
| // do most of the heavy lifting (though it may be hard to |
| // believe from the complexity of this algorithm!). |
| func (st *falconState) emit(constraint ast.Expr) { |
| var out strings.Builder |
| if err := format.Node(&out, st.fset, constraint); err != nil { |
| panic(err) // can't happen |
| } |
| syntax := out.String() |
| st.logf("falcon: emit constraint %s", syntax) |
| st.result.Constraints = append(st.result.Constraints, syntax) |
| } |
| |
| // emitNonNegative emits an []T{}[index] constraint, |
| // which ensures index is non-negative if constant. |
| func (st *falconState) emitNonNegative(index ast.Expr) { |
| st.emit(&ast.IndexExpr{ |
| X: &ast.CompositeLit{ |
| Type: &ast.ArrayType{ |
| Elt: makeIdent(st.int), |
| }, |
| }, |
| Index: index, |
| }) |
| } |
| |
| // emitMonotonic emits an []T{}[i:j] constraint, |
| // which ensures i <= j if both are constant. |
| func (st *falconState) emitMonotonic(i, j ast.Expr) { |
| st.emit(&ast.SliceExpr{ |
| X: &ast.CompositeLit{ |
| Type: &ast.ArrayType{ |
| Elt: makeIdent(st.int), |
| }, |
| }, |
| Low: i, |
| High: j, |
| }) |
| } |
| |
| // emitUnique emits a T{elem1: 0, ... elemN: 0} constraint, |
| // which ensures that all constant elems are unique. |
| // T may be a map, slice, or array depending |
| // on the desired check semantics. |
| func (st *falconState) emitUnique(typ ast.Expr, elems []ast.Expr) { |
| if len(elems) > 1 { |
| var elts []ast.Expr |
| for _, elem := range elems { |
| elts = append(elts, &ast.KeyValueExpr{ |
| Key: elem, |
| Value: makeIntLit(0), |
| }) |
| } |
| st.emit(&ast.CompositeLit{ |
| Type: typ, |
| Elts: elts, |
| }) |
| } |
| } |
| |
| // -- traversal -- |
| |
| // The traversal functions scan the callee body for expressions that |
| // are not constant but would become constant if the parameter vars |
| // were redeclared as constants, and emits for each one a constraint |
| // (a Go expression) with the property that it will not type-check |
| // (using types.CheckExpr) if the particular argument values are |
| // unsuitable. |
| // |
| // These constraints are checked by Inline with the actual |
| // constant argument values. Violations cause it to reject |
| // parameters as candidates for substitution. |
| |
| func (st *falconState) stmt(s ast.Stmt) { |
| ast.Inspect(s, func(n ast.Node) bool { |
| switch n := n.(type) { |
| case ast.Expr: |
| _ = st.expr(n) |
| return false // skip usual traversal |
| |
| case *ast.AssignStmt: |
| switch n.Tok { |
| case token.QUO_ASSIGN, token.REM_ASSIGN: |
| // x /= y |
| // Possible "integer division by zero" |
| // Emit constraint: 1/y. |
| _ = st.expr(n.Lhs[0]) |
| kY := st.expr(n.Rhs[0]) |
| if kY, ok := kY.(ast.Expr); ok { |
| op := token.QUO |
| if n.Tok == token.REM_ASSIGN { |
| op = token.REM |
| } |
| st.emit(&ast.BinaryExpr{ |
| Op: op, |
| X: makeIntLit(1), |
| Y: kY, |
| }) |
| } |
| return false // skip usual traversal |
| } |
| |
| case *ast.SwitchStmt: |
| if n.Init != nil { |
| st.stmt(n.Init) |
| } |
| tBool := types.Type(types.Typ[types.Bool]) |
| tagType := tBool // default: true |
