blob: 5fe2ce3e2a3d57062d3b684ef13b68335db85ac1 [file] [log] [blame]
// Copyright 2021 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package fuzzy
import (
"bytes"
"fmt"
"log"
"unicode"
)
// SymbolMatcher implements a fuzzy matching algorithm optimized for Go symbols
// of the form:
//
// example.com/path/to/package.object.field
//
// Knowing that we are matching symbols like this allows us to make the
// following optimizations:
// - We can incorporate right-to-left relevance directly into the score
// calculation.
// - We can match from right to left, discarding leading bytes if the input is
// too long.
// - We just take the right-most match without losing too much precision. This
// allows us to use an O(n) algorithm.
// - We can operate directly on chunked strings; in many cases we will
// be storing the package path and/or package name separately from the
// symbol or identifiers, so doing this avoids allocating strings.
// - We can return the index of the right-most match, allowing us to trim
// irrelevant qualification.
type SymbolMatcher struct {
// Using buffers of length 256 is both a reasonable size for most qualified
// symbols, and makes it easy to avoid bounds checks by using uint8 indexes.
pattern [256]rune
patternLen uint8
inputBuffer [256]rune // avoid allocating when considering chunks
roles [256]uint32 // which roles does a rune play (word start, etc.)
segments [256]uint8 // how many segments from the right is each rune
}
// Rune roles.
const (
segmentStart uint32 = 1 << iota // input rune starts a segment (i.e. follows '/' or '.')
wordStart // input rune starts a word, per camel-case naming rules
separator // input rune is a separator ('/' or '.')
upper // input rune is an upper case letter
)
// NewSymbolMatcher creates a SymbolMatcher that may be used to match the given
// search pattern.
//
// Currently this matcher only accepts case-insensitive fuzzy patterns.
//
// An empty pattern matches no input.
func NewSymbolMatcher(pattern string) *SymbolMatcher {
m := &SymbolMatcher{}
for _, p := range pattern {
m.pattern[m.patternLen] = unicode.ToLower(p)
m.patternLen++
if m.patternLen == 255 || int(m.patternLen) == len(pattern) {
// break at 255 so that we can represent patternLen with a uint8.
break
}
}
return m
}
// Match searches for the right-most match of the search pattern within the
// symbol represented by concatenating the given chunks.
//
// If a match is found, the first result holds the absolute byte offset within
// all chunks for the start of the symbol. In other words, the index of the
// match within strings.Join(chunks, "").
//
// The second return value will be the score of the match, which is always
// between 0 and 1, inclusive. A score of 0 indicates no match.
//
// If no match is found, Match returns (-1, 0).
func (m *SymbolMatcher) Match(chunks []string) (int, float64) {
// Explicit behavior for an empty pattern.
//
// As a minor optimization, this also avoids nilness checks later on, since
// the compiler can prove that m != nil.
if m.patternLen == 0 {
return -1, 0
}
// Matching implements a heavily optimized linear scoring algorithm on the
// input. This is not guaranteed to produce the highest score, but works well
// enough, particularly due to the right-to-left significance of qualified
// symbols.
//
// Matching proceeds in three passes through the input:
// - The first pass populates the input buffer and collects rune roles.
// - The second pass proceeds right-to-left to find the right-most match.
// - The third pass proceeds left-to-right from the start of the right-most
// match, to find the most *compact* match, and computes the score of this
// match.
//
// See below for more details of each pass, as well as the scoring algorithm.
// First pass: populate the input buffer out of the provided chunks
// (lower-casing in the process), and collect rune roles.
//
// We could also check for a forward match here, but since we'd have to write
// the entire input anyway this has negligible impact on performance.
var (
inputLen = uint8(0)
modifiers = wordStart | segmentStart
)
input:
for _, chunk := range chunks {
for _, r := range chunk {
if r == '.' || r == '/' {
modifiers |= separator
}
// optimization: avoid calls to unicode.ToLower, which can't be inlined.
l := r
if r <= unicode.MaxASCII {
if 'A' <= r && r <= 'Z' {
l = r + 'a' - 'A'
}
} else {
l = unicode.ToLower(r)
}
if l != r {
modifiers |= upper
// If the current rune is capitalized *and the preceding rune was not*,
// mark this as a word start. This avoids spuriously high ranking of
// non-camelcase naming schemas, such as the
// yaml_PARSE_FLOW_SEQUENCE_ENTRY_MAPPING_END_STATE example of
// golang/go#60201.
if inputLen == 0 || m.roles[inputLen-1]&upper == 0 {
modifiers |= wordStart
}
}
m.inputBuffer[inputLen] = l
m.roles[inputLen] = modifiers
inputLen++
if m.roles[inputLen-1]&separator != 0 {
modifiers = wordStart | segmentStart
} else {
modifiers = 0
}
// TODO: we should prefer the right-most input if it overflows, rather
// than the left-most as we're doing here.
