| // Copyright 2022 The Go Authors. All rights reserved. |
| // Use of this source code is governed by a BSD-style |
| // license that can be found in the LICENSE file. |
| |
| package ssa |
| |
| import ( |
| "go/types" |
| |
| "golang.org/x/tools/go/types/typeutil" |
| "golang.org/x/tools/internal/aliases" |
| ) |
| |
| // subster defines a type substitution operation of a set of type parameters |
| // to type parameter free replacement types. Substitution is done within |
| // the context of a package-level function instantiation. *Named types |
| // declared in the function are unique to the instantiation. |
| // |
| // For example, given a parameterized function F |
| // |
| // func F[S, T any]() any { |
| // type X struct{ s S; next *X } |
| // var p *X |
| // return p |
| // } |
| // |
| // calling the instantiation F[string, int]() returns an interface |
| // value (*X[string,int], nil) where the underlying value of |
| // X[string,int] is a struct{s string; next *X[string,int]}. |
| // |
| // A nil *subster is a valid, empty substitution map. It always acts as |
| // the identity function. This allows for treating parameterized and |
| // non-parameterized functions identically while compiling to ssa. |
| // |
| // Not concurrency-safe. |
| // |
| // Note: Some may find it helpful to think through some of the most |
| // complex substitution cases using lambda calculus inspired notation. |
| // subst.typ() solves evaluating a type expression E |
| // within the body of a function Fn[m] with the type parameters m |
| // once we have applied the type arguments N. |
| // We can succinctly write this as a function application: |
| // |
| // ((λm. E) N) |
| // |
| // go/types does not provide this interface directly. |
| // So what subster provides is a type substitution operation |
| // |
| // E[m:=N] |
| type subster struct { |
| replacements map[*types.TypeParam]types.Type // values should contain no type params |
| cache map[types.Type]types.Type // cache of subst results |
| origin *types.Func // types.Objects declared within this origin function are unique within this context |
| ctxt *types.Context // speeds up repeated instantiations |
| uniqueness typeutil.Map // determines the uniqueness of the instantiations within the function |
| // TODO(taking): consider adding Pos |
| } |
| |
| // Returns a subster that replaces tparams[i] with targs[i]. Uses ctxt as a cache. |
| // targs should not contain any types in tparams. |
| // fn is the generic function for which we are substituting. |
| func makeSubster(ctxt *types.Context, fn *types.Func, tparams *types.TypeParamList, targs []types.Type, debug bool) *subster { |
| assert(tparams.Len() == len(targs), "makeSubster argument count must match") |
| |
| subst := &subster{ |
| replacements: make(map[*types.TypeParam]types.Type, tparams.Len()), |
| cache: make(map[types.Type]types.Type), |
| origin: fn.Origin(), |
| ctxt: ctxt, |
| } |
| for i := 0; i < tparams.Len(); i++ { |
| subst.replacements[tparams.At(i)] = targs[i] |
| } |
| return subst |
| } |
| |
| // typ returns the type of t with the type parameter tparams[i] substituted |
| // for the type targs[i] where subst was created using tparams and targs. |
| func (subst *subster) typ(t types.Type) (res types.Type) { |
| if subst == nil { |
| return t // A nil subst is type preserving. |
| } |
| if r, ok := subst.cache[t]; ok { |
| return r |
| } |
| defer func() { |
| subst.cache[t] = res |
| }() |
| |
| switch t := t.(type) { |
| case *types.TypeParam: |