| if n.Tag != nil { |
| st.expr(n.Tag) |
| tagType = st.info.TypeOf(n.Tag) |
| } |
| |
| // Possible "duplicate case value". |
| // Emit constraint map[T]int{v1: 0, ..., vN:0} |
| // to ensure all maybe-constant case values are unique |
| // (unless switch tag is boolean, which is relaxed). |
| var unique []ast.Expr |
| for _, clause := range n.Body.List { |
| clause := clause.(*ast.CaseClause) |
| for _, caseval := range clause.List { |
| if k := st.expr(caseval); k != nil { |
| unique = append(unique, st.toExpr(k)) |
| } |
| } |
| for _, stmt := range clause.Body { |
| st.stmt(stmt) |
| } |
| } |
| if unique != nil && !types.Identical(tagType.Underlying(), tBool) { |
| tname := st.any |
| if !types.IsInterface(tagType) { |
| tname = st.typename(tagType) |
| } |
| t := &ast.MapType{ |
| Key: makeIdent(tname), |
| Value: makeIdent(st.int), |
| } |
| st.emitUnique(t, unique) |
| } |
| } |
| return true |
| }) |
| } |
| |
| // fieldTypes visits the .Type of each field in the list. |
| func (st *falconState) fieldTypes(fields *ast.FieldList) { |
| if fields != nil { |
| for _, field := range fields.List { |
| _ = st.expr(field.Type) |
| } |
| } |
| } |
| |
| // expr visits the expression (or type) and returns a |
| // non-nil result if the expression is constant or would |
| // become constant if all suitable function parameters were |
| // redeclared as constants. |
| // |
| // If the expression is constant, st.expr returns its type |
| // and value (types.TypeAndValue). If the expression would |
| // become constant, st.expr returns an ast.Expr tree whose |
| // leaves are literals and parameter references, and whose |
| // interior nodes are operations that may become constant, |
| // such as -x, x+y, f(x), and T(x). We call these would-be |
| // constant expressions "fallible constants", since they may |
| // fail to type-check for some values of x, i, and j. (We |
| // refer to the non-nil cases collectively as "maybe |
| // constant", and the nil case as "definitely non-constant".) |
| // |
| // As a side effect, st.expr emits constraints for each |
| // fallible constant expression; this is its main purpose. |
| // |
| // Consequently, st.expr must visit the entire subtree so |
| // that all necessary constraints are emitted. It may not |
| // short-circuit the traversal when it encounters a constant |
| // subexpression as constants may contain arbitrary other |
| // syntax that may impose constraints. Consider (as always) |
| // this contrived but legal example of a type parameter (!) |
| // that contains statement syntax: |
| // |
| // func f[T [unsafe.Sizeof(func() { stmts })]int]() |
| // |
| // There is no need to emit constraints for (e.g.) s[i] when s |
| // and i are already constants, because we know the expression |
| // is sound, but it is sometimes easier to emit these |
| // redundant constraints than to avoid them. |
| func (st *falconState) expr(e ast.Expr) (res any) { // = types.TypeAndValue | ast.Expr |
| tv := st.info.Types[e] |
| if tv.Value != nil { |
| // A constant value overrides any other result. |
| defer func() { res = tv }() |