if inputLen == 255 {
break input
}
}
}
// Second pass: find the right-most match, and count segments from the
// right.
var (
pi = uint8(m.patternLen - 1) // pattern index
p = m.pattern[pi] // pattern rune
start = -1 // start offset of match
rseg = uint8(0) // effective "depth" from the right of the current rune in consideration
)
const maxSeg = 3 // maximum number of segments from the right to count, for scoring purposes.
for ii := inputLen - 1; ; ii-- {
r := m.inputBuffer[ii]
if rseg < maxSeg && m.roles[ii]&separator != 0 {
rseg++
}
m.segments[ii] = rseg
if p == r {
if pi == 0 {
// TODO(rfindley): BUG: the docstring for Match says that it returns an
// absolute byte offset, but clearly it is returning a rune offset here.
start = int(ii)
break
}
pi--
p = m.pattern[pi]
}
// Don't check ii >= 0 in the loop condition: ii is a uint8.
if ii == 0 {
break
}
}
if start < 0 {
// no match: skip scoring
return -1, 0
}
// Third pass: find the shortest match and compute the score.
// Score is the average score for each rune.
//
// A rune score is the multiple of:
// 1. The base score, which is 1.0 if the rune starts a segment, 0.9 if the
// rune starts a mid-segment word, else 0.6.
//
// Runes preceded by a matching rune are treated the same as the start
// of a mid-segment word (with a 0.9 score), so that sequential or exact
// matches are preferred. We call this a sequential bonus.
//
// For the final rune match, this sequential bonus is reduced to 0.8 if
// the next rune in the input is a mid-segment word, or 0.7 if the next
// rune in the input is not a word or segment start. This ensures that
// we favor whole-word or whole-segment matches over prefix matches.
//
// 2. 1.0 if the rune is part of the last segment, otherwise
// 1.0-0.1*<segments from the right>, with a max segment count of 3.
// Notably 1.0-0.1*3 = 0.7 > 0.6, so that foo/_/_/_/_ (a match very
// early in a qualified symbol name) still scores higher than _f_o_o_ (a
// completely split match).
//
// This is a naive algorithm, but it is fast. There's lots of prior art here
// that could be leveraged. For example, we could explicitly consider
// rune distance, and exact matches of words or segments.
//
// Also note that this might not actually find the highest scoring match, as
// doing so could require a non-linear algorithm, depending on how the score
// is calculated.
// debugging support
const debug = false // enable to log debugging information
var (
runeScores []float64
runeIdxs []int
)
pi = 0
p = m.pattern[pi]
const (
segStartScore = 1.0 // base score of runes starting a segment
wordScore = 0.9 // base score of runes starting or continuing a word
noStreak = 0.6
perSegment = 0.1 // we count at most 3 segments above
)
totScore := 0.0
lastMatch := uint8(255)
for ii := uint8(start); ii < inputLen; ii++ {
r := m.inputBuffer[ii]
if r == p {
pi++
finalRune := pi >= m.patternLen
p = m.pattern[pi]
baseScore := noStreak
// Calculate the sequence bonus based on preceding matches.
//
// We do this first as it is overridden by role scoring below.
if lastMatch == ii-1 {
baseScore = wordScore
// Reduce the sequence bonus for the final rune of the pattern based on
// whether it borders a new segment or word.
if finalRune {
switch {
case ii == inputLen-1 || m.roles[ii+1]&separator != 0:
// Full segment: no reduction
case m.roles[ii+1]&wordStart != 0:
baseScore = wordScore - 0.1
default:
baseScore = wordScore - 0.2
}
}
}
lastMatch = ii
// Calculate the rune's role score. If the rune starts a segment or word,
// this overrides the sequence score, as the rune starts a new sequence.
switch {
case m.roles[ii]&segmentStart != 0:
baseScore = segStartScore
case m.roles[ii]&wordStart != 0:
baseScore = wordScore
}
// Apply the segment-depth penalty (segments from the right).
runeScore := baseScore * (1.0 - float64(m.segments[ii])*perSegment)
if debug {
runeScores = append(runeScores, runeScore)
runeIdxs = append(runeIdxs, int(ii))
}
totScore += runeScore
if finalRune {
break
}
}
}
if debug {
// Format rune roles and scores in line:
// fo[o:.52].[b:1]a[r:.6]
var summary bytes.Buffer
last := 0
for i, idx := range runeIdxs {
summary.WriteString(string(m.inputBuffer[last:idx])) // encode runes
fmt.Fprintf(&summary, "[%s:%.2g]", string(m.inputBuffer[idx]), runeScores[i])
last = idx + 1
}
summary.WriteString(string(m.inputBuffer[last:inputLen])) // encode runes
log.Println(summary.String())
}
return start, totScore / float64(m.patternLen)
}