| if r := subst.replacements[t]; r != nil { |
| return r |
| } |
| return t |
| |
| case *types.Basic: |
| return t |
| |
| case *types.Array: |
| if r := subst.typ(t.Elem()); r != t.Elem() { |
| return types.NewArray(r, t.Len()) |
| } |
| return t |
| |
| case *types.Slice: |
| if r := subst.typ(t.Elem()); r != t.Elem() { |
| return types.NewSlice(r) |
| } |
| return t |
| |
| case *types.Pointer: |
| if r := subst.typ(t.Elem()); r != t.Elem() { |
| return types.NewPointer(r) |
| } |
| return t |
| |
| case *types.Tuple: |
| return subst.tuple(t) |
| |
| case *types.Struct: |
| return subst.struct_(t) |
| |
| case *types.Map: |
| key := subst.typ(t.Key()) |
| elem := subst.typ(t.Elem()) |
| if key != t.Key() || elem != t.Elem() { |
| return types.NewMap(key, elem) |
| } |
| return t |
| |
| case *types.Chan: |
| if elem := subst.typ(t.Elem()); elem != t.Elem() { |
| return types.NewChan(t.Dir(), elem) |
| } |
| return t |
| |
| case *types.Signature: |
| return subst.signature(t) |
| |
| case *types.Union: |
| return subst.union(t) |
| |
| case *types.Interface: |
| return subst.interface_(t) |
| |
| case *types.Alias: |
| return subst.alias(t) |
| |
| case *types.Named: |
| return subst.named(t) |
| |
| case *opaqueType: |
| return t // opaque types are never substituted |
| |
| default: |
| panic("unreachable") |
| } |
| } |
| |
| // types returns the result of {subst.typ(ts[i])}. |
| func (subst *subster) types(ts []types.Type) []types.Type { |
| res := make([]types.Type, len(ts)) |
| for i := range ts { |
| res[i] = subst.typ(ts[i]) |
| } |
| return res |
| } |
| |
| func (subst *subster) tuple(t *types.Tuple) *types.Tuple { |
| if t != nil { |
| if vars := subst.varlist(t); vars != nil { |
| return types.NewTuple(vars...) |
| } |
| } |
| return t |
| } |
| |
| type varlist interface { |
| At(i int) *types.Var |
| Len() int |
| } |
| |
| // fieldlist is an adapter for structs for the varlist interface. |
| type fieldlist struct { |
| str *types.Struct |
| } |
| |
| func (fl fieldlist) At(i int) *types.Var { return fl.str.Field(i) } |
| func (fl fieldlist) Len() int { return fl.str.NumFields() } |
| |
| func (subst *subster) struct_(t *types.Struct) *types.Struct { |
| if t != nil { |
| if fields := subst.varlist(fieldlist{t}); fields != nil { |
| tags := make([]string, t.NumFields()) |
| for i, n := 0, t.NumFields(); i < n; i++ { |
| tags[i] = t.Tag(i) |
| } |
| return types.NewStruct(fields, tags) |
| } |
| } |
| return t |
| } |
| |
| // varlist returns subst(in[i]) or return nils if subst(v[i]) == v[i] for all i. |
| func (subst *subster) varlist(in varlist) []*types.Var { |
| var out []*types.Var // nil => no updates |
| for i, n := 0, in.Len(); i < n; i++ { |
| v := in.At(i) |
| w := subst.var_(v) |
| if v != w && out == nil { |
| out = make([]*types.Var, n) |
| for j := 0; j < i; j++ { |
| out[j] = in.At(j) |
| } |
| } |
| if out != nil { |
| out[i] = w |
| } |
| } |
| return out |
| } |
| |
| func (subst *subster) var_(v *types.Var) *types.Var { |
| if v != nil { |
| if typ := subst.typ(v.Type()); typ != v.Type() { |
| if v.IsField() { |
| return types.NewField(v.Pos(), v.Pkg(), v.Name(), typ, v.Embedded()) |
| } |
| return types.NewVar(v.Pos(), v.Pkg(), v.Name(), typ) |
| } |
| } |
| return v |
| } |
| |
| func (subst *subster) union(u *types.Union) *types.Union { |
| var out []*types.Term // nil => no updates |
| |
| for i, n := 0, u.Len(); i < n; i++ { |
| t := u.Term(i) |
| r := subst.typ(t.Type()) |
| if r != t.Type() && out == nil { |