| } |
| |
| switch e := e.(type) { |
| case *ast.Ident: |
| if v, ok := st.info.Uses[e].(*types.Var); ok { |
| if _, ok := st.params[v]; ok && isBasic(v.Type(), types.IsConstType) { |
| return e // reference to constable parameter |
| } |
| } |
| // (References to *types.Const are handled by the defer.) |
| |
| case *ast.BasicLit: |
| // constant |
| |
| case *ast.ParenExpr: |
| return st.expr(e.X) |
| |
| case *ast.FuncLit: |
| _ = st.expr(e.Type) |
| st.stmt(e.Body) |
| // definitely non-constant |
| |
| case *ast.CompositeLit: |
| // T{k: v, ...}, where T ∈ {array,*array,slice,map}, |
| // imposes a constraint that all constant k are |
| // distinct and, for arrays [n]T, within range 0-n. |
| // |
| // Types matter, not just values. For example, |
| // an interface-keyed map may contain keys |
| // that are numerically equal so long as they |
| // are of distinct types. For example: |
| // |
| // type myint int |
| // map[any]bool{1: true, 1: true} // error: duplicate key |
| // map[any]bool{1: true, int16(1): true} // ok |
| // map[any]bool{1: true, myint(1): true} // ok |
| // |
| // This can be asserted by emitting a |
| // constraint of the form T{k1: 0, ..., kN: 0}. |
| if e.Type != nil { |
| _ = st.expr(e.Type) |
| } |
| t := deref(typeparams.CoreType(deref(tv.Type))) |
| var uniques []ast.Expr |
| for _, elt := range e.Elts { |
| if kv, ok := elt.(*ast.KeyValueExpr); ok { |
| if !is[*types.Struct](t) { |
| if k := st.expr(kv.Key); k != nil { |
| uniques = append(uniques, st.toExpr(k)) |
| } |
| } |
| _ = st.expr(kv.Value) |
| } else { |
| _ = st.expr(elt) |
| } |
| } |
| if uniques != nil { |
| // Inv: not a struct. |
| |
| // The type T in constraint T{...} depends on the CompLit: |
| // - for a basic-keyed map, use map[K]int; |
| // - for an interface-keyed map, use map[any]int; |
| // - for a slice, use []int; |
| // - for an array or *array, use [n]int. |
| // The last two entail progressively stronger index checks. |
| var ct ast.Expr // type syntax for constraint |
| switch t := aliases.Unalias(t).(type) { |
| case *types.Map: |
| if types.IsInterface(t.Key()) { |
| ct = &ast.MapType{ |
| Key: makeIdent(st.any), |
| Value: makeIdent(st.int), |
| } |
| } else { |
| ct = &ast.MapType{ |
| Key: makeIdent(st.typename(t.Key())), |
| Value: makeIdent(st.int), |
| } |
| } |
| case *types.Array: // or *array |
| ct = &ast.ArrayType{ |
| Len: makeIntLit(t.Len()), |
| Elt: makeIdent(st.int), |
| } |
| default: |
| panic(t) |
| } |
| st.emitUnique(ct, uniques) |
| } |
| // definitely non-constant |
| |
| case *ast.SelectorExpr: |
| _ = st.expr(e.X) |
| _ = st.expr(e.Sel) |
| // The defer is sufficient to handle |
| // qualified identifiers (pkg.Const). |
| // All other cases are definitely non-constant. |
| |
| case *ast.IndexExpr: |
| if tv.IsType() { |
| // type C[T] |
| _ = st.expr(e.X) |
| _ = st.expr(e.Index) |
| } else { |
| // term x[i] |
| // |
| // Constraints (if x is slice/string/array/*array, not map): |
| // - i >= 0 |
| // if i is a fallible constant |
| // - i < len(x) |
| // if x is array/*array and |
| // i is a fallible constant; |