| out = make([]*types.Term, n) |
| for j := 0; j < i; j++ { |
| out[j] = u.Term(j) |
| } |
| } |
| if out != nil { |
| out[i] = types.NewTerm(t.Tilde(), r) |
| } |
| } |
| |
| if out != nil { |
| return types.NewUnion(out) |
| } |
| return u |
| } |
| |
| func (subst *subster) interface_(iface *types.Interface) *types.Interface { |
| if iface == nil { |
| return nil |
| } |
| |
| // methods for the interface. Initially nil if there is no known change needed. |
| // Signatures for the method where recv is nil. NewInterfaceType fills in the receivers. |
| var methods []*types.Func |
| initMethods := func(n int) { // copy first n explicit methods |
| methods = make([]*types.Func, iface.NumExplicitMethods()) |
| for i := 0; i < n; i++ { |
| f := iface.ExplicitMethod(i) |
| norecv := changeRecv(f.Type().(*types.Signature), nil) |
| methods[i] = types.NewFunc(f.Pos(), f.Pkg(), f.Name(), norecv) |
| } |
| } |
| for i := 0; i < iface.NumExplicitMethods(); i++ { |
| f := iface.ExplicitMethod(i) |
| // On interfaces, we need to cycle break on anonymous interface types |
| // being in a cycle with their signatures being in cycles with their receivers |
| // that do not go through a Named. |
| norecv := changeRecv(f.Type().(*types.Signature), nil) |
| sig := subst.typ(norecv) |
| if sig != norecv && methods == nil { |
| initMethods(i) |
| } |
| if methods != nil { |
| methods[i] = types.NewFunc(f.Pos(), f.Pkg(), f.Name(), sig.(*types.Signature)) |
| } |
| } |
| |
| var embeds []types.Type |
| initEmbeds := func(n int) { // copy first n embedded types |
| embeds = make([]types.Type, iface.NumEmbeddeds()) |
| for i := 0; i < n; i++ { |
| embeds[i] = iface.EmbeddedType(i) |
| } |
| } |
| for i := 0; i < iface.NumEmbeddeds(); i++ { |
| e := iface.EmbeddedType(i) |
| r := subst.typ(e) |
| if e != r && embeds == nil { |
| initEmbeds(i) |
| } |
| if embeds != nil { |
| embeds[i] = r |
| } |
| } |
| |
| if methods == nil && embeds == nil { |
| return iface |
| } |
| if methods == nil { |
| initMethods(iface.NumExplicitMethods()) |
| } |
| if embeds == nil { |
| initEmbeds(iface.NumEmbeddeds()) |
| } |
| return types.NewInterfaceType(methods, embeds).Complete() |
| } |
| |
| func (subst *subster) alias(t *types.Alias) types.Type { |
| // See subster.named. This follows the same strategy. |
| tparams := aliases.TypeParams(t) |
| targs := aliases.TypeArgs(t) |
| tname := t.Obj() |
| torigin := aliases.Origin(t) |
| |
| if !declaredWithin(tname, subst.origin) { |
| // t is declared outside of the function origin. So t is a package level type alias. |
| if targs.Len() == 0 { |
| // No type arguments so no instantiation needed. |
| return t |
| } |
| |
| // Instantiate with the substituted type arguments. |
| newTArgs := subst.typelist(targs) |
| return subst.instantiate(torigin, newTArgs) |
| } |
| |
| if targs.Len() == 0 { |
| // t is declared within the function origin and has no type arguments. |
| // |
| // Example: This corresponds to A or B in F, but not A[int]: |
| // |
| // func F[T any]() { |
| // type A[S any] = struct{t T, s S} |
| // type B = T |
| // var x A[int] |
| // ... |
| // } |
| // |
| // This is somewhat different than *Named as *Alias cannot be created recursively. |
| |
| // Copy and substitute type params. |
| var newTParams []*types.TypeParam |
| for i := 0; i < tparams.Len(); i++ { |
| cur := tparams.At(i) |
| cobj := cur.Obj() |
| cname := types.NewTypeName(cobj.Pos(), cobj.Pkg(), cobj.Name(), nil) |
| ntp := types.NewTypeParam(cname, nil) |
| subst.cache[cur] = ntp // See the comment "Note: Subtle" in subster.named. |
| newTParams = append(newTParams, ntp) |
| } |
| |
| // Substitute rhs. |
| rhs := subst.typ(aliases.Rhs(t)) |
| |
| // Create the fresh alias. |
| // |
| // Until 1.27, the result of aliases.NewAlias(...).Type() cannot guarantee it is a *types.Alias. |
| // However, as t is an *alias.Alias and t is well-typed, then aliases must have been enabled. |
| // Follow this decision, and always enable aliases here. |
| const enabled = true |
| obj := aliases.NewAlias(enabled, tname.Pos(), tname.Pkg(), tname.Name(), rhs, newTParams) |
| |
| // Substitute into all of the constraints after they are created. |
| for i, ntp := range newTParams { |
| bound := tparams.At(i).Constraint() |
| ntp.SetConstraint(subst.typ(bound)) |
| } |
| return obj.Type() |
| } |
| |
| // t is declared within the function origin and has type arguments. |
| // |
| // Example: This corresponds to A[int] in F. Cases A and B are handled above. |
| // func F[T any]() { |
| // type A[S any] = struct{t T, s S} |
| // type B = T |
| // var x A[int] |
| // ... |
| // } |
| subOrigin := subst.typ(torigin) |
| subTArgs := subst.typelist(targs) |
| return subst.instantiate(subOrigin, subTArgs) |
| } |
| |
| func (subst *subster) named(t *types.Named) types.Type { |
| // A Named type is a user defined type. |
| // Ignoring generics, Named types are canonical: they are identical if |
| // and only if they have the same defining symbol. |
| // Generics complicate things, both if the type definition itself is |
| // parameterized, and if the type is defined within the scope of a |
| // parameterized function. In this case, two named types are identical if |
| // and only if their identifying symbols are identical, and all type |
| // arguments bindings in scope of the named type definition (including the |
| // type parameters of the definition itself) are equivalent. |
| // |
| // Notably: |
| // 1. For type definition type T[P1 any] struct{}, T[A] and T[B] are identical |
| // only if A and B are identical. |
| // 2. Inside the generic func Fn[m any]() any { type T struct{}; return T{} }, |
| // the result of Fn[A] and Fn[B] have identical type if and only if A and |
| // B are identical. |
| // 3. Both 1 and 2 could apply, such as in |
| // func F[m any]() any { type T[x any] struct{}; return T{} } |
| // |
| // A subster replaces type parameters within a function scope, and therefore must |
| // also replace free type parameters in the definitions of local types. |
| // |
| // Note: There are some detailed notes sprinkled throughout that borrow from |
| // lambda calculus notation. These contain some over simplifying math. |
| // |
| // LC: One way to think about subster is that it is a way of evaluating |
| // ((λm. E) N) as E[m:=N]. |
| // Each Named type t has an object *TypeName within a scope S that binds an |
| // underlying type expression U. U can refer to symbols within S (+ S's ancestors). |
| // Let x = t.TypeParams() and A = t.TypeArgs(). |
| // Each Named type t is then either: |
| // U where len(x) == 0 && len(A) == 0 |
| // λx. U where len(x) != 0 && len(A) == 0 |
| // ((λx. U) A) where len(x) == len(A) |
| // In each case, we will evaluate t[m:=N]. |
| tparams := t.TypeParams() // x |
| targs := t.TypeArgs() // A |
| |
| if !declaredWithin(t.Obj(), subst.origin) { |
| // t is declared outside of Fn[m]. |
| // |
| // In this case, we can skip substituting t.Underlying(). |
| // The underlying type cannot refer to the type parameters. |
| // |