| // or if s is a string and both i, |
| // s are maybe-constants, |
| // but not both are constants. |
| kX := st.expr(e.X) |
| kI := st.expr(e.Index) |
| if kI != nil && !is[*types.Map](st.info.TypeOf(e.X).Underlying()) { |
| if kI, ok := kI.(ast.Expr); ok { |
| st.emitNonNegative(kI) |
| } |
| // Emit constraint to check indices against known length. |
| // TODO(adonovan): factor with SliceExpr logic. |
| var x ast.Expr |
| if kX != nil { |
| // string |
| x = st.toExpr(kX) |
| } else if arr, ok := deref(st.info.TypeOf(e.X).Underlying()).(*types.Array); ok { |
| // array, *array |
| x = &ast.CompositeLit{ |
| Type: &ast.ArrayType{ |
| Len: makeIntLit(arr.Len()), |
| Elt: makeIdent(st.int), |
| }, |
| } |
| } |
| if x != nil { |
| st.emit(&ast.IndexExpr{ |
| X: x, |
| Index: st.toExpr(kI), |
| }) |
| } |
| } |
| } |
| // definitely non-constant |
| |
| case *ast.SliceExpr: |
| // x[low:high:max] |
| // |
| // Emit non-negative constraints for each index, |
| // plus low <= high <= max <= len(x) |
| // for each pair that are maybe-constant |
| // but not definitely constant. |
| |
| kX := st.expr(e.X) |
| var kLow, kHigh, kMax any |
| if e.Low != nil { |
| kLow = st.expr(e.Low) |
| if kLow != nil { |
| if kLow, ok := kLow.(ast.Expr); ok { |
| st.emitNonNegative(kLow) |
| } |
| } |
| } |
| if e.High != nil { |
| kHigh = st.expr(e.High) |
| if kHigh != nil { |
| if kHigh, ok := kHigh.(ast.Expr); ok { |
| st.emitNonNegative(kHigh) |
| } |
| if kLow != nil { |
| st.emitMonotonic(st.toExpr(kLow), st.toExpr(kHigh)) |
| } |
| } |
| } |
| if e.Max != nil { |
| kMax = st.expr(e.Max) |
| if kMax != nil { |
| if kMax, ok := kMax.(ast.Expr); ok { |
| st.emitNonNegative(kMax) |
| } |
| if kHigh != nil { |
| st.emitMonotonic(st.toExpr(kHigh), st.toExpr(kMax)) |
| } |
| } |
| } |
| |
| // Emit constraint to check indices against known length. |
| var x ast.Expr |
| if kX != nil { |
| // string |
| x = st.toExpr(kX) |
| } else if arr, ok := deref(st.info.TypeOf(e.X).Underlying()).(*types.Array); ok { |
| // array, *array |
| x = &ast.CompositeLit{ |
| Type: &ast.ArrayType{ |
| Len: makeIntLit(arr.Len()), |
| Elt: makeIdent(st.int), |
| }, |
| } |
| } |
| if x != nil { |
| // Avoid slice[::max] if kHigh is nonconstant (nil). |
| high, max := st.toExpr(kHigh), st.toExpr(kMax) |
| if high == nil { |
| high = max // => slice[:max:max] |
| } |
| st.emit(&ast.SliceExpr{ |
| X: x, |
| Low: st.toExpr(kLow), |
| High: high, |
| Max: max, |
| }) |
| } |
| // definitely non-constant |
| |
| case *ast.TypeAssertExpr: |
| _ = st.expr(e.X) |
| if e.Type != nil { |
| _ = st.expr(e.Type) |
| } |
| |
| case *ast.CallExpr: |
| _ = st.expr(e.Fun) |
| if tv, ok := st.info.Types[e.Fun]; ok && tv.IsType() { |
| // conversion T(x) |
| // |
| // Possible "value out of range". |
| kX := st.expr(e.Args[0]) |
| if kX != nil && isBasic(tv.Type, types.IsConstType) { |
| conv := convert(makeIdent(st.typename(tv.Type)), st.toExpr(kX)) |
| if is[ast.Expr](kX) { |
| st.emit(conv) |
| } |
| return conv |
| } |
| return nil // definitely non-constant |
| } |
| |
| // call f(x) |
| |