| // LC: Let free(E) be the set of free type parameters in an expression E. |
| // Then whenever m ∉ free(E), then E = E[m:=N]. |
| // t ∉ Scope(fn) so therefore m ∉ free(U) and m ∩ x = ∅. |
| if targs.Len() == 0 { |
| // t has no type arguments. So it does not need to be instantiated. |
| // |
| // This is the normal case in real Go code, where t is not parameterized, |
| // declared at some package scope, and m is a TypeParam from a parameterized |
| // function F[m] or method. |
| // |
| // LC: m ∉ free(A) lets us conclude m ∉ free(t). So t=t[m:=N]. |
| return t |
| } |
| |
| // t is declared outside of Fn[m] and has type arguments. |
| // The type arguments may contain type parameters m so |
| // substitute the type arguments, and instantiate the substituted |
| // type arguments. |
| // |
| // LC: Evaluate this as ((λx. U) A') where A' = A[m := N]. |
| newTArgs := subst.typelist(targs) |
| return subst.instantiate(t.Origin(), newTArgs) |
| } |
| |
| // t is declared within Fn[m]. |
| |
| if targs.Len() == 0 { // no type arguments? |
| assert(t == t.Origin(), "local parameterized type abstraction must be an origin type") |
| |
| // t has no type arguments. |
| // The underlying type of t may contain the function's type parameters, |
| // replace these, and create a new type. |
| // |
| // Subtle: We short circuit substitution and use a newly created type in |
| // subst, i.e. cache[t]=fresh, to preemptively replace t with fresh |
| // in recursive types during traversal. This both breaks infinite cycles |
| // and allows for constructing types with the replacement applied in |
| // subst.typ(U). |
| // |
| // A new copy of the Named and Typename (and constraints) per function |
| // instantiation matches the semantics of Go, which treats all function |
| // instantiations F[N] as having distinct local types. |
| // |
| // LC: x.Len()=0 can be thought of as a special case of λx. U. |
| // LC: Evaluate (λx. U)[m:=N] as (λx'. U') where U'=U[x:=x',m:=N]. |
| tname := t.Obj() |
| obj := types.NewTypeName(tname.Pos(), tname.Pkg(), tname.Name(), nil) |
| fresh := types.NewNamed(obj, nil, nil) |
| var newTParams []*types.TypeParam |
| for i := 0; i < tparams.Len(); i++ { |
| cur := tparams.At(i) |
| cobj := cur.Obj() |
| cname := types.NewTypeName(cobj.Pos(), cobj.Pkg(), cobj.Name(), nil) |
| ntp := types.NewTypeParam(cname, nil) |
| subst.cache[cur] = ntp |
| newTParams = append(newTParams, ntp) |
| } |
| fresh.SetTypeParams(newTParams) |
| subst.cache[t] = fresh |
| subst.cache[fresh] = fresh |
| fresh.SetUnderlying(subst.typ(t.Underlying())) |
| // Substitute into all of the constraints after they are created. |
| for i, ntp := range newTParams { |
| bound := tparams.At(i).Constraint() |
| ntp.SetConstraint(subst.typ(bound)) |
| } |
| return fresh |
| } |
| |
| // t is defined within Fn[m] and t has type arguments (an instantiation). |
| // We reduce this to the two cases above: |
| // (1) substitute the function's type parameters into t.Origin(). |
| // (2) substitute t's type arguments A and instantiate the updated t.Origin() with these. |
| // |
| // LC: Evaluate ((λx. U) A)[m:=N] as (t' A') where t' = (λx. U)[m:=N] and A'=A [m:=N] |
| subOrigin := subst.typ(t.Origin()) |
| subTArgs := subst.typelist(targs) |
| return subst.instantiate(subOrigin, subTArgs) |
| } |
| |
| func (subst *subster) instantiate(orig types.Type, targs []types.Type) types.Type { |
| i, err := types.Instantiate(subst.ctxt, orig, targs, false) |
| assert(err == nil, "failed to Instantiate named (Named or Alias) type") |