| all := true // all args are possibly-constant |
| kArgs := make([]ast.Expr, len(e.Args)) |
| for i, arg := range e.Args { |
| if kArg := st.expr(arg); kArg != nil { |
| kArgs[i] = st.toExpr(kArg) |
| } else { |
| all = false |
| } |
| } |
| |
| // Calls to built-ins with fallibly constant arguments |
| // may become constant. All other calls are either |
| // constant or non-constant |
| if id, ok := e.Fun.(*ast.Ident); ok && all && tv.Value == nil { |
| if builtin, ok := st.info.Uses[id].(*types.Builtin); ok { |
| switch builtin.Name() { |
| case "len", "imag", "real", "complex", "min", "max": |
| return &ast.CallExpr{ |
| Fun: id, |
| Args: kArgs, |
| Ellipsis: e.Ellipsis, |
| } |
| } |
| } |
| } |
| |
| case *ast.StarExpr: // *T, *ptr |
| _ = st.expr(e.X) |
| |
| case *ast.UnaryExpr: |
| // + - ! ^ & <- ~ |
| // |
| // Possible "negation of minint". |
| // Emit constraint: -x |
| kX := st.expr(e.X) |
| if kX != nil && !is[types.TypeAndValue](kX) { |
| if e.Op == token.SUB { |
| st.emit(&ast.UnaryExpr{ |
| Op: e.Op, |
| X: st.toExpr(kX), |
| }) |
| } |
| |
| return &ast.UnaryExpr{ |
| Op: e.Op, |
| X: st.toExpr(kX), |
| } |
| } |
| |
| case *ast.BinaryExpr: |
| kX := st.expr(e.X) |
| kY := st.expr(e.Y) |
| switch e.Op { |
| case token.QUO, token.REM: |
| // x/y, x%y |
| // |
| // Possible "integer division by zero" or |
| // "minint / -1" overflow. |
| // Emit constraint: x/y or 1/y |
| if kY != nil { |
| if kX == nil { |
| kX = makeIntLit(1) |
| } |
| st.emit(&ast.BinaryExpr{ |
| Op: e.Op, |
| X: st.toExpr(kX), |
| Y: st.toExpr(kY), |
| }) |
| } |
| |
| case token.ADD, token.SUB, token.MUL: |
| // x+y, x-y, x*y |
| // |
| // Possible "arithmetic overflow". |
| // Emit constraint: x+y |
| if kX != nil && kY != nil { |
| st.emit(&ast.BinaryExpr{ |
| Op: e.Op, |
| X: st.toExpr(kX), |
| Y: st.toExpr(kY), |
| }) |
| } |
| |
| case token.SHL, token.SHR: |
| // x << y, x >> y |
| // |
| // Possible "constant shift too large". |
| // Either operand may be too large individually, |
| // and they may be too large together. |
| // Emit constraint: |
| // x << y (if both maybe-constant) |
| // x << 0 (if y is non-constant) |
| // 1 << y (if x is non-constant) |
| if kX != nil || kY != nil { |
| x := st.toExpr(kX) |
| if x == nil { |
| x = makeIntLit(1) |
| } |
| y := st.toExpr(kY) |
| if y == nil { |
| y = makeIntLit(0) |
| } |
| st.emit(&ast.BinaryExpr{ |
| Op: e.Op, |
| X: x, |
| Y: y, |
| }) |
| } |
| |
| case token.LSS, token.GTR, token.EQL, token.NEQ, token.LEQ, token.GEQ: |
| // < > == != <= <= |
| // |
| // A "x cmp y" expression with constant operands x, y is |
| // itself constant, but I can't see how a constant bool |
| // could be fallible: the compiler doesn't reject duplicate |
| // boolean cases in a switch, presumably because boolean |
| // switches are less like n-way branches and more like |
| // sequential if-else chains with possibly overlapping |
| // conditions; and there is (sadly) no way to convert a |
| // boolean constant to an int constant. |
| } |
| if kX != nil && kY != nil { |
| return &ast.BinaryExpr{ |
| Op: e.Op, |
| X: st.toExpr(kX), |
| Y: st.toExpr(kY), |
| } |
| } |
| |
| // types |
| // |
| // We need to visit types (and even type parameters) |
| // in order to reach all the places where things could go wrong: |
| // |
| // const ( |
| // s = "" |
| // i = 0 |
| // ) |
| // type C[T [unsafe.Sizeof(func() { _ = s[i] })]int] bool |
| |
| case *ast.IndexListExpr: |
| _ = st.expr(e.X) |
| for _, expr := range e.Indices { |
| _ = st.expr(expr) |
| } |
| |
| case *ast.Ellipsis: |
| if e.Elt != nil { |
| _ = st.expr(e.Elt) |
| } |
| |
| case *ast.ArrayType: |
| if e.Len != nil { |
| _ = st.expr(e.Len) |
| } |
| _ = st.expr(e.Elt) |
| |
| case *ast.StructType: |
| st.fieldTypes(e.Fields) |
| |
| case *ast.FuncType: |
| st.fieldTypes(e.TypeParams) |
| st.fieldTypes(e.Params) |
| st.fieldTypes(e.Results) |
| |
| case *ast.InterfaceType: |
| st.fieldTypes(e.Methods) |
| |
| case *ast.MapType: |
| _ = st.expr(e.Key) |
| _ = st.expr(e.Value) |
| |
| case *ast.ChanType: |
| _ = st.expr(e.Value) |
| } |
| return |
| } |
| |
| // toExpr converts the result of visitExpr to a falcon expression. |
| // (We don't do this in visitExpr as we first need to discriminate |
| // constants from maybe-constants.) |
| func (st *falconState) toExpr(x any) ast.Expr { |
| switch x := x.(type) { |
| case nil: |
| return nil |
| |
| case types.TypeAndValue: |
| lit := makeLiteral(x.Value) |
| if !isBasic(x.Type, types.IsUntyped) { |
| // convert to "typed" type |
| lit = &ast.CallExpr{ |
| Fun: makeIdent(st.typename(x.Type)), |
| Args: []ast.Expr{lit}, |
| } |
| } |
| return lit |
| |
| case ast.Expr: |
| return x |
| |
| default: |
| panic(x) |
| } |
| } |
| |
| func makeLiteral(v constant.Value) ast.Expr { |
| switch v.Kind() { |
| case constant.Bool: |
| // Rather than refer to the true or false built-ins, |
| // which could be shadowed by poorly chosen parameter |
| // names, we use 0 == 0 for true and 0 != 0 for false. |
| op := token.EQL |
| if !constant.BoolVal(v) { |
| op = token.NEQ |
| } |
| return &ast.BinaryExpr{ |
| Op: op, |
| X: makeIntLit(0), |
| Y: makeIntLit(0), |
| } |
| |
| case constant.String: |
| return &ast.BasicLit{ |
| Kind: token.STRING, |
| Value: v.ExactString(), |
| } |
| |
| case constant.Int: |
| return &ast.BasicLit{ |
| Kind: token.INT, |
| Value: v.ExactString(), |
| } |
| |
| case constant.Float: |
| return &ast.BasicLit{ |
| Kind: token.FLOAT, |
| Value: v.ExactString(), |
| } |
| |
| case constant.Complex: |
| // The components could be float or int. |
| y := makeLiteral(constant.Imag(v)) |
| y.(*ast.BasicLit).Value += "i" // ugh |
| if re := constant.Real(v); !consteq(re, kZeroInt) { |
| // complex: x + yi |
| y = &ast.BinaryExpr{ |
| Op: token.ADD, |
| X: makeLiteral(re), |
| Y: y, |
| } |
| } |
| return y |
| |
| default: |
| panic(v.Kind()) |
| } |
| } |
| |
| func makeIntLit(x int64) *ast.BasicLit { |
| return &ast.BasicLit{ |
| Kind: token.INT, |
| Value: strconv.FormatInt(x, 10), |
| } |
| } |
| |
| func isBasic(t types.Type, info types.BasicInfo) bool { |
| basic, ok := t.Underlying().(*types.Basic) |
| return ok && basic.Info()&info != 0 |
| } |