| if c, _ := subst.uniqueness.At(i).(types.Type); c != nil { |
| return c.(types.Type) |
| } |
| subst.uniqueness.Set(i, i) |
| return i |
| } |
| |
| func (subst *subster) typelist(l *types.TypeList) []types.Type { |
| res := make([]types.Type, l.Len()) |
| for i := 0; i < l.Len(); i++ { |
| res[i] = subst.typ(l.At(i)) |
| } |
| return res |
| } |
| |
| func (subst *subster) signature(t *types.Signature) types.Type { |
| tparams := t.TypeParams() |
| |
| // We are choosing not to support tparams.Len() > 0 until a need has been observed in practice. |
| // |
| // There are some known usages for types.Types coming from types.{Eval,CheckExpr}. |
| // To support tparams.Len() > 0, we just need to do the following [psuedocode]: |
| // targs := {subst.replacements[tparams[i]]]}; Instantiate(ctxt, t, targs, false) |
| |
| assert(tparams.Len() == 0, "Substituting types.Signatures with generic functions are currently unsupported.") |
| |
| // Either: |
| // (1)non-generic function. |
| // no type params to substitute |
| // (2)generic method and recv needs to be substituted. |
| |
| // Receivers can be either: |
| // named |
| // pointer to named |
| // interface |
| // nil |
| // interface is the problematic case. We need to cycle break there! |
| recv := subst.var_(t.Recv()) |
| params := subst.tuple(t.Params()) |
| results := subst.tuple(t.Results()) |
| if recv != t.Recv() || params != t.Params() || results != t.Results() { |
| return types.NewSignatureType(recv, nil, nil, params, results, t.Variadic()) |
| } |
| return t |
| } |
| |
| // reaches returns true if a type t reaches any type t' s.t. c[t'] == true. |
| // It updates c to cache results. |
| // |
| // reaches is currently only part of the wellFormed debug logic, and |
| // in practice c is initially only type parameters. It is not currently |
| // relied on in production. |
| func reaches(t types.Type, c map[types.Type]bool) (res bool) { |
| if c, ok := c[t]; ok { |
| return c |
| } |
| |
| // c is populated with temporary false entries as types are visited. |
| // This avoids repeat visits and break cycles. |
| c[t] = false |
| defer func() { |
| c[t] = res |
| }() |
| |
| switch t := t.(type) { |
| case *types.TypeParam, *types.Basic: |
| return false |
| case *types.Array: |
| return reaches(t.Elem(), c) |
| case *types.Slice: |
| return reaches(t.Elem(), c) |
| case *types.Pointer: |
| return reaches(t.Elem(), c) |
| case *types.Tuple: |
| for i := 0; i < t.Len(); i++ { |
| if reaches(t.At(i).Type(), c) { |
| return true |
| } |
| } |
| case *types.Struct: |
| for i := 0; i < t.NumFields(); i++ { |
| if reaches(t.Field(i).Type(), c) { |
| return true |
| } |
| } |
| case *types.Map: |
| return reaches(t.Key(), c) || reaches(t.Elem(), c) |
| case *types.Chan: |
| return reaches(t.Elem(), c) |
| case *types.Signature: |
| if t.Recv() != nil && reaches(t.Recv().Type(), c) { |
| return true |
| } |
| return reaches(t.Params(), c) || reaches(t.Results(), c) |
| case *types.Union: |
| for i := 0; i < t.Len(); i++ { |
| if reaches(t.Term(i).Type(), c) { |
| return true |
| } |
| } |
| case *types.Interface: |
| for i := 0; i < t.NumEmbeddeds(); i++ { |
| if reaches(t.Embedded(i), c) { |
| return true |
| } |
| } |
| for i := 0; i < t.NumExplicitMethods(); i++ { |
| if reaches(t.ExplicitMethod(i).Type(), c) { |
| return true |
| } |
| } |
| case *types.Named, *types.Alias: |
| return reaches(t.Underlying(), c) |
| default: |
| panic("unreachable") |
| } |
| return false |
| } |